Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,754)

Search Parameters:
Keywords = calcium limitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3236 KiB  
Article
The Plasticizer Dibutyl Phthalate (DBP) Impairs Pregnancy Vascular Health: Insights into Calcium Signaling and Nitric Oxide Involvement
by Ana R. Quelhas, Melissa Mariana and Elisa Cairrao
J. Xenobiot. 2025, 15(4), 127; https://doi.org/10.3390/jox15040127 - 6 Aug 2025
Abstract
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor [...] Read more.
Dibutyl phthalate (DBP) is used as a plasticizer to enhance flexibility in several household products, cosmetics, and food-contact materials. Due to its harmful effects, DBP is restricted or banned in children’s products and food items, particularly in Europe. Due to its endocrine disruptor properties and considering its ability to cross the placental barrier, it is imperative to study DBP’s vascular effects in pregnancy, given the vulnerability of this period. Thus, this study investigated the potential effects of DBP on the cardiovascular system using umbilical arteries from healthy pregnant women. Specifically, the impact of DBP on the vascular reactivity after both rapid and 24 h DBP exposure was analyzed, as well as the contractility and the cell viability of vascular smooth muscle cells (VSMC). DBP did not exhibit overt cytotoxic effects on VSMCs, possibly due to its adsorption onto polystyrene surfaces, potentially limiting bioavailability. Interestingly, DBP induced vasorelaxation in a concentration-dependent manner. Although mechanistic insights remain to be fully elucidated, the results suggest the involvement of pathways associated with nitric oxide signaling and calcium handling. Overall, DBP exposure appears to modulate arterial tone regulation, which may have implications for vascular function during pregnancy. Full article
Show Figures

Figure 1

17 pages, 251 KiB  
Article
Proximate Composition, Physicochemical Properties and Concentration of Selected Minerals in Edible Giblets of Geese
by Dariusz Kokoszyński, Arkadiusz Nędzarek, Joanna Żochowska-Kujawska, Marek Kotowicz, Marcin Wegner, Karol Włodarczyk, Dorota Cygan-Szczegielniak, Barbara Biesiada-Drzazga and Marcin Witkowski
Foods 2025, 14(15), 2742; https://doi.org/10.3390/foods14152742 - 6 Aug 2025
Abstract
The purpose of this study was to determine the effect of breed and sex (3 × 2) on the basic chemical composition, concentration of some minerals, and physicochemical properties of edible giblets of farm geese. The study material consisted of edible giblets (livers, [...] Read more.
The purpose of this study was to determine the effect of breed and sex (3 × 2) on the basic chemical composition, concentration of some minerals, and physicochemical properties of edible giblets of farm geese. The study material consisted of edible giblets (livers, gizzards, hearts) obtained from 42 geese from three Polish native breeds (Rypin, Suwałki, Kartuzy) at 220 weeks of age. Edible giblets were obtained during goose evisceration from seven males and seven females of each breed. Each bird was an experimental unit. Goose breed and sex had a significant effect on the chemical composition and physicochemical properties of the edible giblets. Rypin geese had higher (p < 0.05) intramuscular fat content in the gizzard and heart, as well as higher protein content in the heart and lower water content in the gizzard, compared to Kartuzy and Suwałki geese. Kartuzy geese, in turn, had higher content of water in the heart, and higher concentrations of phosphorus, calcium, iron, manganese, sodium, and chromium in the liver, compared to Rypin and Suwałki geese. In turn, Suwałki geese had higher concentrations of phosphorus in the gizzard, and potassium, phosphorus, copper, and iron in the heart compared to the hearts of Rypin and Suwałki geese, while Kartuzy and Suwałki geese higher concentrations of sodium, magnesium, zinc, and manganese in hearts than the hearts of Rypin geese. In these studies, the highest lightness (L*) was observed in the liver and heart of Rypin geese, the lowest yellowness (b*) was observed in the gizzard of Suwałki geese, and the highest pH24 and EC24 were observed in the heart of Kartuzy geese. Regardless of breed, males had higher protein, collagen, and intramuscular fat contents in the heart, a higher water content in the gizzard, higher concentrations of potassium, and sodium in the liver and gizzard, copper in the heart and liver, and phosphorus in the gizzard, and less water in the heart and zinc in the liver, as well as higher (p < 0.05) concentrations of iron in the liver and heart compared with females. The breed by sex interaction was significant for intramuscular fat and water content in the gizzard and heart, and protein content in the heart. Significant differences were also noted for EC24 in the liver and heart, yellowness of the gizzard, and concentrations of most labeled minerals in edible giblets. The obtained results indicate that the nutritional value and suitability of edible goose giblets for the poultry industry vary depending on breed and sex. Due to the limited research on the chemical composition and physicochemical properties of goose giblets, further research in this area is necessary in the future. Full article
21 pages, 1245 KiB  
Article
Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents
by Mirosław Wyszkowski and Natalia Kordala
Appl. Sci. 2025, 15(15), 8650; https://doi.org/10.3390/app15158650 (registering DOI) - 5 Aug 2025
Abstract
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or [...] Read more.
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or fuel spills. This study aimed to determine whether organic and mineral materials could mitigate the effects of diesel oil pollution on the soil’s trace element content. The used materials were compost, bentonite and calcium oxide. Diesel oil pollution had the most pronounced effect on the levels of Cd, Ni, Fe and Co. The levels of the first three elements increased, while the level of Co decreased by 53%. Lower doses of diesel oil (2.5 and 5 cm3 per kg of soil) induced an increase in the levels of the other trace elements, while higher doses caused a reduction, especially in Cr. All materials applied to the soil (compost, bentonite and calcium oxide) reduced the content of Ni, Cr and Fe. Compost and calcium oxide also increased Co accumulation in the soil. Bentonite had the strongest reducing effect on the Ni and Cr contents of the soil, reducing them by 42% and 53%, respectively. Meanwhile, calcium oxide had the strongest reducing effect on Fe and Co accumulation, reducing it by 12% and 31%, respectively. Inverse relationships were recorded for Cd (mainly bentonite), Pb (especially compost), Cu (mainly compost), Mn (mainly bentonite) and Zn (only compost) content in the soil. At the most contaminated site, the application of bentonite reduced the accumulation of Pb, Zn and Mn in the soil, while the application of compost reduced the accumulation of Cd. Applying various materials, particularly bentonite and compost, limits the content of certain trace elements in the soil. This has a positive impact on reducing the effect of minor diesel oil pollution on soil properties and can promote the proper growth of plant biomass. Full article
Show Figures

Figure 1

15 pages, 2179 KiB  
Review
From Nutrition to Innovation: Biomedical Applications of Egg Components
by Amin Mohseni Ghalehghazi and Wen Zhong
Molecules 2025, 30(15), 3260; https://doi.org/10.3390/molecules30153260 - 4 Aug 2025
Abstract
Valued for their nutritional content, eggs have recently gained attention as a versatile biomaterial owing to their biocompatibility, biodegradability, and unique structural and biochemical composition. This review highlights the biomedical potential of various egg components—eggshell, eggshell membrane, egg white, and egg yolk—and their [...] Read more.
Valued for their nutritional content, eggs have recently gained attention as a versatile biomaterial owing to their biocompatibility, biodegradability, and unique structural and biochemical composition. This review highlights the biomedical potential of various egg components—eggshell, eggshell membrane, egg white, and egg yolk—and their applications in bone grafting, tissue engineering, wound healing, drug delivery, and biosensors. Eggshells serve as a natural, calcium-rich source for bone tissue engineering and regenerative medicine. The eggshell membrane, with its antimicrobial and structural properties, offers promise as a wound healing scaffold. Egg white, known for its gelation and film-forming capabilities, is utilized in hydrogel-based systems for drug delivery and biosensing. Egg yolk, rich in lipids and immunoglobulin Y (IgY) antibodies, is being explored for diagnostic and therapeutic applications. This review critically examines the advantages and limitations of each egg-derived component and outlines current research gaps, offering insights into future directions for the development of egg-based biomaterials in biomedical engineering. Full article
Show Figures

Figure 1

16 pages, 1247 KiB  
Review
When Bone Forms Where It Shouldn’t: Heterotopic Ossification in Muscle Injury and Disease
by Anthony Facchin, Sophie Lemaire, Li Gang Toner, Anteneh Argaw and Jérôme Frenette
Int. J. Mol. Sci. 2025, 26(15), 7516; https://doi.org/10.3390/ijms26157516 - 4 Aug 2025
Viewed by 30
Abstract
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as [...] Read more.
Heterotopic ossification (HO) refers to the pathological formation of bone in soft tissues, typically following trauma, surgical procedures, or as a result of genetic disorders. Notably, injuries to the central nervous system significantly increase the risk of HO, a condition referred to as neurogenic HO (NHO). This review outlines the cellular and molecular mechanisms driving HO, focusing on the inflammatory response, progenitor cell reprogramming, and current treatment strategies. HO is primarily fuelled by a prolonged and dysregulated inflammatory response, characterized by sustained expression of osteoinductive cytokines secreted by M1 macrophages. These cytokines promote the aberrant differentiation of fibro-adipogenic progenitor cells (FAPs) into osteoblasts, leading to ectopic mineralization. Additional factors such as hypoxia, BMP signalling, and mechanotransduction pathways further contribute to extracellular matrix (ECM) remodelling and osteogenic reprogramming of FAPs. In the context of NHO, neuroendocrine mediators enhance ectopic bone formation by influencing both local inflammation and progenitor cell fate decisions. Current treatment options such as nonsteroidal anti-inflammatory drugs (NSAIDs), radiation therapy, and surgical excision offer limited efficacy and are associated with significant risks. Novel therapeutic strategies targeting inflammation, neuropeptide signalling, and calcium metabolism may offer more effective approaches to preventing or mitigating HO progression. Full article
Show Figures

Graphical abstract

19 pages, 9135 KiB  
Article
A Study on the Characterization of Asphalt Plant Reclaimed Powder Using Fourier Transform Infrared Spectroscopy
by Hao Wu, Daoan Yu, Wentao Wang, Chuanqi Yan, Rui Xiao, Rong Chen, Peng Zhang and Hengji Zhang
Materials 2025, 18(15), 3660; https://doi.org/10.3390/ma18153660 - 4 Aug 2025
Viewed by 57
Abstract
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation [...] Read more.
Asphalt plant reclaimed powder is a common solid waste in road engineering. Reusing reclaimed powder as filler holds significant importance for environmental protection and resource conservation. The key factors affecting the feasibility of reclaimed powder reuse are its acidity/alkalinity and cleanliness. Traditional evaluation methods, such as the methylene blue test and plasticity index, can assess reclaimed powder properties to guide its recycling. However, these methods suffer from inefficiency, strong empirical dependence, and high variability. To address these limitations, this study proposes a rapid and precise evaluation method for reclaimed powder properties based on Fourier transform infrared spectroscopy (FTIR). To do so, five field-collected reclaimed powder samples and four artificial samples were evaluated. Scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), and X-ray diffraction (XRD) were employed to characterize their microphase morphology, chemical composition, and crystal structure, respectively. Subsequently, FTIR was used to establish correlations between key acidity/alkalinity, cleanliness, and multiple characteristic peak intensities. Representative infrared characteristic peaks were selected, and a quantitative functional group index (Is) was proposed to simultaneously evaluate acidity/alkalinity and cleanliness. The results indicate that reclaimed powder primarily consists of tiny, crushed stone particles and dust, with significant variations in crystal structure and chemical composition, including calcium carbonate, silicon oxide, iron oxide, and aluminum oxide. Some samples also contained clay, which critically influenced the reclaimed powder properties. Since both filler acidity/alkalinity and cleanliness are affected by clay (silicon/carbon ratio determining acidity/alkalinity and aluminosilicate content affecting cleanliness), this study calculated four functional group indices based on FTIR absorption peaks, namely the Si-O-Si stretching vibration (1000 cm−1) and the CO32− asymmetric stretching vibration (1400 cm−1). These indices were correlated with conventional testing results (XRF for acidity/alkalinity, methylene blue value, and pull-off strength for cleanliness). The results show that the Is index exhibited strong correlations (R2 = 0.89 with XRF, R2 = 0.80 with methylene blue value, and R2 = 0.96 with pull-off strength), demonstrating its effectiveness in predicting both acidity/alkalinity and cleanliness. The developed method enhances reclaimed powder detection efficiency and facilitates high-value recycling in road engineering applications. Full article
(This article belongs to the Special Issue Innovative Approaches in Asphalt Binder Modification and Performance)
Show Figures

Figure 1

20 pages, 2457 KiB  
Article
Exploring the Influence of NaOH Catalyst on the Durability of Liquid Calcium Aluminate Cement Concrete
by Chung-Lin Lin, Chia-Jung Tsai, Leila Fazeldehkordi, Wen-Shinn Shyu, Chih-Wei Lu and Jin-Chen Hsu
Materials 2025, 18(15), 3655; https://doi.org/10.3390/ma18153655 - 4 Aug 2025
Viewed by 56
Abstract
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC [...] Read more.
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC are sodium hydroxide (NaOH) and potassium hydroxide (KOH). Therefore, it is crucial to investigate the effects of sodium and potassium ions on alkali–aggregate reactions in concrete structures. This study evaluated the durability of liquid calcium aluminate cement concrete catalyzed using four different concentrations of NaOH (0.5%, 1.0%, 1.5%, and 2.0%) as experimental variables, incorporating a control group of traditional concrete with a water–cement ratio of 0.64. The findings indicate that NaOH catalysis in the concrete significantly trigger alkali–aggregate reactions, leading to volume expansion. Furthermore, it increased chloride ion penetration and porosity in the concrete. These effects were more notable with the increase in NaOH concentration. The results suggested that NaOH catalysis can enhance certain chemical reactions within the concrete matrix; however, its concentration must be carefully controlled to mitigate adverse effects. The NaOH dosage should be limited to 0.5% to ensure optimal durability of the concrete. This study emphasizes the crucial importance of precisely balancing catalyst concentration to maintain the long-term durability and performance of liquid calcium aluminate cement concrete in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

23 pages, 8079 KiB  
Article
Electrophoretic Deposition of Green-Synthesized Hydroxyapatite on Thermally Oxidized Titanium: Enhanced Bioactivity and Antibacterial Performance
by Mariana Relva, Daniela Santo, Ricardo Alexandre, Pedro Faia, Sandra Carvalho, Zohra Benzarti and Susana Devesa
Appl. Sci. 2025, 15(15), 8598; https://doi.org/10.3390/app15158598 (registering DOI) - 2 Aug 2025
Viewed by 127
Abstract
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer [...] Read more.
Titanium alloys such as Ti-6Al-4V are widely used in biomedical implants due to their excellent mechanical properties and biocompatibility, but their bioinert nature limits osseointegration and antibacterial performance. This study proposes a multifunctional surface coating system integrating a thermally oxidized TiO2 interlayer with a hydroxyapatite (HAp) top layer synthesized via a green route using Hylocereus undatus extract. The HAp was deposited by electrophoretic deposition (EPD), enabling continuous coverage and strong adhesion to the pre-treated Ti-6Al-4V substrate. Structural, morphological, chemical, and electrical characterizations were performed using XRD, SEM, EDS, Raman spectroscopy, and impedance spectroscopy. Bioactivity was assessed through apatite formation in simulated body fluid (SBF), while antibacterial properties were evaluated against Staphylococcus aureus. The results demonstrated successful formation of crystalline TiO2 (rutile phase) and calcium-rich HAp with good surface coverage. The HAp-coated surfaces exhibited significantly enhanced bioactivity and strong antibacterial performance, likely due to the combined effects of surface roughness and the bioactive compounds present in the plant extract. This study highlights the potential of eco-friendly, bio-inspired surface engineering to improve the biological performance of titanium-based implants. Full article
Show Figures

Figure 1

13 pages, 1168 KiB  
Article
Importance of Imaging Assessment Criteria in Predicting the Need for Post-Dilatation in Transcatheter Aortic Valve Implantation with a Self-Expanding Bioprosthesis
by Matthias Hammerer, Philipp Hasenbichler, Nikolaos Schörghofer, Christoph Knapitsch, Nikolaus Clodi, Uta C. Hoppe, Klaus Hergan, Elke Boxhammer and Bernhard Scharinger
J. Cardiovasc. Dev. Dis. 2025, 12(8), 296; https://doi.org/10.3390/jcdd12080296 - 1 Aug 2025
Viewed by 101
Abstract
Background: Transcatheter aortic valve implantation (TAVI) has revolutionized the treatment of severe aortic valve stenosis (AS). Balloon post-dilatation (PD) remains an important procedural step to optimize valve function by resolving incomplete valve expansion, which may lead to paravalvular regurgitation and other potentially adverse [...] Read more.
Background: Transcatheter aortic valve implantation (TAVI) has revolutionized the treatment of severe aortic valve stenosis (AS). Balloon post-dilatation (PD) remains an important procedural step to optimize valve function by resolving incomplete valve expansion, which may lead to paravalvular regurgitation and other potentially adverse effects. There are only limited data on the predictors, incidence, and clinical impact of PD during TAVI. Methods: This retrospective, single-center study analyzed 585 patients who underwent TAVI (2016–2022). Pre-procedural evaluations included transthoracic echocardiography and CT angiography to assess key parameters, including the aortic valve calcium score (AVCS); aortic valve calcium density (AVCd); aortic valve maximal systolic transvalvular flow velocity (AV Vmax); and aortic valve mean systolic pressure gradient (AV MPG). We identified imaging predictors of PD and evaluated associated clinical outcomes by analyzing procedural endpoints (according to VARC-3 criteria) and long-term survival. Results: PD was performed on 67 out of 585 patients, with elevated AV Vmax (OR: 1.424, 95% CI: 1.039–1.950; p = 0.028) and AVCd (OR: 1.618, 95% CI: 1.227–2.132; p = 0.001) emerging as a significant independent predictor for PD in TAVI. Kaplan–Meier survival analysis revealed no significant differences in short- and mid-term survival between patients who underwent PD and those who did not. Interestingly, patients requiring PD exhibited a lower incidence of adverse events regarding major vascular complications, permanent pacemaker implantations and stroke. Conclusions: The study highlights AV Vmax and AVCd as key predictors of PD. Importantly, PD was not associated with increased procedural adverse events and did not predict adverse events in this contemporary cohort. Full article
(This article belongs to the Special Issue Clinical Applications of Cardiovascular Computed Tomography (CT))
Show Figures

Figure 1

15 pages, 3707 KiB  
Article
Saussurea involucrata CML6 Enhances Freezing Tolerance by Activating Antioxidant Defense and the CBF-COR Pathway in Plants
by Mengjuan Hou, Hui Kong, Jin Li, Wenwen Xia and Jianbo Zhu
Plants 2025, 14(15), 2360; https://doi.org/10.3390/plants14152360 - 1 Aug 2025
Viewed by 176
Abstract
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C [...] Read more.
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C and −2 °C. Bioinformatics analysis showed that SiCML6 encodes a transmembrane protein containing an EF-hand domain. This protein carries a signal peptide and shows the closest phylogenetic relationship to Helianthus annuus CML3. Its promoter contains ABA, methyl jasmonate (MeJA), and cold-response elements. Arabidopsis plants overexpressing SiCML6 showed significantly higher survival rates at −2 °C than wild-type plants. Under freezing stress, SiCML6-overexpressing lines exhibited reduced malondialdehyde content, relative electrolyte leakage, and ROS accumulation (H2O2 and O2), along with increased proline, soluble sugars, soluble proteins, and total antioxidant capacity (T-AOC). SiCML6 elevated the expression of cold-responsive genes CBF3 and COR15a under normal conditions and further upregulated CBF1/2/3 and COR15a at 4 °C. Thus, low temperatures induced SiCML6 expression, which was potentially regulated by ABA/MeJA. SiCML6 enhances freezing tolerance by mitigating oxidative damage through boosted T-AOC and osmoprotectant accumulation while activating the CBF-COR signaling pathway. This gene is a novel target for improving crop cold resistance. Full article
Show Figures

Figure 1

16 pages, 4133 KiB  
Article
Preparation, Performance Evaluation and Mechanisms of a Diatomite-Modified Starch-Based Fluid Loss Agent
by Guowei Zhou, Xin Zhang, Weijun Yan and Zhengsong Qiu
Processes 2025, 13(8), 2427; https://doi.org/10.3390/pr13082427 - 31 Jul 2025
Viewed by 222
Abstract
Natural polymer materials are increasingly utilized in drilling fluid additives. Starch has come to be applied extensively due to its low cost and favorable fluid loss reduction properties. However, its poor temperature resistance and high viscosity limit its application in high-temperature wells. This [...] Read more.
Natural polymer materials are increasingly utilized in drilling fluid additives. Starch has come to be applied extensively due to its low cost and favorable fluid loss reduction properties. However, its poor temperature resistance and high viscosity limit its application in high-temperature wells. This study innovatively introduces for the first time diatomite as an inorganic material in the modification process of starch-based fluid loss additives. Through synergistic modification with acrylamide and acrylic acid, we successfully resolved the longstanding challenge of balancing temperature resistance with viscosity control in existing modification methods. The newly developed fluid loss additive demonstrates remarkable performance: It remains effective at 160 °C when used independently. When added to a 4% sodium bentonite base mud, it achieves an 80% fluid loss reduction rate—significantly higher than the 18.95% observed in conventional starch-based products. The resultant filter cake exhibits thin and compact characteristics. Moreover, this additive shows superior contamination resistance, tolerating 30% NaCl and 0.6% calcium contamination, outperforming other starch-based treatments. With starch content exceeding 75%, the product not only demonstrates enhanced performance but also achieves significant cost reduction compared to conventional starch products (typically containing < 50% starch content). Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 261
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

21 pages, 1019 KiB  
Review
Macrophage Reprogramming: Emerging Molecular Therapeutic Strategies for Nephrolithiasis
by Meng Shu, Yiying Jia, Shuwei Zhang, Bangyu Zou, Zhaoxin Ying, Xu Gao, Ziyu Fang and Xiaofeng Gao
Biomolecules 2025, 15(8), 1090; https://doi.org/10.3390/biom15081090 - 28 Jul 2025
Viewed by 536
Abstract
Nephrolithiasis, predominantly driven by calcium oxalate (CaOx) crystal deposition, poses a significant global health burden due to its high prevalence and recurrence rates and limited preventive/therapeutic options. Recent research has underscored a pivotal role for macrophage polarization in nephrolithiasis pathogenesis. Pro-inflammatory phenotype macrophages [...] Read more.
Nephrolithiasis, predominantly driven by calcium oxalate (CaOx) crystal deposition, poses a significant global health burden due to its high prevalence and recurrence rates and limited preventive/therapeutic options. Recent research has underscored a pivotal role for macrophage polarization in nephrolithiasis pathogenesis. Pro-inflammatory phenotype macrophages exacerbate crystal-induced injury and foster stone formation by amplifying crystal adhesion via an NF-κB–IL-1β positive-feedback axis that sustains ROS generation and NLRP3 inflammasome activation, whereas anti-inflammatory phenotype macrophages facilitate crystal clearance and tissue repair. We have summarized the research on treating nephrolithiasis and related renal injury by targeting macrophage polarization in recent years, including therapeutic approaches through pharmacological methods, epigenetic regulation, and advanced biomaterials. At the same time, we have critically evaluated the novel therapeutic strategies for macrophage reprogramming and explored the future development directions of targeting macrophage reprogramming for nephrolithiasis treatment, such as using single-cell/spatial omics to reveal the heterogeneity of macrophages in the stone microenvironment, chimeric antigen receptor macrophages (CAR-Ms) as a potential therapy for specific crystal phagocytosis in certain areas, and multi-omics integration to address inter-patient immune differences. This review highlights that macrophage reprogramming is a transformative frontier in nephrolithiasis management and underscores the need for further research to translate these molecular insights into effective clinical applications. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 225
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

17 pages, 6360 KiB  
Article
Integrating Lanthanide-Reclaimed Wastewater and Lanthanide Phosphate in Corn Cultivation: A Novel Approach for Sustainable Agriculture
by George William Kajjumba, Savanna Vacek and Erica J. Marti
Sustainability 2025, 17(15), 6734; https://doi.org/10.3390/su17156734 - 24 Jul 2025
Viewed by 330
Abstract
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater [...] Read more.
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater and supporting corn (Zea mays) cultivation through lanthanide phosphate (Ln-P) and lanthanide-reclaimed wastewater (LRWW, wastewater spiked with lanthanide). High-purity precipitates of CePO4 (98%) and LaPO4 (92%) were successfully obtained without pH adjustment, as confirmed by X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS). Germination assays revealed that lanthanides, even at concentrations up to 2000 mg/L, did not significantly alter germination rates compared to traditional coagulants, though root and shoot development declined above this threshold—likely due to reduced hydrogen peroxide (H2O2) production and elevated total dissolved solids (TDSs), which induced physiological drought. Greenhouse experiments using desert-like soil amended with Ln-P and irrigated with LRWW showed no statistically significant differences in corn growth parameters—including plant height, stem diameter, leaf number, leaf area, and biomass—when compared to control treatments. Photosynthetic performance, including stomatal conductance, quantum efficiency, and chlorophyll content, remained unaffected by lanthanide application. Metal uptake analysis indicated that lanthanides did not inhibit phosphorus absorption and even enhanced the uptake of calcium and magnesium. Minimal lanthanide accumulation was detected in plant tissues, with most retained in the root zone, highlighting their limited mobility. These findings suggest that lanthanides can be safely and effectively used for phosphorus recovery and agricultural reuse, contributing to sustainable nutrient cycling and aligning with the United Nations’ Sustainable Development Goals of zero hunger and sustainable cities. Full article
Show Figures

Graphical abstract

Back to TopTop