Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,951)

Search Parameters:
Keywords = calcium limitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 620 KB  
Review
Nutritional Adequacy and Dietary Assessment Approaches in Institutionalised Older Adults Living in Long-Term Care Settings: A Systematic Review (2004–2024)
by Nicolás Piedrafita-Páez, Mª Angeles Romero-Rodríguez, Mª Lourdes Vázquez-Odériz and NUTRIAGE Study Researchers
Nutrients 2026, 18(1), 54; https://doi.org/10.3390/nu18010054 (registering DOI) - 23 Dec 2025
Abstract
Background: Adequate nutrition in long-term care (LTC) settings is critical for the health and well-being of institutionalised older adults, yet global evidence consistently reveals significant gaps in dietary provision. Methods: We conducted a systematic review of observational studies published between January 2004 and [...] Read more.
Background: Adequate nutrition in long-term care (LTC) settings is critical for the health and well-being of institutionalised older adults, yet global evidence consistently reveals significant gaps in dietary provision. Methods: We conducted a systematic review of observational studies published between January 2004 and December 2024 in PubMed and Scopus, following PRISMA 2020 and JBI guidelines. The review assessed whether planned menus and residents’ actual intake met recognised dietary reference values, described dietary assessment methods, and identified common nutrient shortfalls. Results: 34 observational studies from 16 countries were included. The most frequently used assessment methods were weighed food records (50.0%), menu analyses (29.4%), and 24 h recalls or food diaries (20.6%). Among the 25 studies reporting mean daily energy intake, 68.0% documented values between 1250 and 1800 kcal/day, and 73.5% indicated intakes below established reference values. Additionally, 11 studies (32.4%) found that residents consumed less than 75% of the energy planned in menus. Protein intake was below 60 g/day or 0.83 g/kg body weight/day in 41.2% of studies. Across 22 studies assessing micronutrients, recurrent inadequacies included vitamin D (61.8%), calcium (55.9%), folate (50.0%), zinc (41.2%), and fibre (47.1%). In studies quantifying planned–served–consumed stages, actual intake represented approximately 64.0–87.0% of planned energy and protein. Conclusions: Nutrition in LTC settings frequently falls short of meeting the energy and nutrient requirements of institutionalised older adults. Persistent inadequacies in energy, protein, and key micronutrients were observed across studies, alongside substantial variability in dietary assessment methods and reference frameworks, limiting comparability of findings. Full article
22 pages, 716 KB  
Review
Oxidative Stress, Mitochondrial Homeostasis, and Sirtuins in Atrial Fibrillation
by Jan Krekora, Elzbieta Pawlowska, Marcin Derwich, Jarosław Drożdż and Janusz Blasiak
Int. J. Mol. Sci. 2026, 27(1), 175; https://doi.org/10.3390/ijms27010175 (registering DOI) - 23 Dec 2025
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Yet, its treatment has serious challenges and is unsuccessful in a considerable fraction of patients. One reason may be a limited understanding of the molecular mechanisms underlying AF. Recent studies suggest that oxidative stress [...] Read more.
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Yet, its treatment has serious challenges and is unsuccessful in a considerable fraction of patients. One reason may be a limited understanding of the molecular mechanisms underlying AF. Recent studies suggest that oxidative stress is involved in AF pathogenesis. Enhanced oxidative stress is largely determined by disrupted mitochondrial homeostasis, as cardiomyocytes heavily rely on mitochondrial energy production and calcium transfer between mitochondria and the sarcoplasmic reticulum. Atrial fibrillation involves metabolic, structural, and electrical remodeling, all of which are influenced by mitochondrial mechanisms. Mitochondrial homeostasis is controlled by mitochondrial quality control (mtQC), which is a multi-pathway mechanism to maintain integrity and functionality of mitochondria. Impaired mtQC may result in disturbed mitochondria-related calcium handling, decreased energy production, mitochondria-related inflammation and fibrosis, and impaired mitophagy. Sirtuins (SIRTs) are a family of seven members of histone deacetylases which have antioxidant properties, and three of them are localized to mitochondria. Therefore, at least some SIRTs may ameliorate enhanced oxidative stress related to damaged mitochondria. SIRTs have shown potential to improve AF outcomes in studies on AF patients and animal models. Therefore, SIRTs may have potential to ameliorate AF by decreasing oxidative stress and restoring mitochondrial homeostasis disrupted in AF. In this narrative review, we provide information on how mitochondrial dysfunctions, expressed as a disturbance in mtQC, contribute to AF through oxidative stress, calcium handling abnormalities, energy deficiency, inflammation and fibrosis, and genetic changes. In addition, we present the protective potential of sirtuins in AF. Full article
20 pages, 711 KB  
Review
Application of Amorphous Nanomaterials in Dentistry: A Comprehensive Review
by Iris Xiaoxue Yin, John Yun Niu, Veena Wenqing Xu, Ollie Yiru Yu, Irene Shuping Zhao and Chun Hung Chu
J. Funct. Biomater. 2026, 17(1), 11; https://doi.org/10.3390/jfb17010011 - 23 Dec 2025
Abstract
Conventional dental materials with organised crystal structures exhibit limitations in corrosion resistance, bioactivity, and drug delivery capability. In contrast, amorphous nanomaterials offer potential advantages in overcoming these limitations due to their unique structural properties. They are characterised by a non-crystalline, disordered atomic structure [...] Read more.
Conventional dental materials with organised crystal structures exhibit limitations in corrosion resistance, bioactivity, and drug delivery capability. In contrast, amorphous nanomaterials offer potential advantages in overcoming these limitations due to their unique structural properties. They are characterised by a non-crystalline, disordered atomic structure and are similar to a solidified liquid at the nanoscale. Among the amorphous nanomaterials used in dentistry, there are five major categories: calcium-, silicon-, magnesium-, zirconia-, and polymer-based systems. This study reviewed these amorphous nanomaterials by investigating their synthesis, properties, applications, limitations, and future directions in dentistry. These amorphous nanomaterials are synthesised primarily through low-temperature methods, including sol–gel processes, rapid precipitation, and electrochemical etching, which prevent atomic arrangements into crystalline structures. The resulting disordered atomic configuration confers exceptional properties, including enhanced solubility, superior drug-loading capacity, high surface reactivity, and controlled biodegradability. These characteristics enable diverse dental applications. Calcium-based amorphous nanomaterials, particularly amorphous calcium phosphate, demonstrate the ability to remineralise tooth enamel. Silicon-based amorphous nanomaterials function as carriers that can release antibacterial agents in response to stimuli. Magnesium-based amorphous nanomaterials are antibacterial and support natural bone regeneration. Zirconia-based amorphous nanomaterials strengthen the mechanical properties of restorative materials. Polymer-based amorphous nanomaterials enable controlled release of medications over extended periods. Despite the advances in these amorphous nanomaterials, there are limitations regarding material stability over time, precise control of degradation rates in the oral environment, and the development of reliable large-scale manufacturing processes. Researchers are creating smart materials that respond to specific oral conditions and developing hybrid systems that combine the strengths of different nanomaterials. In summary, amorphous nanomaterials hold great promise for advancing dental treatments through their unique properties and versatile applications. Clinically, these materials could improve the durability, bioactivity, and targeted drug delivery in dental restorations and therapies, leading to better patient outcomes. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
23 pages, 1062 KB  
Review
Astrocytic Receptor Systems of the Basal Ganglia
by Aleksandar Tushevski, Linus Happe, Elena Stocco, Raffaele De Caro, Veronica Macchi, Andrea Porzionato and Aron Emmi
Receptors 2026, 5(1), 2; https://doi.org/10.3390/receptors5010002 - 23 Dec 2025
Abstract
Astrocytes are increasingly recognized as active participants of synaptic communication, yet their role in the basal ganglia circuitry remains poorly defined. Emerging evidence indicates that astrocytes in this region express a diverse array of neurotransmitter receptors thought to regulate intracellular calcium signaling, gliotransmitter [...] Read more.
Astrocytes are increasingly recognized as active participants of synaptic communication, yet their role in the basal ganglia circuitry remains poorly defined. Emerging evidence indicates that astrocytes in this region express a diverse array of neurotransmitter receptors thought to regulate intracellular calcium signaling, gliotransmitter release, synaptic plasticity, and neuroimmune responses. However, the literature is limited by methodological variability and a pronounced focus on the striatum, with comparatively little data on other basal ganglia nuclei. This review aims to organize the current literature on astrocytic receptor systems within the basal ganglia, including dopaminergic (D1–D5), glutamatergic (AMPA, NMDA, mGluRs), GABAergic (GABA-A, GABA-B), purinergic (P1, P2), and adrenergic (α, β) receptors. By organizing receptor-specific findings across basal ganglia structures, this review provides a foundation for future investigations into astrocytic function in this complex neural network. Full article
Show Figures

Figure 1

20 pages, 3233 KB  
Article
Engineering Human 3D Cardiac Tissues for Predictive Functional Drug Screening
by Ester Sapir Baruch, Daniel Rosner, Elisabeth Riska, Moran Yadid, Assaf Shapira and Tal Dvir
Pharmaceutics 2026, 18(1), 18; https://doi.org/10.3390/pharmaceutics18010018 - 22 Dec 2025
Abstract
Background/Objectives: Cardiotoxicity remains a leading cause of drug withdrawal. Conventional preclinical models, such as two-dimensional (2D) cell cultures and animal studies, often fail to accurately predict human cardiac responses. While 2D cultures lack the complex architecture and dynamic functionality of native myocardium, [...] Read more.
Background/Objectives: Cardiotoxicity remains a leading cause of drug withdrawal. Conventional preclinical models, such as two-dimensional (2D) cell cultures and animal studies, often fail to accurately predict human cardiac responses. While 2D cultures lack the complex architecture and dynamic functionality of native myocardium, interspecies differences limit the translational relevance of animal models. The objective of this study was to develop a human-relevant, in vitro platform that enables predictive and functional assessment of drug-induced cardiotoxicity. Methods: Here, we present a high-throughput in vitro platform for cardiotoxicity screening using three-dimensional (3D) cardiac tissues derived from human induced pluripotent stem cells (hiPSCs) within a thermoresponsive extracellular matrix-derived hydrogel. The hydrogel enables homogeneous encapsulation, differentiation in 3D, and long-term assembly into a functional cardiac tissue. Maturation was validated by immunostaining for cardiac-specific markers, and calcium imaging was employed to monitor electrical signal propagation. Contractile performance, defined by beat rate and contraction amplitude, was quantified using video-based motion analysis. The platform was applied to evaluate the dose-dependent effects of various cardioactive compounds, including β-adrenergic agonists ((-) epinephrine and dopamine), a cardiotoxic chemotherapeutic (doxorubicin), a sinus node inhibitor (ivabradine), a calcium channel blocker (verapamil), and a β-adrenergic antagonist (metoprolol). Results: The engineered cardiac tissues exhibited functional maturation and stable contractile behavior. Drug testing demonstrated compound-specific, dose-dependent functional responses. For each compound, the system faithfully reproduced the expected physiological responses. Conclusions: This human-relevant, scalable platform enables sensitive, multiparametric functional assessment of cardiac tissues, offering a cost-effective and predictive tool for preclinical drug safety testing. By bridging the gap between in vitro assays and human physiology, it holds promise to enhance translational accuracy while reducing reliance on animal models. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

22 pages, 12475 KB  
Article
Porosity–Strength Relationships in Cement Pastes Incorporating GO-Modified RCP: A Data-Driven Approach
by Jiajian Yu, Wangjingyi Li, Konara Mudiyanselage Vishwa Akalanka Udaya Bandara, Siyao Wang, Xiaoli Xu and Yuan Gao
Buildings 2026, 16(1), 46; https://doi.org/10.3390/buildings16010046 - 22 Dec 2025
Abstract
A thorough understanding of the dispersion characteristics of graphene oxide (GO), its micro-pore enhancement mechanisms, and correlations with mechanical properties are crucial for advancing high-strength, durable green concrete. Introducing recycled concrete powder (RCP) can weaken the interfacial transition zone (ITZ) and inhibit hydration [...] Read more.
A thorough understanding of the dispersion characteristics of graphene oxide (GO), its micro-pore enhancement mechanisms, and correlations with mechanical properties are crucial for advancing high-strength, durable green concrete. Introducing recycled concrete powder (RCP) can weaken the interfacial transition zone (ITZ) and inhibit hydration reactions, degrading the pore structure and affecting mechanical strength and durability. However, traditional methods struggle to accurately characterize and quantitatively analyze GO-modified pore structures due to their nanoscale size, microstructural diversity, and characterization technique limitations. To address these challenges, this study integrates deep learning-based backscattered electron image analysis with deep Taylor decomposition feature extraction. This innovative method systematically analyzes pore characteristic evolution and the correlation between porosity and mechanical strength. The results indicate that GO promotes Calcium Silicate Hydrate gel growth, refines pores, and reduces pore connectivity, decreasing the maximum pore size by 33.4–45.2%. Using a Convolutional Neural Network architecture, BSE images are efficiently processed and analyzed, achieving an average recognition accuracy of 94.3–96.9%. The optimized degree of GO coating on enhanced regions reaches 30.2%. Fitting porosity with mechanical strength and chloride ion permeability coefficients reveals that enhanced regions exhibit the highest correlation with mechanical strength and durability in regenerated cementitious materials, with R2 values ranging from 0.79 to 0.99. The deep learning-assisted pore structure characterization method demonstrates high accuracy and efficiency, providing a critical theoretical basis and data support for performance optimization and engineering applications of recycled cementitious materials. This research expands the application of deep learning in building materials and offers new insights into the relationship between the microstructural and macroscopic properties of recycled cementitious materials. Full article
(This article belongs to the Special Issue Sustainable and Low-Carbon Building Materials in Special Areas)
18 pages, 295 KB  
Review
Coexistence of Hypertrophic Cardiomyopathy and Arterial Hypertension: Current Insights and Future Directions
by Vasiliki Katsi, Konstantia Papadomarkaki, Konstantinos Manousiadis, Epameinondas Triantafyllou, Christos Fragoulis and Konstantinos Tsioufis
Diseases 2026, 14(1), 1; https://doi.org/10.3390/diseases14010001 - 22 Dec 2025
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Arterial hypertension represents the leading modifiable risk factor for cardiovascular morbidity and mortality globally. Their coexistence is frequent, affecting approximately 40–60% of adults with HCM, yet the implications of this overlap remain [...] Read more.
Background: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. Arterial hypertension represents the leading modifiable risk factor for cardiovascular morbidity and mortality globally. Their coexistence is frequent, affecting approximately 40–60% of adults with HCM, yet the implications of this overlap remain insufficiently investigated. Methods: We conducted a narrative review of the existing literature addressing the clinical profile and management strategies in patients with concomitant HCM and hypertension. Particular emphasis was placed on pharmacologic treatment and the role of emerging therapies for this population. Results: Patients with both conditions are generally older, with more cardiometabolic comorbidities and greater functional limitation than those with isolated HCM. Hypertension may confound diagnosis and is linked to a higher prevalence of atrial fibrillation and stroke. Its effect on ventricular arrhythmias, sudden cardiac death and mortality is less clear. Management is challenging, as vasodilatory antihypertensives can exacerbate left ventricular outflow tract obstruction. β-blockers and non-dihydropyridine calcium channel blockers are preferred, while novel agents such as myosin inhibitors and SGLT2 inhibitors show potential but require further study. Conclusions: The coexistence of HCM and hypertension is frequent but insufficiently studied, with major implications for diagnosis and treatment. Further research is essential to optimize management and outcomes. Full article
(This article belongs to the Special Issue Feature Papers in Section 'Cardiology' in 2024–2025)
13 pages, 1840 KB  
Article
Early Clinical Experience with Silver-Ion Doped Synthetic Bone Grafts for the Treatment of Chronic Bone Infections: A Retrospective Study
by Bünyamin Yücel, Aydan Ayşe Köse and Nusret Köse
J. Clin. Med. 2026, 15(1), 29; https://doi.org/10.3390/jcm15010029 - 20 Dec 2025
Viewed by 52
Abstract
Background/Objectives: Chronic bone infections require local antimicrobial delivery to achieve high drug concentrations while limiting systemic toxicity. Silver ion-doped calcium phosphate synthetic bone grafts have been proposed as carriers for local antimicrobial release. This study aimed to evaluate the efficacy and safety [...] Read more.
Background/Objectives: Chronic bone infections require local antimicrobial delivery to achieve high drug concentrations while limiting systemic toxicity. Silver ion-doped calcium phosphate synthetic bone grafts have been proposed as carriers for local antimicrobial release. This study aimed to evaluate the efficacy and safety of a silver ion-doped synthetic bone graft in patients with chronic osteomyelitis, infected nonunion, or implant-related bone infection. Methods: This retrospective cohort included 12 adults who underwent surgery for chronic osteomyelitis or implant-associated infection. All patients received thorough debridement, removal of infected implants when present, and filling of bone defects with a silver ion-doped calcium phosphate graft. The median age was 38 years, and follow-up was 12 months. Clinical and radiographic outcomes, liver and kidney function tests, and blood silver levels were assessed pre- and postoperatively. Results: Infection eradication was achieved in 11 of 12 patients (90%) at 12 months. Functional recovery, defined as return to normal daily activities, occurred within 3–5 months. Bone union was observed in all but one patient within 3–6 months, and no graft resorption was detected at one year. No significant differences in liver or kidney function tests were found compared with the control group (p > 0.05), and blood silver levels remained within normal limits. Conclusions: At 12-month follow-up, silver ion-doped synthetic bone grafts showed encouraging safety and efficacy in the treatment of chronic osteomyelitis. These findings suggest that silver-doped grafts may represent a useful option for one-stage treatment of osteomyelitis. Full article
(This article belongs to the Special Issue Clinical Advances in Orthopedic Infections)
Show Figures

Figure 1

16 pages, 2807 KB  
Article
Crystallographic Modification of Rosuvastatin Calcium: Formulation, Characterization and Pharmacokinetic Evaluation for Enhanced Dissolution, Stability and Bioavailability
by Deepak Kulkarni and Sanjay Pekamwar
Sci. Pharm. 2026, 94(1), 1; https://doi.org/10.3390/scipharm94010001 - 19 Dec 2025
Viewed by 127
Abstract
Rosuvastatin calcium is a promising lipid-lowering agent and the drug of choice in hyperlipidemia. Conventional solid oral delivery of rosuvastatin is limited by its poor solubility and ultimately poor bioavailability. An attempt was made to fabricate the cocrystals of RSC for enhancing solubility [...] Read more.
Rosuvastatin calcium is a promising lipid-lowering agent and the drug of choice in hyperlipidemia. Conventional solid oral delivery of rosuvastatin is limited by its poor solubility and ultimately poor bioavailability. An attempt was made to fabricate the cocrystals of RSC for enhancing solubility and bioavailability. Cocrystals were prepared by a microwave synthesiser-assisted solvent evaporation technique with multiple cocrystal formers. Rosuvastatin-Ascorbic acid (RSC-AA) cocrystals showed the highest solubility (~5-fold increased) amongst all twenty drug-coformer combination (DCC). RSC-AA cocrystals (1:1 ratio) were further characterized by various analytical techniques like FTIR, DSC and XRD to confirm the formation of cocrystals. RSC-AA cocrystals also showed improved flow properties and compressibility in comparison with pure drug, and it was demonstrated using the SeDeM diagram. RSC-AA cocrystals were further formulated into an immediate-release tablet by implementing experimental optimization. Comparative dissolution study of the cocrystal and pure drug tablet revealed improved dissolution after cocrystallization. RSC-AA cocrystal tablet showed the % drug release of 95.61 ± 3.94 while RSC pure drug showed the drug release of 67.83 ± 3.29. In vivo pharmacokinetic analysis showed significant improvement in systemic availability and cumulative absorption of the drug. The peak plasma concentration (Cmax) for RSC pure drug was 13.924 ± 0.477 μg/mL, while RSC-AA cocrystals showed a peak plasma concentration of 22.464 ± 0.484 μg/mL. Area Under Curve (AUC) of RSC-AA cocrystal was also significantly greater compared to the pure drug. In the stability study analysis, the shelf life was calculated from a graphical method and was found to be around 34.58 months for RSC-AA cocrystal tablets and 19.87 months for RSC pure drug tablets, which indicates improved stability with cocrystallization. Overall, the cocrystallization resulted in significant improvement in dissolution and solubility of RSC. Full article
Show Figures

Figure 1

15 pages, 2764 KB  
Article
Investigation of the Neurotoxic Effects and Mechanisms of Michler’s Ketone as Investigated by Network Toxicology and Transcriptomics
by Jun Hu, Xianke Zha, Xin Liu, Huilin Jin, Yue Fan, Xin Zhao, Jie Hu and Jian Wang
Biology 2026, 15(1), 3; https://doi.org/10.3390/biology15010003 - 19 Dec 2025
Viewed by 64
Abstract
Michler’s Ketone (MK) is widely utilized as an additive in pigments, dyes, and other colorants, and has become a non-negligible environmental presence. Currently, environmental monitoring data and toxicity data for MK are extremely limited, and its specific mechanisms of neurotoxicity remain poorly characterized. [...] Read more.
Michler’s Ketone (MK) is widely utilized as an additive in pigments, dyes, and other colorants, and has become a non-negligible environmental presence. Currently, environmental monitoring data and toxicity data for MK are extremely limited, and its specific mechanisms of neurotoxicity remain poorly characterized. A zebrafish model was employed to systematically delineate the neurotoxic mechanisms of MK through the integration of network toxicology predictions, transcriptomic profiling, and RT-qPCR validation. The results demonstrated that MK exposure was found to induce oxidative stress in zebrafish larvae, which subsequently disrupted the calcium signaling pathway and triggered apoptosis, ultimately leading to neurodevelopmental and locomotor behavioral impairments. This study provides a fundamental basis for elucidating MK’s developmental neurotoxicity mechanisms, while also holding significant value for its ecological risk assessment. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Figure 1

21 pages, 2765 KB  
Article
Development of Ordered Poly(aspartic Acid)-Oleic Acid Coatings with Enhanced Antimicrobial Activity: A Proof-of-Concept Study
by Michael Swaenepoel and Justin Miller
Coatings 2026, 16(1), 5; https://doi.org/10.3390/coatings16010005 - 19 Dec 2025
Viewed by 122
Abstract
The leading cause of post-surgical hospital readmission is the emergence of hospital-acquired infections (HAIs), where surgical site infections (SSIs) constitute a substantial negative impact on patient outcome and contribute annual direct costs estimated to range from $28.4 billion to $45 billion in the [...] Read more.
The leading cause of post-surgical hospital readmission is the emergence of hospital-acquired infections (HAIs), where surgical site infections (SSIs) constitute a substantial negative impact on patient outcome and contribute annual direct costs estimated to range from $28.4 billion to $45 billion in the U.S. To address the need for novel antimicrobial coating strategies, previous research has demonstrated that certain microbes can degrade poly(aspartic acid) (PAA)-based coatings, suggesting potential limitations of single-compound approaches that must be considered when designing antimicrobial surfaces. In this proof-of-concept study, we investigated whether ordered sequential coatings combining thermally synthesized PAA (tPAA) and oleic acid (OleA) might produce enhanced antimicrobial effects compared to individual compounds. Despite concerns regarding PAA biodegradability, the benefits of using PAA include low cytotoxicity and an ability to chelate metals such as calcium and facilitate bone mineralization and growth post-surgery. Using simple yet effective methods of surface coating applications which utilize tPAA and OleA, we investigated the potential of these ordered coatings to attenuate planktonic and sessile (biofilm) growth and development in Pseudomonas aeruginosa and Escherichia coli in vitro. Application of these ordered coatings resulted in up to 62% reduction in bacterial carrying capacity for P. aeruginosa and up to 43% reduction in biofilm mass relative to untreated controls. Further, confocal imaging via immunohistochemical labeling revealed methods for evaluating the impact of treatments targeting biofilm development through extracellular DNA quantification. Additionally, these coatings show dose-dependent cytotoxic effects against 3T3 mouse fibroblast cells. These preliminary findings, along with results derived from cytotoxicity assessment and physicochemical characterization via dynamic light scattering, suggest that ordered tPAA-OleA coating systems warrant further investigation as potential antimicrobial strategies, though additional validation, including testing against diverse clinical isolates, mechanistic studies, and in vivo evaluation, would be required before clinical application. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

37 pages, 2504 KB  
Review
Molecular Biochemistry and Physiology of Postharvest Chilling Injury in Fruits: Mechanisms and Mitigation
by Hansika Sati, Priyanka Kataria, Sunil Pareek and Daniel Alexandre Neuwald
Agronomy 2025, 15(12), 2914; https://doi.org/10.3390/agronomy15122914 - 18 Dec 2025
Viewed by 175
Abstract
Postharvest chilling injury (PCI) is a significant limitation in the storage of temperature-sensitive fruits, leading to quality deterioration and reduced marketability. However, low temperatures delay senescence—consistent with the Q10 principle, where metabolic reaction rates change 2–3-fold per 10 °C—and chilling-sensitive fruits experience membrane [...] Read more.
Postharvest chilling injury (PCI) is a significant limitation in the storage of temperature-sensitive fruits, leading to quality deterioration and reduced marketability. However, low temperatures delay senescence—consistent with the Q10 principle, where metabolic reaction rates change 2–3-fold per 10 °C—and chilling-sensitive fruits experience membrane destabilization, oxidative imbalances, and structural degradation under cold stress. Physiological assessments consistently report elevated electrolyte leakage, increased malondialdehyde accumulation, and reduced membrane fluidity, coupled with disruptions in respiration and cellular energy metabolism. Biochemically, PCI is characterized by enhanced ROS production and a 20–50% decline in key antioxidant enzymes, along with disturbances in calcium signaling and hormone regulation. At the molecular level, chilling-responsive transcription factors such as CBF, CAM, HSF, and WRKY show strong induction, while lipid remodeling and epigenetic modifications further shape cold adaptation responses. Advances in multi-omics, including transcriptomics, proteomics, metabolomics, lipidomics, and volatilomics, have revealed chilling-associated metabolic shifts and regulatory cascades, enabling the identification of potential biomarkers of tolerance. Emerging mitigation strategies, including physical and chemical treatments, as well as CRISPR-based interventions, have shown a 30–60% reduction in PCI in controlled studies. This review synthesizes recent progress in physiology, molecular biochemistry, and postharvest technology to support future research and practical PCI management. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

21 pages, 331 KB  
Review
Blood-Based Biomarkers for Traumatic Brain Injury: A New Era in Diagnosis and Prognosis
by Giulia Pignataro, Marta Sacco Fernandez, Marcello Candelli, Gloria Rozzi, Andrea Piccioni, Evelina Forte and Francesco Franceschi
Int. J. Mol. Sci. 2025, 26(24), 12158; https://doi.org/10.3390/ijms262412158 - 18 Dec 2025
Viewed by 163
Abstract
Traumatic brain injury (TBI) is a major global health concern and a leading cause of mortality and disability. Head computed tomography (CT) remains indispensable for the detection of intracranial hemorrhage; however, its indiscriminate use in mild trauma increases radiation exposure, cumulative oncogenic risk, [...] Read more.
Traumatic brain injury (TBI) is a major global health concern and a leading cause of mortality and disability. Head computed tomography (CT) remains indispensable for the detection of intracranial hemorrhage; however, its indiscriminate use in mild trauma increases radiation exposure, cumulative oncogenic risk, and healthcare costs. Consequently, there is growing interest in tools capable of improving sensitivity in mild or early-stage TBI. Protein-based biomarkers are promising complements to conventional assessment. Molecules such as glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1 (UCH-L1), S100 calcium-binding protein B (S100B), and neurofilament light chain (NfL) reflect astroglial activation, neuronal injury, and axonal damage, enabling objective evaluation of neurotrauma. Beyond protein biomarkers, metabolomic and lipidomic approaches capture alterations associated with early metabolic distress, oxidative stress, mitochondrial dysfunction, and membrane disruption following TBI. High-resolution mass spectrometry studies have identified reproducible metabolite and lipid signatures correlating with injury severity and functional outcomes. Longitudinal profiling further reveals dynamic metabolic trajectories that distinguish secondary injury progression from stabilization, supporting predictive modeling and risk stratification. Together, these advances pave the way toward precision medicine in neurotrauma. Nevertheless, variability in assay performance and sampling timing continues to limit widespread clinical adoption. Future research should prioritize methodological standardization, analytical validation, and the integration of multi-omic data with machine learning–based predictive models. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
14 pages, 2908 KB  
Article
Effect of CaCO3 Particle Size on Surface Wetting and Adhesion: Studies on PMMA Model Substrates and Laurus nobilis Leaves
by Nora Mueller, Fabrizio Orlando, Victoria Fernandez, Gabriela Melo Rodriguez and Joachim Schoelkopf
Plants 2025, 14(24), 3838; https://doi.org/10.3390/plants14243838 - 17 Dec 2025
Viewed by 129
Abstract
Leaf surfaces are protected by a hydrophobic cuticle with variable chemical composition and roughness, which often limits spray droplet retention and absorption. Optimizing foliar spray performance is therefore critical to maximize the desired effect on the target plant and minimize environmental impact. This [...] Read more.
Leaf surfaces are protected by a hydrophobic cuticle with variable chemical composition and roughness, which often limits spray droplet retention and absorption. Optimizing foliar spray performance is therefore critical to maximize the desired effect on the target plant and minimize environmental impact. This study investigates the impact of particle size of calcium carbonate (CaCO3) in the presence and absence of a non-ionic surfactant on leaf surface deposition and wetting behavior. The tested formulations contained (i) no particles, (ii) CaCO3 nanoparticles, and (iii) CaCO3 microparticles (each at 2 wt%), applied using an airbrush or a handheld sprayer to polymethyl methacrylate (PMMA) plates, serving as model substrate, and on laurel leaves (Laurus nobilis). Water contact angle (WCA) measurements and coverage analysis were used to assess wetting performance. Initial WCA values were low (<12°) for all coatings, but rinsing revealed distinct behaviors. Coatings with nanoparticles retained a low WCA (<40°) and high coverage (>60%) after multiple rinsings, whereas microparticle coatings showed a sharp WCA increase (>60°) and significant coverage loss after few rinses. These findings demonstrate the long-lasting wetting effect of CaCO3 nanoparticles and highlight their potential as additives to enhance spray formulation performance. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

24 pages, 3074 KB  
Article
Molecular Signatures of Early-Onset Bipolar Disorder and Schizophrenia: Transcriptomic and Machine-Learning Insights into Calcium and cAMP Signaling, Including Sex-Specific Patterns
by Sara Sadat Afjeh, Sohom Dey, Daniel Kiss, Marcos Sanches, Fernanda Dos Santos, Jennie G. Pouget, Niki Akbarian, Shreejoy Tripathy, Vanessa F. Gonçalves and James L. Kennedy
Int. J. Mol. Sci. 2025, 26(24), 12109; https://doi.org/10.3390/ijms262412109 - 16 Dec 2025
Viewed by 139
Abstract
Early age of onset is a major predictor of poor disease course in Bipolar Disorder (BD) and Schizophrenia (SCZ), often associated with greater symptom severity, cognitive decline, and worse outcomes. However, the biological mechanisms that shape age- and sex-specific vulnerability remain unclear, limiting [...] Read more.
Early age of onset is a major predictor of poor disease course in Bipolar Disorder (BD) and Schizophrenia (SCZ), often associated with greater symptom severity, cognitive decline, and worse outcomes. However, the biological mechanisms that shape age- and sex-specific vulnerability remain unclear, limiting progress toward early identification and intervention. To address this gap, we conducted an integrative transcriptomic study of 369 postmortem dorsolateral prefrontal cortex samples from the CommonMind Consortium. Differential gene expression, Weighted Gene Co-Expression Network Analysis, and gene set enrichment analysis were applied to identify pathways associated with age of onset, complemented by sex-stratified models and cellular deconvolution. To assess predictive signals, we applied a rigorous two-stage machine-learning framework using nested cross-validation, with Lasso feature selection followed by L2-regularized logistic classification. Performance was evaluated solely on held-out test folds. Genes and modules linked to earlier onset showed consistent enrichment for calcium signaling, with downregulation of CACNA1C and multiple adenylate-cyclase-related transcripts, while female-specific analyses revealed selective dysregulation of cyclase-associated pathways. Network analysis identified a calcium-enriched module associated with onset and sex, and diagnosis-specific modeling highlighted MAP2K7 in early-onset BD. The predictive model achieved an AUC of 0.63, and the top 50 machine-learning features were significantly enriched in calcium signaling pathway. These findings converge on calcium–cAMP signaling networks as key drivers of early psychiatric vulnerability and suggest biomarkers for precision-targeted interventions. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

Back to TopTop