Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents
Abstract
1. Introduction
2. Materials and Methods
2.1. Pot Vegetative Experiment
2.2. Analytical Methodologies
2.3. Statistical Methods
3. Results
3.1. Trace Elements in Soil
3.2. Relations Between Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walaszczyk, N.; Jasiński, R. Removal of petroleum derivative pollutants from the environment: Techniques and methods. Eng. Prot. Environ. 2018, 21, 347–359. [Google Scholar] [CrossRef]
- Sui, X.; Wang, X.; Li, Y.; Ji, H. Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges. Sustainability 2021, 13, 9267. [Google Scholar] [CrossRef]
- Thapa, B.; KC, A.K.; Ghimire, A. A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu Univ. J. Sci. Eng. Technol. 2012, 8, 164–170. [Google Scholar] [CrossRef]
- Logeshwaran, P.; Megharaj, M.; Chadalavada, S.; Bowman, M.; Naidu, R. Petroleum hydrocarbons (PH) in groundwater aquifers: An overview of environmental fate, toxicity, microbial degradation and risk-based remediation approaches. Environ. Technol. Innov. 2018, 10, 175–193. [Google Scholar] [CrossRef]
- Saikia, T.; Bora, J.; Gogoi, C. Impact of crude oil contamination on soil physicochemical properties around the Sildubi Oil Spill, Borhola, Assam. Int. J. Plant Soil Sci. 2023, 35, 241–253. [Google Scholar] [CrossRef]
- Arabani, M.; Haghsheno, H. The influence of oil pollutants on the mechanical properties of clayey sand. Int. J. Environ. Res. 2024, 18, 19. [Google Scholar] [CrossRef]
- Ahmadi, M.; Ebadi, T.; Maknoon, R. Effects of crude oil contamination on geotechnical properties of sand-kaolinite mixtures. Eng. Geol. 2021, 283, 106021. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. The potential for restoring the activity of oxidoreductases and hydrolases in soil contaminated with petroleum products using perlite and dolomite. Appl. Sci. 2024, 14, 3591. [Google Scholar] [CrossRef]
- Rakowska, J. Remediation of diesel-contaminated soil enhanced with firefighting foam application. Sci. Rep. 2020, 10, 8824. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, V.; Gaur, V.K.; Kaur, I.; Srivastava, P.K.; Manickam, N. Unlocking bioremediation potential for site restoration: A comprehensive approach for crude oil degradation in agricultural soil and phytotoxicity assessment. J. Environ. Manag. 2024, 355, 120508. [Google Scholar] [CrossRef]
- Guliyev, A.; Babayeva, T.; Abdullayeva, M. Characteristics of oil-contaminated gray-brown soils of the Absheron Peninsula. E3S Web Conf. 2023, 419, 03003. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Zaborowska, M.; Kucharski, J. Biochar, halloysite, and alginite improve the quality of soil contaminated with petroleum products. Agriculture 2023, 13, 1669. [Google Scholar] [CrossRef]
- Rusin, M.; Gospodarek, J.; Nadgórska-Socha, A.; Barczyk, G. Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean. Ecotoxicology 2017, 26, 308–319. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Borowik, A.; Kordala, N. Contamination of soil with diesel oil, application of sewage sludge and content of macroelements in oats. Water Air Soil Pollut. 2020, 231, 546. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Xin, Y.; Huang, T.; Liu, J. Petroleum pollution affects soil chemistry and reshapes the diversity and networks of microbial communities. Ecotoxicol. Environ. Saf. 2022, 246, 114129. [Google Scholar] [CrossRef]
- Mafiana, M.O.; Kang, X.-H.; Leng, Y.; He, L.-F.; Li, S.-W. Petroleum contamination significantly changes soil microbial communities in three oilfield locations in Delta State, Nigeria. Environ. Sci. Pollut. Res. Int. 2021, 28, 31447–31461. [Google Scholar] [CrossRef] [PubMed]
- Borowik, A.; Wyszkowska, J.; Zaborowska, M.; Kucharski, J. Soil enzyme response and calorific value of Zea mays used for the phytoremediation of soils contaminated with diesel oil. Energies 2024, 17, 2552. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J. Response of Avena sativa L. and the soil microbiota to the contamination of soil with Shell diesel oil. Plant Soil Environ. 2018, 64, 102–107. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Kordala, N.; Borowik, A. Effects of coal and sewage sludge ashes on macronutrient content in maize (Zea mays L.) grown on soil contaminated with Eco-diesel oil. Materials 2022, 15, 525. [Google Scholar] [CrossRef]
- Bakina, L.G.; Polyak, Y.M.; Gerasimov, A.O.; Mayachkina, N.V.; Chugunova, M.V.; Khomyakov, Y.V.; Vertebny, V.A. Mutual effects of crude oil and plants in contaminated soil: A field study. Environ. Geochem. Health 2022, 44, 69–82. [Google Scholar] [CrossRef]
- Chakravarty, P.; Chowdhury, D.; Deka, H. Ecological risk assessment of priority PAHs pollutants in crude oil contaminated soil and its impacts on soil biological properties. J. Hazard. Mater. 2022, 437, 129325. [Google Scholar] [CrossRef]
- You, Q.; Yan, K.; Yuan, Z.; Feng, D.; Wang, H.; Wu, L.; Xu, J. Polycyclic aromatic hydrocarbons (PAHs) pollution and risk assessment of soils at contaminated sites in China over the past two decades. J. Clean. Prod. 2024, 450, 141876. [Google Scholar] [CrossRef]
- Sharmin, S.; Wang, Q.; Islam, M.R.; Wang, W.; Wang, Y.; Enyoh, C.E.; Rana, M.S. Assessment of health risks from agricultural soils contaminated with polycyclic aromatic hydrocarbons (PAHs) across different land-use categories of Bangladesh. Appl. Sci. 2025, 15, 56. [Google Scholar] [CrossRef]
- Gospodarek, J.; Rusin, M.; Kandziora-Ciupa, M.; Nadgórska-Socha, A. The subsequent effects of soil pollution by petroleum products and its bioremediation on the antioxidant response and content of elements in Vicia faba Plants. Energies 2021, 14, 7748. [Google Scholar] [CrossRef]
- Cao, L.; Lin, C.; Gao, Y.; Sun, C.; Xu, L.; Zheng, L.; Zhang, Z. Health risk assessment of trace elements exposure through the soil-plant (maize)-human contamination pathway near a petrochemical industry complex, Northeast China. Environ. Pollut. 2020, 263, 114414. [Google Scholar] [CrossRef]
- Wang, W.; Lai, Y.; Ma, Y.; Liu, Z.; Wang, S.; Hong, C. Heavy metal contamination of urban topsoil in a petrochemical industrial city in Xinjiang, China. J. Arid Land 2016, 8, 871–880. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, EU Soil Strategy for 2030—Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate, COM(2021)699 Final of 17.11.2021. 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021DC0699 (accessed on 20 March 2025).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Ensuring Resilient and Sustainable Use of EU’s Natural Resources, COM(2023)410 Final of 5.7.2023. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52023DC0410 (accessed on 20 March 2025).
- Lapinskienė, A.; Martinkus, P.; Rėbždaitė, V. Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environ. Pollut. 2006, 142, 432–437. [Google Scholar] [CrossRef]
- Mitter, E.K.; Germida, J.J.; de Freitas, J.R. Impact of diesel and biodiesel contamination on soil microbial community activity and structure. Sci. Rep. 2021, 11, 10856. [Google Scholar] [CrossRef]
- Bamgbose, I.A.; Anderson, T.A. Ecotoxicity of three plant-based biodiesels and diesel using, Eisenia fetida. Environ. Pollut. 2020, 260, 113965. [Google Scholar] [CrossRef]
- Cruz, J.M.; Corroqué, N.A.; Montagnoli, R.N.; Lopes, P.R.M.; Morales, M.A.M.; Bidoia, E.D. Comparative study of phytotoxicity and genotoxicity of soil contaminated with biodiesel, diesel fuel and petroleum. Ecotoxicology 2019, 28, 449–456. [Google Scholar] [CrossRef]
- Osman, W.N.A.W.; Rosli, M.H.; Mazli, W.N.A.; Samsuri, S. Comparative review of biodiesel production and purification. Carbon Capture Sci. Technol. 2024, 13, 100264. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Zając, G.; Szyszlak-Bargłowicz, J. Ecotoxicity of soil contaminated with diesel fuel and biodiesel. Sci. Rep. 2020, 10, 16436. [Google Scholar] [CrossRef]
- Singh, R.N.; Tripathi, S.; Sharma, S.; Choudhary, G. Influence of biodiesel effluents on phyciso-chemical characteristics of black soil: A laboratory study. Water Air Soil Pollut. 2014, 225, 2091–2095. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Singh, J.; Taneja, P.K.; Mandal, A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environ. Sci. Pollut. Res. 2020, 27, 1319–1333. [Google Scholar] [CrossRef]
- Sánchez-Castro, I.; Molina, L.; Prieto-Fernández, M.Á.; Segura, A. Past, present and future trends in the remediation of heavy-metal contaminated soil-Remediation techniques applied in real soil-contamination events. Heliyon 2023, 9, e16692. [Google Scholar] [CrossRef]
- Bolan, N.S.; Duraisamy, V.P. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: A review involving specific case studies. Aust. J. Soil Res. 2003, 41, 533–555. [Google Scholar] [CrossRef]
- Kelly, C.; Peltz, C.; Stanton, M.; Rutherford, D.; Rostad, C. Biochar application to hardrock mine tailings: Soil quality, microbial activity, and toxic element sorption. Appl. Geochem. 2014, 43, 35–48. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Kumpiene, J.; Antelo, J.; Brännvall, E.; Carabante, I.; Ek, K.; Komarek, M.; Söderberg, C.; Wårell, L. In Situ chemical stabilization of trace element-contaminated soil-field demonstrations and barriers to transition from laboratory to the field—A review. Appl. Geochem. 2019, 100, 335–351. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Novak, J.M.; Ippolito, J.A.; Ducey, T.F.; Watts, D.W.; Spokas, K.A.; Trippe, K.M.; Sigua, G.C.; Johnson, M.G. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity. Chemosphere 2018, 205, 709–718. [Google Scholar] [CrossRef]
- Lu, H.; Wu, Y.; Liang, P.; Song, Q.; Zhang, H.; Wu, J.; Wu, W.; Liu, X.; Dong, C. Alkaline amendments improve the health of soils degraded by metal contamination and acidification: Crop performance and soil bacterial community responses. Chemosphere 2020, 257, 127309. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Xie, H. Preparation, characterization and intercalation mechanism of bentonite modified with different organic ammonium. Chem. Eng. Sci. 2025, 301, 120758. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Modrzewska, B. Acidity and sorption properties of zinc-contaminated soil following the application of neutralising substances. J. Ecol. Eng. 2016, 17, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Duraid, K.A.; Al-Taey, D.K.; Hussain, A.J.; Kadhum, H.J. Bentonite impact on soil properties and biological activity in the face of drought: A review. IOP Conf. Ser. Earth Environ. Sci. 2023, 1262, 042058. [Google Scholar] [CrossRef]
- García-Romero, E.; María Manchado, E.; Suárez, M.; García-Rivas, J. Spanish bentonites: A review and new data on their geology, mineralogy, and crystal chemistry. Minerals 2019, 9, 696. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Xu, Y.; Liang, X.; Wang, L. In Situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl. Clay Sci. 2015, 105–106, 200–206. [Google Scholar] [CrossRef]
- Hamidpour, M.; Kalbasi, M.; Afyuni, M.; Shariatmadari, H.; Holm, P.E.; Hansen, G.C.B. Sorption hysteresis of Cd(II) and Pb(II) on natural zeolite and bentonite. J. Hazard. Mater. 2010, 181, 686–691. [Google Scholar] [CrossRef]
- Hussain, S.T.; Ali, S.A.K. Removal of heavy metal by ion exchange using bentonite clay. J. Ecol. Eng. 2021, 22, 104–111. [Google Scholar] [CrossRef]
- Khan, W.U.D.; Wei, X.; Ali, H.H.; Zulfiqar, F.; Chen, J.; Iqbal, R.; Zaheer, M.S.; Ali, B.; Ghafoor, S.; Rabiya, U.E.; et al. Investigating the role of bentonite clay with different soil amendments to minimize the bioaccumulation of heavy metals in Solanum melongena L. under the irrigation of tannery wastewater. Front. Plant Sci. 2022, 13, 958978. [Google Scholar] [CrossRef]
- Czaban, J.; Siebielec, G.; Czyż, E.; Niedźwiecki, J. Effects of bentonite addition on sandy soil chemistry in a long-term plot experiment (I); Effect on organic carbon and total nitrogen. Pol. J. Environ. Stud. 2013, 22, 1661–1667. [Google Scholar]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J. Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Sci. Rep. 2020, 10, 18282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, W.; Zhao, B.; Phillips, L.A.; Zhou, Y.; Lapen, D.R.; Liu, J. Sandy soils amended with bentonite induced changes in soil microbiota and fungistasis in maize fields. Appl. Soil Ecol. 2020, 146, 103378. [Google Scholar] [CrossRef]
- Heuser, I. Soil governance in current European Union law and in the European Green Deal. Soil Secur. 2022, 6, 100053. [Google Scholar] [CrossRef]
- Diyaolu, C.O.; Folarin, I.O. The Role of biodiversity in agricultural resilience: Protecting ecosystem services for sustainable food production. Int. J. Res. Publ. Rev. 2024, 5, 1560–1573. [Google Scholar] [CrossRef]
- Yu, J.; Bao, J.; Su, Q.; Zhang, W.; Ye, B.; Zhou, X.; Li, H.; Li, X. Stabilization and remediation of arsenic-contaminated soil: Fly ash-based technology for industrial site restoration. Sustainability 2024, 16, 8132. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 236. Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 12 January 2025).
- Wyszkowski, M.; Kordala, N. Applicability of compost and mineral materials for reducing the effect of diesel oil on trace element content in soil. Materials 2023, 16, 3655. [Google Scholar] [CrossRef]
- US-EPA Method 3051A; Microwave Assisted Acid Digestion of Sediment, Sludges, Soils, and Oils. United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–30. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 12 January 2025).
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 1224. [Google Scholar]
- ISO 10390; Soil Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2005.
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties; Institute of Environmental Protection: Warsaw, Poland, 1991; pp. 1–334. [Google Scholar]
- Shimadzu Analytical and Measuring Instruments. User’s Manual; Shimadzu Corporation: Kyoto, Japan, 2016. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extractionsmethoden zur Phospor- und Kaliumbestimmung. Ann. R. Agric. Coll. Swed. 1960, 26, 199–215. [Google Scholar]
- Schlichting, E.; Blume, H.P.; Stahr, K. Bodenkundliches Praktikum. Pareys Studientexte 81; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1995. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System), version 13.3; Palo Alto: Santa Clara, CA, USA, 2017.
- Pantsar-Kallio, M.; Reinikainen, S.-P.; Oksanen, M. Interactions of soil components and their effects on chromium speciation in soils. Anal. Chim. Acta 2001, 439, 9–17. [Google Scholar] [CrossRef]
- Nadal, M.; Schuhmacher, M.; Domingo, J.L. Metal pollution of soils and vegetation in an area with petrochemical industry. Sci. Total Environ. 2004, 321, 59–69. [Google Scholar] [CrossRef]
- Osawaru, M.E.; Ogwu, M.C.; Braimah, L. Growth responses of two cultivated okra species (Abelmoschus caillei (A. Chev) stevels and Abelmoschus esculentus (Linn.) Moench in crude oil contaminated soil. Niger. J. Basic Appl. Sci. 2013, 1, 215–226. [Google Scholar] [CrossRef]
- Jamrah, A.; Al-Futaisi, A.; Hassan, H.; Al-Oraimi, S. Petroleum contaminated soil in Oman: Evaluation of bioremediation treatment and potential for reuse in hot asphalt mix concrete. Environ. Monit. Assess. 2007, 124, 331–341. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. Implications of soil pollution with diesel oil and BP petroleum with active technology for soil health. Int. J. Environ. Res. Public Health 2019, 16, 2474. [Google Scholar] [CrossRef]
- Wieczorek, J.; Baran, A.; Bubak, A. Mobility, bioaccumulation in plants, and risk assessment of metals in soils. Sci. Total Environ. 2023, 882, 163574. [Google Scholar] [CrossRef] [PubMed]
- Devatha, C.P.; Vishnu Vishal, A.; Purna Chandra, R.J. Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Appl. Water Sci. 2019, 9, 89. [Google Scholar] [CrossRef]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2022, 73, e13203. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Wolf, W.M. The impact of soil pH on heavy metals uptake and photosynthesis efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef]
- Arroyo, S.; Rosano-Ortega, G.; Martínez-Gallegos, S.; Pérez-Armendariz, B.; Vega-Lebrún, C.A. Reduction of hydrocarbons in contaminated soil through paired sorption and advanced oxidation processes. Soil Secur. 2021, 4, 100013. [Google Scholar] [CrossRef]
- Chuan, M.C.; Shu, G.Y.; Liu, J.C. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut. 1996, 90, 543–556. [Google Scholar] [CrossRef]
- Madadi, R.; Kachoueiyan, G.; De-la-Torre, E. Effect of redox potential on the heavy metals binding phases in estuarine sediment: Case study of the Musa Estuary. Mar. Pollut. Bull. 2023, 195, 115565. [Google Scholar] [CrossRef]
- Khudur, L.S.; Gleeson, D.B.; Ryan, M.H.; Shahsavari, E.; Haleyur, N.; Nugegoda, D.; Ball, A.S. Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils. Environ. Pollut. 2018, 243, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Bandura, L.; Woszuk, A.; Kołodyńska, D.; Franus, W. Application of mineral sorbents for removal of petroleum substances: A review. Minerals 2017, 7, 37. [Google Scholar] [CrossRef]
- Gao, Y.; Li, X. Effects of bentonite addition on the speciation and mobility of Cu and Ni in soils from old mine tailings. Sustainability 2022, 14, 10878. [Google Scholar] [CrossRef]
- Elmorsi, R.R.; Mostafa, G.A.H.; Abou-El-Sherbini, K.S. Homoionic soda-activated bentonite for batch-mode removal of Pb(II) from polluted brackish water. J. Environ. Chem. Eng. 2021, 9, 104606. [Google Scholar] [CrossRef]
- Kumararaja, P.; Shabeer, T.A.; Manjaiah, K.M. Effect of bentonite on heavy metal uptake by amaranth (Amaranthus blitum cv. Pusa Kirti) grown on metal contaminated soil. Hortic. Soc. Indian 2016, 73, 224–228. [Google Scholar] [CrossRef]
- Bian, R.J.; Li, L.Q.; Bao, D.D.; Zheng, J.W.; Zhang, X.H.; Zheng, J.F.; Liu, X.Y.; Cheng, K.; Pan, G.X. Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environ. Sci. Pollut. Res. 2016, 23, 10028–10036. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Sohail, M.I.; Cao, X.R.; Hussain, B.; Aziz, M.Z.; Usman, M.; He, Z.L.; Yang, X.E. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 2019, 660, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.O.; Lee, D.K.; Chung, D.Y.; Kim, P.J. Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Arch. Environ. Contam. Toxicol. 2007, 52, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Mubeen, S.; Ni, W.; He, C.; Yang, Z. Agricultural strategies to reduce cadmium accumulation in crops for food safety. Agriculture 2023, 13, 471. [Google Scholar] [CrossRef]
- Lahori, A.H.; Zhang, Z.; Guo, Z.; Mahar, A.; Li, R.; Awasthi, M.K.; Sial, T.A.; Kumbhar, F.; Wang, P.; Shen, F.; et al. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Ecotoxicol. Environ. Saf. 2017, 145, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Garau, G.; Castaldi, P.; Santona, L.; Deiana, P.; Melis, P. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma 2007, 142, 47–57. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, X.; Zeng, M.; Liao, B.H.; Liu, L.; Yang, W.T.; Wu, Y.M.; Qiu, Q.Y.; Wang, Y.J. Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicol. Environ. Saf. 2014, 101, 226–232. [Google Scholar] [CrossRef]
- Zeng, T.; Khaliq, M.A.; Li, H.; Jayasuriya, P.; Guo, J.; Li, Y.; Wang, G. Assessment of Cd availability in rice cultivation (Oryza sativa): Effects of amendments and the spatiotemporal chemical changes in the rhizosphere and bulk soil. Ecotoxicol. Environ. Saf. 2020, 196, 110490. [Google Scholar] [CrossRef]
- Ho, T.T.K.; Tra, V.T.; Le, T.H.; Nguyen, N.-K.-Q.; Tran, C.-S.; Nguyen, P.-T.; Vo, T.-D.-H.; Thai, V.-N.; Bui, X.-T. Compost to improve sustainable soil cultivation and crop productivity. Case Stud. Chem. Environ. Eng. 2022, 6, 100211. [Google Scholar] [CrossRef]
- Beesley, L.; Marmiroli, M.; Pagano, L.; Pigoni, V.; Fellet, G.; Fresno, T.; Vamerali, T.; Bandiera, M.; Marmiroli, N. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci. Total Environ. 2013, 454–455, 598–603. [Google Scholar] [CrossRef]
- Medyńska-Juraszek, A.; Bednik, M.; Chohura, P. Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. Int. J. Environ. Res. Public Health 2020, 17, 7861. [Google Scholar] [CrossRef]
- Lakhdar, A.; Rabhi, M.; Ghnaya, T.; Montemurro, F.; Jedidi, N.; Abdelly, C. Effectiveness of compost use in salt-affected soil. J. Hazard. Mater. 2009, 171, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Martinho, J.; Campos, B.; Brás, I.; Silva, E. The role of compost properties in sorption of heavy metals. Environ. Prot. Eng. 2015, 41, 57–65. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Cai, P.; Liang, W.; Huang, Q. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard. Mater. 2009, 163, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.; Jones, D.L. Use of composts in the remediation of heavy metal contaminated soil. J. Hazard. Mater. 2010, 175, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhu, Y.; Li, Z.; Zeng, G. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. 2016, 227, 359. [Google Scholar] [CrossRef]
- Farrell, M.; Perkins, W.T.; Hobbs, P.J.; Griffith, G.W.; Jones, D.L. Migration of heavy metals in soil as influenced by compost amendments. Environ. Pollut. 2010, 158, 55–64. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci. Total Environ. 2020, 701, 134751. [Google Scholar] [CrossRef]
- Oueld Lhaj, M.; Moussadek, R.; Zouahri, A.; Sanad, H.; Saafadi, L.; Mdarhri Alaoui, M.; Mouhir, L. Sustainable agriculture through agricultural waste management: A comprehensive review of composting’s impact on soil health in Moroccan agricultural ecosystems. Agriculture 2024, 14, 2356. [Google Scholar] [CrossRef]
- Feng, D.; Meng, L.; Wen, Y.H.; Uwiragiye, Y.; AbuQamar, S.F.; Okoth, N.; Zhu, Q.; Wu, Z.; Wu, Y.; Müller, C.; et al. Edaphic and climatic factors control the response of nutrient-cycling enzyme activity to common heavy metals in soils. J. Hazard. Mater. 2025, 494, 138475. [Google Scholar] [CrossRef]
- Du, W.; Yang, Y.; Hu, L.; Chang, B.; Cao, G.; Nasir, M.; Lv, J. Combined determination analysis of surface properties evolution towards bentonite by pH treatments. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127067. [Google Scholar] [CrossRef]
- Skic, K.; Boguta, P.; Sokołowska, Z. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods. Int. Agrophysics 2016, 30, 369–374. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–a review. Earth Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Elnajdi, A.; Berland, A.; Haeft, J.; Dowling, C. Influence of soil pH, organic matter, and clay content on environmentally available lead in soils: A case study in Muncie, Indiana, USA. Open J. Soil Sci. 2023, 13, 414–430. [Google Scholar] [CrossRef]
- Strawn, D.G. Sorption Mechanisms of Chemicals in Soils. Soil Syst. 2021, 5, 13. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef]
- Shen, Z.; Li, Z.; Alessi, D.S. Stabilization-based soil remediation should consider long-term challenges. Front. Environ. Sci. Eng. 2018, 12, 16. [Google Scholar] [CrossRef]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.; Biczak, R. Phytoremediation and environmental law: Harnessing biomass and microbes to restore soils and advance biofuel innovation. Energies 2025, 18, 1860. [Google Scholar] [CrossRef]
- Kuppan, N.; Padman, M.; Mahadeva, M.; Srinivasan, S.; Devarajan, R. A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Manag. Bull. 2024, 2, 154–171. [Google Scholar] [CrossRef]
- Elshafei, A.M.; Mansour, R. Microbial bioremediation of soils contaminated with petroleum hydrocarbons. Discov. Soil 2024, 1, 9. [Google Scholar] [CrossRef]
Properties | Soil |
---|---|
Granulometric composition | sandy loam |
Sand (1.0–0.1 mm) in % | 53 |
Clay (0.1–0.02 mm) in % | 8 |
Silt (1.0–0.1 mm) in % | 39 |
pHKCl | 5.10 |
Hydrolytic acidity (HAC) in mM per kg | 30.8 |
Total exchangeable bases (TEB) in mM per kg | 88.0 |
Cation exchange capacity (CEC) in mM per kg | 118.8 |
Base saturation (BS) in % | 74.1 |
Total organic carbon (TOC) in g per kg | 8.54 |
Available phosphorus in mg per kg | 34.35 |
Available potassium in mg per kg | 75.26 |
Available magnesium in mg per kg | 41.22 |
Total cadmium | 0.194 |
Total lead | 16.41 |
Total chromium | 12.72 |
Total nickel | 14.53 |
Total zinc | 21.07 |
Total copper | 2.95 |
Total manganese | 220.0 |
Total iron | 6897 |
Total cobalt | 3.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Kordala, N. Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents. Appl. Sci. 2025, 15, 8650. https://doi.org/10.3390/app15158650
Wyszkowski M, Kordala N. Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents. Applied Sciences. 2025; 15(15):8650. https://doi.org/10.3390/app15158650
Chicago/Turabian StyleWyszkowski, Mirosław, and Natalia Kordala. 2025. "Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents" Applied Sciences 15, no. 15: 8650. https://doi.org/10.3390/app15158650
APA StyleWyszkowski, M., & Kordala, N. (2025). Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents. Applied Sciences, 15(15), 8650. https://doi.org/10.3390/app15158650