Proximate Composition, Physicochemical Properties and Concentration of Selected Minerals in Edible Giblets of Geese
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Proximate Composition
2.3. Minerals
2.4. Physicochemical Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Proximate Chemical Composition
3.2. Minerals
3.3. Physical and Chemical Properties
Trait | Breed | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rypin (n = 14) | Suwalki (n = 14) | Kartuzy (n = 14) | Male (n = 21) | Female (n = 21) | Breed | Sex | Interaction | |||
pH24—acidity | mean sd | 6.02 0.14 | 5.88 6.13 | 6.02 0.26 | 6.00 0.14 | 5.94 0.23 | 0.03 | 0.097 | 0.292 | 0.752 |
EC24—conductivity (mS/cm) | mean sd | 8.01 2.19 | 6.50 2.63 | 7.20 1.55 | 6.95 2.53 | 7.53 1.84 | 0.34 | 0.072 | 0.272 | <0.001 |
L*—lightness | mean sd | 40.76 a 2.95 | 38.52 a 6.40 | 33.79 b 5.37 | 35.75 6.20 | 39.63 * 4.74 | 0.89 | 0.002 | 0.014 | 0.633 |
a*—redness | mean sd | 13.95 1.90 | 13.83 2.80 | 13.28 3.17 | 13.30 2.69 | 14.07 2.57 | 0.40 | 0.778 | 0.353 | 0.349 |
b*—yellowness | mean sd | 8.01 a 3.06 | 6.52 b 3.35 | 5.12 b 2.73 | 5.30 2.87 | 7.79 * 3.11 | 0.49 | 0.039 | 0.008 | 0.766 |
Trait | Breed | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rypin (n = 14) | Suwalki (n = 14) | Kartuzy (n = 14) | Male (n = 21) | Female (n = 21) | Breed | Sex | Interaction | |||
pH24—acidity | mean sd | 6.20 0.40 | 6.30 0.15 | 6.38 0.20 | 6.33 0.36 | 6.25 0.15 | 0.04 | 0.230 | 0.401 | 0.519 |
EC24—conductivity (mS/cm) | mean sd | 6.27 1.65 | 6.21 2.14 | 7.48 2.03 | 6.28 2.00 | 7.02 1.96 | 0.30 | 0.169 | 0.228 | 0.883 |
L*—lightness | mean sd | 33.74 2.94 | 34.10 2.57 | 37.22 9.08 | 33.34 2.62 | 36.70 * 7.47 | 0.89 | 0.182 | 0.049 | 0.142 |
a*—redness | mean sd | 13.95 3.54 | 14.44 2.84 | 14.95 3.31 | 15.64 2.20 | 13.26 * 3.62 | 0.50 | 0.698 | 0.017 | 0.649 |
b*—redness | mean sd | 3.15 a 3.90 | 1.68 b 0.73 | 4.78 a 4.03 | 2.97 3.30 | 3.44 3.62 | 0.53 | 0.034 | 0.618 | 0.014 |
Trait | Breed | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rypin (n = 14) | Suwalki (n = 14) | Kartuzy (n = 14) | Male (n = 21) | Female (n = 21) | Breed | Sex | Interaction | |||
pH24—acidity | mean sd | 6.13 b 0.11 | 6.09 b 0.13 | 6.27 a 0.17 | 6.20 0.14 | 6.13 * 0.17 | 0.02 | 0.002 | 0.048 | 0.054 |
EC24—conductivity (mS/cm) | mean sd | 5.89 a 2.55 | 4.78 b 1.04 | 5.99 a 1.19 | 6.16 1.93 | 4.94 * 1.41 | 0.27 | 0.018 | 0.002 | <0.001 |
L*—lightness | mean sd | 34.02 a 3.30 | 29.66 b 3.18 | 31.01 b 5.00 | 31.23 4.01 | 31.89 4.53 | 0.65 | 0.020 | 0.601 | 0.574 |
a*—redness | mean sd | 19.12 3.90 | 17.90 2.86 | 17.42 5.27 | 18.45 4.62 | 17.85 3.57 | 0.63 | 0.559 | 0.651 | 0.868 |
b*—redness | mean sd | 3.61 1.60 | 2.33 1.17 | 3.25 2.04 | 2.64 1.55 | 3.49 1.75 | 0.26 | 0.115 | 0.103 | 0874 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Data, Production, Crops and Livestock Products, Production Quantity, Geese and Guinea Fowl Meat. 2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 June 2025).
- Uhlířová, L.; Tůmová, E.; Chodová, D.; Vlčkova, J.; Ketta, M.; Volek, Z.; Skřívanová, V. The Effect of Age, Breed and Sex on Carcase Traits, Meat Quality and Sensory Attributes of Geese. Asian Australas. J. Anim. Sci. 2017, 31, 421–428. [Google Scholar] [CrossRef]
- Książkiewicz, J. The role and importance of native goose varieties are covered by the genetic resources conservation program. Wiad. Zootech. 2006, 46, 34–38. [Google Scholar]
- Nowicka, K.; Przybylska, W.; Górska, E.; Jaworska, D.; Wołosiak, R.; Derewianka, D. Variability in Nutritional Value of Traditional Goose Meat Product. Anim. Sci. Pap. Rep. 2018, 36, 405–420. [Google Scholar]
- Gornowicz, E.; Lewko, L. Geese-Meat, Production, Consumption, Tradition; National Research Institute of Animal Production: Kraków, Poland, 2016; pp. 1–36. [Google Scholar]
- Kokoszyński, D.; Biesiada-Drzazga, B.; Żochowska-Kujawska, J.; Kotowicz, M.; Sobczak, M.; Saleh, M.; Fik, M.; Arpašová, H.; Hrnčár, C.; Kostenko, S. Effect of breed and sex on carcase composition, physicochemical properties, texture, and microstructure of meat from geese after four reproductive seasons. Br. Poult. Sci. 2022, 63, 519–527. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Domestic Animal Diversity Information System (DAD-IS). Data, Breed Data Sheet, Poland, Goose (Domestic). Available online: https://www.fao.org/dad-is/browse-by-country-and-species/en/ (accessed on 25 June 2025).
- Bucław, M.; Majewska, D.; Szczerbińska, D. Proximate composition, selected minerals, fatty acid profile, and cholesterol levels in edible slaughter by-products of the emu (Dromaius novaehollandiae). Anim. Sci. Pap. Rep. 2018, 36, 205–218. [Google Scholar]
- Jokanović, M.R.; Tomović, V.M.; Jović, M.T.; Šajić, B.V.; Ikonić, P.M.; Tasić, T.A. Proximate and mineral composition of chicken giblets from Vojvodina (Northern Serbia). Int. Schol. Sci. Res. Innov. 2014, 8, 986–989. [Google Scholar]
- Anandth, M.A.; Sutha, M.; Sobana, A.S. Quality and acceptability of pickle from chicken and turkey gizzard. Asian J. Dairy Food Res. 2019, 38, 155–158. [Google Scholar] [CrossRef]
- Majewska, D.; Szczerbińska, D.; Ligocki, M.; Bucław, M.; Sammel, A.; Tarasewicz, Z.; Romaniszyn, K.; Majewski, J. Comparison of the mineral and fatty acid profiles of ostrich, Turkey, and broiler chicken livers. Br. Poult. Sci. 2016, 57, 193–200. [Google Scholar] [CrossRef]
- Chang, Y.S.; Stomer, M.H.; Chou, R.G.R. μ-Capain is involved in the postmortem proteolysis of gizzard smooth muscle. Food Chem. 2013, 139, 384–388. [Google Scholar] [CrossRef]
- Álvarez-Astorga, M.; Capita, R.; Alonso-Calleja, C.; Moreno, B.D.M.; García-Fernández, C. Microbiological quality of retail chicken by-products in Spain. Meat Sci. 2002, 62, 45–50. [Google Scholar] [CrossRef]
- USDA FoodData Central. Goose, Liver, Raw. Available online: https://fdc.nal.usda.gov/food-details/172415/nutrients (accessed on 4 June 2025).
- Joyathlakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry, and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef]
- Latoch, A.; Stasiak, D.M.; Siczek, P. Edible offal as a valuable source of nutrients in the diet—A review. Nutrients 2024, 156, 1609. [Google Scholar] [CrossRef]
- Ho, S.S.; Lin, C.Y.; Chou, R.G.R. Comparison of post mortem changes in goose cardiac and breast muscles at 5 °C. J. Sci. Food Agric. 2008, 88, 1376–1379. [Google Scholar] [CrossRef]
- Batah, A.I.; Selman, H.A.; Ghaji, M.S. Histological study for stomach (proventriculus and gizzard) of coot bird Fulica atra. Diyala Agric. Sci. J. 2012, 4, 9–16. [Google Scholar]
- Nagy, Z.M.; Emara, M.M.; Yessien, N.A.; Zaki, H.M. Proximate chemical analysis and determination criteria of goose giblets. J. World Poult. Res. 2022, 12, 165–170. [Google Scholar]
- Abdullah, F.A.A.; Buchtová, H. Quantitative and qualitative properties of giblets from conventional, organic, and wild ducks. Acta Vet. Brno 2022, 91, 107–114. [Google Scholar] [CrossRef]
- Abdullah, F.A.A.; Buchtová, H. Comparison of qualitative and quantitative properties of the wings, necks, and offal of chicken broilers from organic and conventional production systems. Vet. Med. 2016, 61, 643–651. [Google Scholar] [CrossRef]
- Zouari, N.; Fakhfakh, N.; Amara-Dali, W.B.; Sellami, M.; Msaddak, L.; Ayadi, M.A. Turkey liver: Physicochemical characteristics and functional properties of protein fractions. FBP 2011, 89, 142–148. [Google Scholar] [CrossRef]
- Seong, P.N.; Cho, S.H.; Park, K.M.; Kang, G.H.; Park, B.Y.; Moon, S.S.; Ba, H.V. Characterization of chicken by-products by means of proximate and nutritional compositions. Korean J. Food Sci. Anim. Resour. 2015, 35, 179–188. [Google Scholar] [CrossRef]
- Wojtycza, K.; Gąsior, R.; Szymczyk, B.; Odrzywalska, A.; Bielińska, H.; Wróblewski, W. Effect of four fattening systems on quality of White Kołuda® goose products. Ann. Anim. Sci. 2025, 25, 1171–1187. [Google Scholar] [CrossRef]
- Fernández-López, J.; Sayas-Barberá, E.; Pérez-Alvarez, J.A.; Aranda-Catalá, V. Effect of storage conditions on the chemical composition of goose meat. Meat Sci. 2000, 54, 251–257. [Google Scholar]
- Zhang, X.; Zhang, Y.; Wang, Y.; Zhao, Y. Nutritional evaluation and utilization of poultry by-products. Poult. Sci. 2020, 99, 3134–3142. [Google Scholar]
- Biel, W.; Czerniawska-Piątkowska, E.; Kowalczyk, A. Offal Chemical Composition from Veal, Beef, and Lamb Maintained in Organic Production Systems. Animals 2019, 9, 489. [Google Scholar] [CrossRef]
- Nowicka, E. They Were Served on Special Occasions and Every Day. Now No One Will Admit That They Like Them. Poles Eat Them Quietly; It’s Nice. G.pl. Available online: https://g.pl/news/7,187451,31787762,byly-serwowane-od-swieta-i-na-co-dzien-teraz-nikt-nie-przyzna.htm (accessed on 4 June 2025).
- Pieszka, M.; Łukaszewicz, E.; Migdał, W. Fatty acid composition and health lipid indices in goose livers. J. Anim. Feed Sci. 2015, 24, 61–67. [Google Scholar]
- Okruszek, A.; Haraf, G.; Wołoszyn, J. Chemical composition and nutritional value of goose hearts and stomachs. Eur. Poult. Sci. 2018, 82, 1–8. [Google Scholar]
- Briffa, J.; Sinagrab, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- FAO. Reducing Food Loss and Waste: A Key to Sustainability; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- PN-A-82109; Meat and Meat Products-Determination of Fat, Protein and Water Content-Near Infrared Transmission Spectrometry (NIR) Method Using Calibration on Artificial Neural Networks (ANN). The Polish Committee for Standardization: Warsaw, Poland, 2010.
- SAS Institute Inc. SAS/STAT User’s Guide, version 9.4; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Ren, Y.; Sun, Y.; Javad, H.U.; Wang, R.; Zhou, Z.; Huang, Y.; Shu, X.; Li, C. Growth Performance of and Liver Function in Heat-Stressed Magang Geese Fed the Antioxidant Zinc Ascorbate and Its Potential Mechanism of Action. Biol. Trace Elem. Res. 2025, 203, 1035–1047. [Google Scholar] [CrossRef]
- Ludwiczak, A.; Składanowska-Baryza, J.; Stanisz, M. Effect of Age and Sex on the Quality of Offal and Meat of the Wild Boar (Sus scrofa). Animals 2020, 10, 660. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, E.; Walkowska, I.; Molina-Ruiz, J.; Cieślik, I.; Migdał, W. Composition of content of selected minerals and cadmium in chicken and goose liver. Biotech. Anim. Husb. 2011, 27, 1857–1858. [Google Scholar] [CrossRef]
- Kheravii, S.K.; Swick, R.A.; Choct, M.; Wu, S.-B. Dietary sugarcane bagasse and coarse particle size of corn are beneficial to performance and gizzard development in broilers fed normal and high sodium diets. Poult. Sci. 2017, 96, 4006–4016. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.P.; Chen, J.L.; Zheng, M.Q.; Wen, J.; Zhang, Y. Genetic regulation of meat quality in poultry: A review. Poult. Sci. 2019, 98, 5415–5423. [Google Scholar]
- Ryu, Y.C.; Kim, B.C. The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of the pig longissimus dorsi muscle. Meat Sci. 2005, 71, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, R.A.; Ledward, D.A. Lawrie’s Meat Science, 7th ed.; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar]
- Scheffler, T.L.; Gerrard, D.E. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Sci. 2007, 77, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.; Pieszka, M.; Gąsior, R. Physicochemical traits and colour stability of goose liver and heart under different storage conditions. Animals 2021, 11, 2544. [Google Scholar]
- Wołoszyn, J.; Okruszek, A.; Haraf, G.; Orkusz, A. Influence of feeding regime on the quality traits of poultry offal. J. Anim. Feed Sci. 2020, 29, 23–30. [Google Scholar]
Trait | Breed | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rypin (n = 14) | Suwalki (n = 14) | Kartuzy (n = 14) | Male (n = 21) | Female (n = 21) | Breed | Sex | Interaction | |||
Gizzard | ||||||||||
Protein (%) | mean sd | 18.76 0.29 | 19.08 1.08 | 18.77 0.48 | 18.85 0.98 | 18.89 0.19 | 0.11 | 0.441 | 0.843 | 0.171 |
Collagen (%) | mean sd | 2.63 0.26 | 2.66 0.30 | 2.85 0.30 | 2.65 0.31 | 2.79 0.27 | 0.04 | 0.141 | 0.140 | 0.365 |
Intramuscular fat (%) | mean sd | 5.00 a 1.40 | 4.37 a 1.84 | 2.56 b 0.75 | 3.84 2.05 | 4.11 1.36 | 0.26 | <0.001 | 0.499 | 0.001 |
Water (%) | mean sd | 68.93 b 0.75 | 69.57 a 1.28 | 70.70 a 1.81 | 70.57 1.64 | 68.89 * 0.71 | 0.23 | <0.001 | <0.001 | <0.001 |
Heart | ||||||||||
Protein (%) | mean sd | 19.16 a 2.84 | 18.93 b 1.94 | 18.90 b 2.06 | 21.07 0.51 | 16.92 * 0.30 | 0.33 | 0.008 | <0.001 | <0.001 |
Collagen (%) | mean sd | 1.74 0.62 | 1.74 0.48 | 1.85 0.42 | 2.20 0.14 | 1.36 * 0.28 | 0.07 | 0.585 | <0.001 | 0.131 |
Intramuscular fat (%) | mean sd | 12.66 a 0.87 | 11.81 b 0.24 | 11.17 b 0.19 | 12.18 1.04 | 11.58 * 0.28 | 0.12 | <0.001 | <0.001 | <0.001 |
Water (%) | mean sd | 56.85 b 1.55 | 57.55 b 1.11 | 58.83 a 1.84 | 56.40 0.78 | 59.09 * 1.09 | 0.26 | <0.001 | <0.001 | 0.007 |
Trait | Breed | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rypin (n = 14) | Suwalki (n = 14) | Kartuzy (n = 14) | Male (n = 21) | Female (n = 21) | Breed | Sex | Interaction | |||
Macroelements (mg/100 g of liver) | ||||||||||
Phosphorus | mean sd | 278.67 b 28.86 | 292.24 b 49.71 | 312.27 a 39.49 | 295.74 44.91 | 293.04 39.25 | 6.43 | 0.018 | 0.772 | <0.001 |
Potassium | mean sd | 182.98 18.85 | 178.62 29.69 | 195.61 23.34 | 196.16 25.60 | 175.32 * 19.59 | 3.84 | 0.070 | 0.001 | 0.004 |
Sodium | mean sd | 80.43 b 8.42 | 82.73 b 15.32 | 97.53 a 10.70 | 91.21 15.03 | 82.59 * 11.34 | 2.13 | <0.001 | 0.005 | 0.001 |
Magnesium | mean sd | 18.30 1.32 | 18.39 2.79 | 19.48 1.89 | 19.18 2.18 | 18.26 1.97 | 0.32 | 0.128 | 0.081 | 0.001 |
Calcium | mean sd | 12.58 b 3.87 | 9.29 b 2.16 | 22.43 a 8.78 | 13.75 7.76 | 15.79 8.11 | 1.22 | <0.001 | 0.249 | 0.322 |
Microelements (mg/100 g of liver) | ||||||||||
Iron | mean sd | 20.81 b 2.26 | 21.09 b 4.16 | 26.93 a 6.06 | 25.48 5.13 | 20.40 * 3.93 | 0.80 | <0.001 | <0.001 | 0.017 |
Copper | mean | 11.00 b | 11.24 b | 31.46 a | 22.76 | 13.04 * | 2.07 | <0.001 | 0.001 | 0.480 |
sd | 6.36 | 6.51 | 13.69 | 14.63 | 10.27 | |||||
Zinc | mean | 3.97 a | 3.37 b | 3.91 a | 3.57 | 3.93 * | 0.01 | 0.007 | 0.032 | 0.001 |
sd | 0.96 | 0.49 | 0.42 | 0.51 | 0.84 | |||||
Manganese | mean | 0.29 b | 0.27 b | 0.32 a | 0.30 | 0.29 | 0.01 | 0.003 | 0.165 | 0.005 |
sd | 0.02 | 0.04 | 0.04 | 0.03 | 0.01 | |||||
Chrome | mean | 0.03 b | 0.02 b | 0.04 a | 0.03 | 0.03 | 0.01 | 0.001 | 0.058 | 0.159 |
sd | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Trait | Breed | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rypin (n = 14) | Suwalki (n = 14) | Kartuzy (n = 14) | Male (n = 21) | Female (n = 21) | Breed | Sex | Interaction | |||
Macroelements (mg/100 g of gizzard) | ||||||||||
Phosphorus | mean sd | 140.02 b 8.83 | 147.81 a 15.51 | 133.65 b 11.47 | 145.14 12.86 | 135.84 * 12.34 | 2.05 | 0.007 | 0.011 | 0.151 |
Potassium | mean sd | 183.48 17.89 | 195.39 18.10 | 188.61 16.24 | 196.53 14.68 | 181.78 * 17.63 | 2.72 | 0.163 | 0.005 | 0.848 |
Sodium | mean sd | 77.00 9.25 | 84.04 11.25 | 81.63 6.06 | 83.42 9.36 | 78.42 * 8.86 | 1.44 | 0.071 | 0.045 | 0.004 |
Magnesium | mean sd | 16.43 1.60 | 16.73 1.53 | 15.91 1.19 | 16.57 1.25 | 16.14 1.64 | 0.22 | 0.344 | 0.364 | 0.776 |
Calcium | mean sd | 33.06 b 5.83 | 28.20 b 7.56 | 51.65 a 20.64 | 39.22 18.89 | 36.06 13.73 | 2.57 | <0.001 | 0.439 | 0.293 |
Microelements (mg/100 g of gizzard) | ||||||||||
Iron | mean sd | 4.47 b 0.54 | 5.14 b 1.83 | 6.57 a 1.36 | 5.63 1.82 | 5.15 1.33 | 0.24 | 0.001 | 0.262 | 0.614 |
Zinc | mean | 3.06 | 3.12 | 3.27 | 3.11 | 3.05 | 0.01 | 0.851 | 0.580 | 0.887 |
sd | 0.28 | 0.39 | 8.69 | 10.18 | 9.84 | |||||
Copper | mean | 0.39 | 0.35 | 0.40 | 0.40 | 0.35 | 0.02 | 0.372 | 0.094 | 0.001 |
sd | 0.14 | 0.08 | 0.12 | 0.12 | 0.10 | |||||
Manganese | mean | 0.08 b | 0.08 b | 0.19 a | 0.11 | 0.12 | 0.05 | <0.001 | 0.066 | 0.017 |
sd | 0.01 | 0.02 | 0.04 | 0.05 | 0.07 | |||||
Chrome | mean | 0.04 b | 0.09 b | 0.16 a | 0.11 | 0.08 | 0.01 | <0.001 | 0.170 | 0.049 |
sd | 0.01 | 0.05 | 0.06 | 0.07 | 0.06 |
Trait | Breed | Sex | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rypin (n = 14) | Suwalki (n = 14) | Kartuzy (n = 14) | Male (n = 21) | Female (n = 21) | Breed | Sex | Interaction | |||
Macroelements (mg/100 g of heart) | ||||||||||
Potassium | mean sd | 144.81 b 10.93 | 183.18 a 18.53 | 158.54 b 6.37 | 162.97 21.73 | 161.38 19.76 | 3.15 | <0.001 | 0.753 | 0.965 |
Phosphorus | mean sd | 184.09 b 17.05 | 225.71 a 29.03 | 200.08 b 12.84 | 205.93 29.71 | 200.06 21.80 | 0.35 | 0.001 | 0.513 | 0.883 |
Sodium | mean sd | 94.04 b 7.49 | 117.40 a 12.13 | 108.50 a 4.59 | 107.68 15.08 | 105.61 10.63 | 1.98 | <0.001 | 0.533 | 0.702 |
Magnesium | mean sd | 17.00 b 1.24 | 20.94 a 2.16 | 18.91 a 1.17 | 19.08 2.44 | 18.81 2.13 | 0.35 | <0.001 | 0.656 | 0.886 |
Calcium | mean sd | 27.07 7.74 | 23.38 2.28 | 24.60 7.56 | 24.86 6.82 | 25.17 6.08 | 0.97 | 0.463 | 0.899 | 0.730 |
Microelements (mg/100 g of heart) | ||||||||||
Iron | mean sd | 7.59 b 0.73 | 10.85 a 2.33 | 8.67 b 1.03 | 9.71 2.47 | 8.37 * 1.17 | 0.31 | <0.001 | 0.006 | 0.016 |
Zinc | mean | 2.34 b | 2.85 a | 2.60 a | 2.61 | 2.59 | 0.05 | 0.001 | 0.815 | 0.169 |
sd | 0.21 | 0.35 | 0.19 | 0.38 | 0.27 | |||||
Copper | mean | 0.97 b | 1.52 a | 1.13 b | 1.38 | 1.03 * | 0.06 | 0.006 | 0.002 | 0.614 |
sd | 0.23 | 0.34 | 0.39 | 0.38 | 0.32 | |||||
Manganese | mean | 0.09 b | 0.11 a | 0.11 a | 0.11 | 0.10 | 0.01 | 0.004 | 0.342 | 0.525 |
sd | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | |||||
Chrome | mean | 0.03 | 0.02 | 0.03 | 0.02 | 0.03 | 0.01 | 0.331 | 0.603 | 0.501 |
sd | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokoszyński, D.; Nędzarek, A.; Żochowska-Kujawska, J.; Kotowicz, M.; Wegner, M.; Włodarczyk, K.; Cygan-Szczegielniak, D.; Biesiada-Drzazga, B.; Witkowski, M. Proximate Composition, Physicochemical Properties and Concentration of Selected Minerals in Edible Giblets of Geese. Foods 2025, 14, 2742. https://doi.org/10.3390/foods14152742
Kokoszyński D, Nędzarek A, Żochowska-Kujawska J, Kotowicz M, Wegner M, Włodarczyk K, Cygan-Szczegielniak D, Biesiada-Drzazga B, Witkowski M. Proximate Composition, Physicochemical Properties and Concentration of Selected Minerals in Edible Giblets of Geese. Foods. 2025; 14(15):2742. https://doi.org/10.3390/foods14152742
Chicago/Turabian StyleKokoszyński, Dariusz, Arkadiusz Nędzarek, Joanna Żochowska-Kujawska, Marek Kotowicz, Marcin Wegner, Karol Włodarczyk, Dorota Cygan-Szczegielniak, Barbara Biesiada-Drzazga, and Marcin Witkowski. 2025. "Proximate Composition, Physicochemical Properties and Concentration of Selected Minerals in Edible Giblets of Geese" Foods 14, no. 15: 2742. https://doi.org/10.3390/foods14152742
APA StyleKokoszyński, D., Nędzarek, A., Żochowska-Kujawska, J., Kotowicz, M., Wegner, M., Włodarczyk, K., Cygan-Szczegielniak, D., Biesiada-Drzazga, B., & Witkowski, M. (2025). Proximate Composition, Physicochemical Properties and Concentration of Selected Minerals in Edible Giblets of Geese. Foods, 14(15), 2742. https://doi.org/10.3390/foods14152742