Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = cabin heating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 - 1 Aug 2025
Viewed by 171
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

21 pages, 6272 KiB  
Article
Numerical Study of Gas Dynamics and Condensate Removal in Energy-Efficient Recirculation Modes in Train Cabins
by Ivan Panfilov, Alexey N. Beskopylny, Besarion Meskhi and Sergei F. Podust
Fluids 2025, 10(8), 197; https://doi.org/10.3390/fluids10080197 - 29 Jul 2025
Viewed by 184
Abstract
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy [...] Read more.
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy efficiency of the train. In this study, a model of liquid film formation on and removal from various cabin surfaces was constructed using the fundamental Navier–Stokes hydrodynamic equations. A special transport model based on the liquid vapor diffusion equation was used to simulate the air environment inside the cabin. The evaporation and condensation of surface films were simulated using the Euler film model, which directly considers liquid–gas and gas–liquid transitions. Numerical results were obtained using the RANS equations and a turbulence model by means of the finite volume method in Ansys CFD. Conjugate fields of temperature, velocity and moisture concentration were constructed for various time intervals, and the dependence values for the film thicknesses on various surfaces relative to time were determined. The verification was conducted in comparison with the experimental data, based on the protocol for measuring the microclimate indicators in workplaces, as applied to the train cabin: the average ranges encompassed temperature changes from 11% to 18%, and relative humidity ranges from 16% to 26%. Comparison with the results of other studies, without considering the phase transition and condensation, shows that, for the warm mode, the average air temperature in the cabin with condensation is 12.5% lower than without condensation, which is related to the process of liquid evaporation from the heated walls. The difference in temperature values for the model with and without condensation ranged from −12.5% to +4.9%. We demonstrate that, with an effective mode of removing condensate film from the window surface, including recirculation modes, the energy consumption of the climate control system improves significantly, but this requires a more accurate consideration of thermodynamic parameters and relative humidity. Thus, considering the moisture condensation model reveals that this variable can significantly affect other parameters of the microclimate in cabins: in particular, the temperature. This means that it should be considered in the numerical modeling, along with the basic heat transfer equations. Full article
Show Figures

Figure 1

21 pages, 5951 KiB  
Article
The Study of Waste Heat Recovery of the Thermal Management System of Electric Vehicle Based on Simulation and Experimental Analyses
by Weiwei Lu, Qingxia Yang, Liyou Xu and Xiuqing Li
World Electr. Veh. J. 2025, 16(6), 298; https://doi.org/10.3390/wevj16060298 - 28 May 2025
Viewed by 845
Abstract
In this study, in order to overcome the limitations of existing electric vehicle (EV) thermal management systems (TMS), a highly integrated and coordinated operation strategy for EV thermal management was proposed. Specifically, an integrated architecture with a 10-way valve was established to replace [...] Read more.
In this study, in order to overcome the limitations of existing electric vehicle (EV) thermal management systems (TMS), a highly integrated and coordinated operation strategy for EV thermal management was proposed. Specifically, an integrated architecture with a 10-way valve was established to replace traditional 3-way and 4-way valves to enhance the coupling between coolant circuits. Six operating modes were realized via the switching function of the 10-way valve, including the mode of waste heat recovery. A highly integrated TMS model was developed on the AMEsim2304 platform, followed by parameter matching. The accuracy of the model was validated through comparative analysis with laboratory and environmental chamber test results. Based on the designed highly integrated TMS, a classical fuzzy Proportional-Integral-Derivative Control (PID) control strategy was introduced to regulate the coolant circulation pump. Simulation analyses and experimental results demonstrated that the optimized system could reduce the battery pack heating time by approximately 300 s compared to the pre-optimized configuration. Moreover, the waste heat recovery could improve the cabin heating rate from 1.9 °C/min to 3.4 °C/min, representing a 43.7% enhancement. Furthermore, the output power of the high-pressure liquid heater remained low, resulting in a 10% reduction in overall heating energy consumption. Based on simulation and experimental analyses, this research can promote the progress of thermal management system technology for electric vehicles to a certain extent. Full article
(This article belongs to the Special Issue Thermal Management System for Battery Electric Vehicle)
Show Figures

Figure 1

22 pages, 23599 KiB  
Article
Effects of Defrost-Initiation Criteria and Orientations of an Outdoor Heat Exchanger on the Performance of an Automotive Reversible CO2 Heat Pump
by Wenying Zhang, Wenzhe Li and Pega Hrnjak
Energies 2025, 18(9), 2244; https://doi.org/10.3390/en18092244 - 28 Apr 2025
Viewed by 414
Abstract
Heat pump (HP) technology has been widely adopted in electric vehicles (EVs) for cabin and battery heating in cold weather due to its high efficiency. However, when an HP works under low ambient temperatures and high humidity, frost grows on the surface of [...] Read more.
Heat pump (HP) technology has been widely adopted in electric vehicles (EVs) for cabin and battery heating in cold weather due to its high efficiency. However, when an HP works under low ambient temperatures and high humidity, frost grows on the surface of the outdoor evaporator, deteriorating system efficiency. This study experimentally investigated the performance of an automotive reversible CO2 HP system under cyclic frosting–defrosting conditions, with different defrost-initiation criteria and orientations of the outdoor heat exchanger. The relationship between the performance degradation of the heat pump system and the feature of frost accumulation on the outdoor heat exchanger is analyzed. The experimental data revealed that the heating capacity of the HP system only mildly degrades (~30%), even with an air-side pressure drop of the outdoor heat exchanger growing 10 times, which enables the system to work in HP mode for a longer time before the defrosting without significantly impacting passengers’ comfort. The horizontally installed outdoor heat exchanger is proven to have better refrigerant distribution, but with approximately a 0.16 bar (11.9%) higher pressure drop, reducing the evaporating temperature by about 0.4 K. Consequently, frost accumulates faster, and the working time in HP mode is shortened by 12 min (18.2%). Moreover, the vertical outdoor heat exchanger drains much more water during the defrosting. As a result, the defrosting time for the vertical outdoor heat exchanger is reduced by 17%. Full article
Show Figures

Figure 1

12 pages, 2670 KiB  
Article
Improving Thermal Environment of Power Generation Cabin via Vapor Chamber in Cold Regions
by Hao Zhai, Xianyi Jiang and Chengbin Zhang
Processes 2025, 13(4), 1260; https://doi.org/10.3390/pr13041260 - 21 Apr 2025
Viewed by 501
Abstract
This study introduces the innovative application of a vapor chamber to mitigate fuel freezing and temperature disparity in power generation cabins operating under extreme cold conditions. A vapor chamber was designed and implemented within a low-temperature power generation platform in Daqing, China, where [...] Read more.
This study introduces the innovative application of a vapor chamber to mitigate fuel freezing and temperature disparity in power generation cabins operating under extreme cold conditions. A vapor chamber was designed and implemented within a low-temperature power generation platform in Daqing, China, where outdoor temperatures were below −20 °C. The research focused on evaluating the thermal performance of the cabin under natural and forced convection conditions, with and without the vapor chamber. The experimental investigations assessed the effects of the vapor chamber on the thermal dynamics of the power generation cabin, particularly the temperature of the bottom fuel oil and the air temperature distribution. The results indicated that without the vapor chamber significant temperature disparities and potential risks to electrical equipment were present. The vapor chamber effectively utilizes the heat generated by the diesel engine, thus accelerating the heating rate of the fuel at the bottom. It reduces the duration of the decrease in the oil temperature of the upper and lower layers during the initial start-up from 0.44 h and 0.5 h to 0.31 h and 0.35 h, respectively, effectively preventing the risk of fuel freezing in the initial start-up stage. In addition, the installation of the vaporization chamber significantly improves the temperature uniformity of the air inside the cabin. The maximum temperature difference between the upper and lower air in the cabin decreases by 33 °C, effectively improving the overall thermal environment. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

8 pages, 5715 KiB  
Proceeding Paper
Use of Cabin Sidewall for Thermal Management Applications
by Victor Norrefeldt and Gerhard Riedl
Eng. Proc. 2025, 90(1), 104; https://doi.org/10.3390/engproc2025090104 - 18 Apr 2025
Viewed by 154
Abstract
With increased electrification of new aircraft designs, cooling becomes more challenging. The most straightforward solution is to activate yet unused heat sinks available in the aircraft. The crown and cabin sidewall are such an unused area suitable for heat transfer. Here, only a [...] Read more.
With increased electrification of new aircraft designs, cooling becomes more challenging. The most straightforward solution is to activate yet unused heat sinks available in the aircraft. The crown and cabin sidewall are such an unused area suitable for heat transfer. Here, only a thin plate separates the warm cabin from the cold exterior environment in cruise. Air used for the cooling of devices could be guided along the fuselage skin to benefit from the large heat exchanging surface. Scaling test results indicate that up to 24 kW of additional heat could be dissipated in the short term through this system in flight. Full article
Show Figures

Figure 1

18 pages, 15002 KiB  
Article
Numerical Analysis of the Impact of Variable Borer Miner Operating Modes on the Microclimate in Potash Mine Working Areas
by Lev Levin, Mikhail Semin, Stanislav Maltsev, Roman Luzin and Andrey Sukhanov
Computation 2025, 13(4), 85; https://doi.org/10.3390/computation13040085 - 24 Mar 2025
Viewed by 396
Abstract
This paper addresses the numerical simulation of unsteady, non-isothermal ventilation in a dead-end mine working of a potash mine excavated using a borer miner. During its operations, airflow can become unsteady due to the variable operating modes of the borer miner, the switching [...] Read more.
This paper addresses the numerical simulation of unsteady, non-isothermal ventilation in a dead-end mine working of a potash mine excavated using a borer miner. During its operations, airflow can become unsteady due to the variable operating modes of the borer miner, the switching on and off of its motor cooling fans, and the movement of a shuttle car transporting ore. While steady ventilation in a dead-end working with a borer miner has been previously studied, the specific features of air microclimate parameter distribution in more complex and realistic unsteady scenarios remain unexplored. Our experimental studies reveal that over time, air velocity and, particularly, air temperature experience significant fluctuations. In this study, we develop and parameterize a mathematical model and perform a series of numerical simulations of unsteady heat and mass transfer in a dead-end working. These simulations account for the switching on and off of the borer miner’s fans and the movement of the shuttle car. The numerical model is calibrated using data from our experiments conducted in a potash mine. The analysis of the first factor is carried out by examining two extreme scenarios under steady-state ventilation conditions, while the second factor is analyzed within a fully unsteady framework using a dynamic mesh approach in the ANSYS Fluent 2021 R2. The numerical results demonstrate that the borer miner’s operating mode notably impacts the velocity and temperature fields, with a twofold decrease in maximum velocity near the cabin after the shuttle car departed and a temperature difference of about 1–1.5 °C between extreme scenarios in the case of forcing ventilation. The unsteady simulations using the dynamic mesh approach revealed that temperature variations were primarily caused by the borer miner’s cooling system, while the moving shuttle car generated short-term aerodynamic oscillations. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Fluid Flow)
Show Figures

Figure 1

21 pages, 1730 KiB  
Article
Dynamic Energy Consumption Modeling for HVAC Systems in Electric Vehicles
by Beatrice Pulvirenti, Giacomo Puccetti and Giovanni Semprini
Appl. Sci. 2025, 15(7), 3514; https://doi.org/10.3390/app15073514 - 23 Mar 2025
Viewed by 1274
Abstract
Motivated by the strong transition to electric mobility we are witnessing currently, in this paper, we present a novel methodology to predict the dynamic behavior of heat, ventilation and air conditioning (HVAC) systems for electric vehicles. The approach is based on a lumped [...] Read more.
Motivated by the strong transition to electric mobility we are witnessing currently, in this paper, we present a novel methodology to predict the dynamic behavior of heat, ventilation and air conditioning (HVAC) systems for electric vehicles. The approach is based on a lumped parameter energy balance between the vehicle cabin, the external loads (such as solar radiation, ventilation and metabolic load) and the HVAC system. Detailed models are used to obtain the time evolution of the heat transfer coefficients of each subsystem in the HVAC (i.e., evaporator and condenser) on the basis of correlations available in the literature. The model is validated on a real HVAC system, built ad hoc for a retrofitted electric vehicle, by comparing the results obtained from the model with experimental measurements performed in a climatic chamber. Then, some scenarios that represent interesting cases in electric automotive applications, such as vehicle cabin precooling during battery charging and a regulated driving cycle which simulates urban mobility, are considered. The energy consumption of the HVAC system is evaluated from the model in these scenarios and compared. The methodology herein presented is general and easily extendable to other systems, proving to be a powerful method to compare the energy consumption of HVAC systems under unsteady conditions with a more standard approach based on steady considerations. By this approach, it is shown that significant improvement can be obtained with a nonsteady approach. Full article
(This article belongs to the Special Issue Feature Papers in Section 'Applied Thermal Engineering')
Show Figures

Figure 1

8 pages, 2005 KiB  
Proceeding Paper
Numerical Analysis of Potential Energy Recovery via a Thermoelectric Generator (TEG) for the Next-Generation Hybrid-Electric Regional Aircraft
by Safa Sabet, Werner Gumprich, Michael Moeller, Andrés Felgueroso, Iván González Nieves, Miguel Díaz and Simone Mancin
Eng. Proc. 2025, 90(1), 64; https://doi.org/10.3390/engproc2025090064 - 18 Mar 2025
Viewed by 336
Abstract
The thermal management of next-generation hybrid electric regional aircrafts poses critical challenges due to extreme heat loads, which could reach more than 2 MW and must be dissipated. This rejected heat can be used in a passive system such as Thermoelectric Generators (TEGs), [...] Read more.
The thermal management of next-generation hybrid electric regional aircrafts poses critical challenges due to extreme heat loads, which could reach more than 2 MW and must be dissipated. This rejected heat can be used in a passive system such as Thermoelectric Generators (TEGs), which can directly convert thermal energy into electrical energy. This work is carried out in the framework of the EU Clean Aviation-funded project TheMa4HERA and it numerically explores the possibility of integrating thermoelectric (TE) technology in the next generation of regional aircrafts. Two case studies are considered: energy recovery from the outflow valve originally used to control the pressure of the cabin and the integration of TEG modules in skin heat exchangers used to partially dissipate heat coming from the fuel cells and/or from the power electronics. The results will permit us to understand the feasibility of implementing TEG technology into these specific conditions in terms of overall power generation. The findings indicate that while TEG integration in the outflow valve offers limited power density, the skin heat exchanger shows significantly higher potential for effective energy recovery. Full article
Show Figures

Figure 1

17 pages, 25118 KiB  
Article
Experimental Performance Investigation of an Air–Air Heat Exchanger and Improved Insulation for Electric Truck Cabins
by Dominik Dvorak, Milan Kardos, Imre Gellai and Dragan Šimić
World Electr. Veh. J. 2025, 16(3), 129; https://doi.org/10.3390/wevj16030129 - 26 Feb 2025
Viewed by 2350
Abstract
Battery electric vehicles (BEVs) are one promising approach to mitigating local greenhouse gas emissions. However, they still lag behind conventional vehicles in terms of maximum driving range. Using the heating, ventilation, and air-conditioning (HVAC) system reduces the maximum driving range of the vehicle [...] Read more.
Battery electric vehicles (BEVs) are one promising approach to mitigating local greenhouse gas emissions. However, they still lag behind conventional vehicles in terms of maximum driving range. Using the heating, ventilation, and air-conditioning (HVAC) system reduces the maximum driving range of the vehicle even further since the energy for the HVAC system must come from the battery. This work investigates the impact of (1) an air–air heat exchanger and (2) an improved thermal insulation of a truck cabin on the heating performance of the HVAC system. Additionally, the required fresh-air volume flow rate to keep the CO2 level within the truck cabin below the critical value of 1000 ppm is factored in. The results show that the two simple measures proposed could increase the energy efficiency of the truck’s HVAC system by 22%. When two persons are present in the truck cabin, a fresh-air volume flow of around 100 m3/h is required to keep the CO2 concentration around 1000 ppm. These results prove that, even with simple measures, the energy efficiency of vehicles’ subsystems can be increased. In the future, more research will be necessary to further improve the energy efficiency of other vehicular subsystems. Full article
Show Figures

Figure 1

19 pages, 5232 KiB  
Article
Study on Performance of Integrated Thermal Management Strategy for Hybrid Electric Vehicles Under Low-Temperature Conditions
by Bofeng Xue, Yingchao Zhou, Peizhen Chen, Xinrui Meng and Junxian Zhang
Processes 2025, 13(3), 651; https://doi.org/10.3390/pr13030651 - 25 Feb 2025
Viewed by 1573
Abstract
In cold environments, traditional independent thermal management systems heavily rely on inefficient Positive Temperature Coefficient (PTC) heaters, which exacerbate range anxiety in vehicles. In this study, an energy management-based control strategy for an integrated thermal management system (ITMS) designed for hybrid electric vehicles [...] Read more.
In cold environments, traditional independent thermal management systems heavily rely on inefficient Positive Temperature Coefficient (PTC) heaters, which exacerbate range anxiety in vehicles. In this study, an energy management-based control strategy for an integrated thermal management system (ITMS) designed for hybrid electric vehicles (HEVs) is proposed. By coupling the four thermal flow circuits of the entire vehicle and integrating driving modes with heating demands, this strategy achieves full vehicle-level integrated control. Through optimizing the distribution and utilization of heat within the vehicle, this enhances the heating performance of the air source heat pump. The simulation results demonstrate that the proposed strategy significantly reduces the power consumption of the heat pump and improves heating efficiency for both the battery and the cabin. By utilizing waste heat from the motor and the engine, the ITMS increases the heating capacity of the heat pump, particularly in low-temperature environments. Compared to traditional thermal management systems, the ITMS control strategy achieves substantial improvements in both heating time and energy efficiency. Specifically, the system reduces battery heating time by 55.94% and enhances the overall heating performance of the vehicle. Furthermore, the strategy reduces fuel consumption by 5.18%, demonstrating its potential to improve the energy efficiency of HEVs in cold climates. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

31 pages, 8073 KiB  
Article
Optimising Ventilation Strategies for Improved Driving Range and Comfort in Electric Vehicles
by Matisse Lesage, David Chalet and Jérôme Migaud
World Electr. Veh. J. 2025, 16(2), 98; https://doi.org/10.3390/wevj16020098 - 12 Feb 2025
Cited by 1 | Viewed by 1493
Abstract
A car cabin’s small volume makes it vulnerable to discomfort if temperature, humidity, and carbon dioxide levels are poorly regulated. In electric vehicles, the HVAC system draws energy from the car battery, reducing the driving range by several dozen kilometres under extreme conditions. [...] Read more.
A car cabin’s small volume makes it vulnerable to discomfort if temperature, humidity, and carbon dioxide levels are poorly regulated. In electric vehicles, the HVAC system draws energy from the car battery, reducing the driving range by several dozen kilometres under extreme conditions. A 1D simulation model calibrated for the Renault ZOE was used to evaluate the effects of ventilation parameters on thermal comfort, humidity, and power consumption. The results highlighted the interdependence of factors such as the recirculation ratio and blower flow rate, showing that energy-efficient settings depend on ambient conditions and other factors (such as occupancy, vehicle speed, infiltration). Adjustments can reduce heat pump energy use, but no single setting optimally balances power consumption and thermal comfort across all scenarios. The opti-CO2 mode is proposed as a trade-off, offering energy savings while maintaining safety and comfort. This mode quickly achieves the cabin temperature target, limits carbon dioxide concentration at a safe level (1100 ppm), minimises fogging risks, and reduces heat pump power consumption. Compared to fresh air mode, the opti-CO2 mode extends the driving range by 9 km in cold conditions and 26 km in hot conditions, highlighting its potential for improving energy efficiency and occupant comfort in electric vehicles. Full article
Show Figures

Figure 1

56 pages, 1827 KiB  
Review
A Systematic Review of Indoor Environmental Quality in Passenger Transport Vehicles of Tropical and Subtropical Regions
by John Omomoluwa Ogundiran, Jean-Paul Kapuya Bulaba Nyembwe, James Ogundiran, Anabela Salgueiro Narciso Ribeiro and Manuel Gameiro da Silva
Atmosphere 2025, 16(2), 140; https://doi.org/10.3390/atmos16020140 - 27 Jan 2025
Cited by 4 | Viewed by 1489
Abstract
This systematic literature review (SLR) focuses on indoor environmental quality (IEQ) in passenger transport vehicles within tropical and subtropical regions. It specifically examines indoor air quality (IAQ), thermal comfort (TC), acoustic comfort (AC), and visual comfort (VC) of passenger vehicle cabins (PVCs) in [...] Read more.
This systematic literature review (SLR) focuses on indoor environmental quality (IEQ) in passenger transport vehicles within tropical and subtropical regions. It specifically examines indoor air quality (IAQ), thermal comfort (TC), acoustic comfort (AC), and visual comfort (VC) of passenger vehicle cabins (PVCs) in auto rickshaws, sedans, trucks, bus rapid transits (BRTs), buses, trains, trams, metro systems, aircraft and ferries of tropical and subtropical regions. The SLR used the PRISMA approach to identify and review scientific studies between 2000 and 2024 on the IEQ of PVCs in the tropics. Studies reviewed were found in SCOPUS, Web of Science, Science Direct, and EBSCO databases including relevant citation references. Findings reveal a significant geographical imbalance in research, with most studies concentrated in tropical Asia (78.2%), while sub-Saharan Africa (8.2%), South America (11.8%), and Oceania (1.8%) are considerably underrepresented. In 113 studies, most addressed IAQ and TC but limited attention to AC and VC. Moreover, fewer studies have jointly addressed all the IEQ parameters, highlighting the need for a more comprehensive approach to IEQ for tropical PVCs. Several studies alluded to in-cabin commuter risk linked to PM2.5, PM10, carbon monoxide (CO), and volatile organic compounds (VOCs). These risks are exacerbated by traffic hotspots, poor ventilation, ambient pollution, overcrowding, and poor vehicle conditions. Additionally, thermal discomfort is compounded by extreme heat loads, inefficient HVAC systems, and high vehicle occupancy. Common gaps include a paucity of IEQ studies and inadequate IEQ regulations or adapted standards in developing tropics. Infrastructural and regulatory deficiencies have been identified, along with strategies for mitigation. Recommendations are for more holistic IEQ studies in the tropics, including exposure studies for emerging gaps in new indoor pollutants, integration of AI and IoT for sustainable ventilation strategies, and development of effective regulatory frameworks considering region-specific conditions. Finally, Policymakers are encouraged to establish localized IEQ standards, enforce regulations, and prioritize upgrades to transport infrastructure. The SLR findings emphasize the urgent need for targeted interventions in developing tropical regions to address disparities in IEQ, ensuring healthier and more sustainable transport environments that could be replicated across transport systems worldwide. Full article
(This article belongs to the Special Issue Cutting-Edge Developments in Air Quality and Health)
Show Figures

Graphical abstract

18 pages, 3797 KiB  
Article
Influence of Infotainment-System Audio Cues on the Sound Quality Perception Onboard Electric Vehicles in the Presence of Air-Conditioning Noise
by Massimiliano Masullo, Katsuya Yamauchi, Minori Dan, Federico Cioffi and Luigi Maffei
Acoustics 2025, 7(1), 1; https://doi.org/10.3390/acoustics7010001 - 25 Dec 2024
Cited by 1 | Viewed by 2161
Abstract
Car cabin noise generated by heating, ventilation, and air-conditioning (HVAC) systems significantly impacts passengers’ acoustic comfort. In fact, with the reduction in engine noise due to the passage from internal combustion to electric or hybrid-electric engines, interior background noise has dramatically reduced, especially [...] Read more.
Car cabin noise generated by heating, ventilation, and air-conditioning (HVAC) systems significantly impacts passengers’ acoustic comfort. In fact, with the reduction in engine noise due to the passage from internal combustion to electric or hybrid-electric engines, interior background noise has dramatically reduced, especially at 25% and 50% HVAC airflow rates. While previous research has focused on the effect of HVAC noise in car cabins, this paper investigates the possibility of using car infotainment-system audio cues to moderate onboard sound quality perception. A laboratory experiment combining the factors of infotainment-system audio (ISA) cues, signal-to-noise ratios (SNRs), and airflow rates (AFRs) at different levels was performed in two university laboratories in Italy and Japan involving groups of local individuals. The results indicate that introducing ISA cues in car cabins fosters improvements in the perceived aesthetic dimension of sound quality, making it more functioning, natural, and pleasant. For the Italian group, adding ISA cues also moderated the loudness dimension by reducing noise perception. The moderating effects of ISA cues differed between the Italian and Japanese groups, depending on the AFR. All these effects were more evident at the SNR level of −4 dB when the ISA cues competed with existing background noise. Full article
Show Figures

Figure 1

21 pages, 19177 KiB  
Article
Numerical Simulation Study on the Response of Ship Engine Room Structure Under Fire Based on Thermo-Mechanical Coupling Model
by Yuechao Zhao, Zeya Miao, Shouye Wang and Dihao Ai
Fire 2024, 7(12), 480; https://doi.org/10.3390/fire7120480 - 17 Dec 2024
Cited by 1 | Viewed by 1346
Abstract
Ship structures may collapse or be severely deformed during a fire. To precisely assess the post-fire structural integrity of ships, in this study, a thermal–mechanical coupling data interface was created, employing a significant eddy simulation algorithm for fire dynamics and a technique to [...] Read more.
Ship structures may collapse or be severely deformed during a fire. To precisely assess the post-fire structural integrity of ships, in this study, a thermal–mechanical coupling data interface was created, employing a significant eddy simulation algorithm for fire dynamics and a technique to analyze the structural thermal–mechanical coupling reaction. PyroSim was utilized to build a fire scenario, exporting 3D data through the device’s own program, and then the ANSYS thermal–mechanical coupling model was employed to study the spatial temperature distribution under fire-induced conditions. Data from the three-dimensional spatial temperature field served as the boundary condition for the determination of the structural temperature burden. Building on this, an analysis was conducted on the structural response of the intricate two-story interior compartment under fire conditions. The results showed that the location of the fire source and the structural distribution of the mechanical equipment inside the cabin had a great influence on the temperature and combustion heat, followed by the ventilation conditions, while the temperature variations in the parallel dual fuel tanks were greatly influenced by the stack effect. By comparing the stress and strain of the two-layer cabin under normal and fire conditions, the damage and mechanisms associated with important positions in the cabin under fire conditions were revealed. Full article
(This article belongs to the Special Issue Fire Numerical Simulation, Second Volume)
Show Figures

Figure 1

Back to TopTop