Numerical Analysis of the Impact of Variable Borer Miner Operating Modes on the Microclimate in Potash Mine Working Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Object of Study
2.2. Experimental Measurement Methodology
2.3. Mathematical Model and Its Numerical Implementation
3. Results and Discussion
3.1. Model Validation
3.2. Comparison of Forcing and Exhaust Ventilation Systems
3.3. Unsteady Simulation Within the Dynamic Mesh Approach
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Liu, J.; Zhou, Q.; Huang, D. Machine learning algorithm selection for windage alteration fault diagnosis of mine ventilation system. Adv. Eng. Inform. 2022, 53, 101666. [Google Scholar] [CrossRef]
- Semin, M.; Kormshchikov, D. Application of artificial intelligence in mine ventilation: A brief review. Front. Artif. Intell. 2024, 7, 1402555. [Google Scholar] [CrossRef] [PubMed]
- Wallace, K.; Prosser, B.; Stinnette, J.D. The practice of mine ventilation engineering. Int. J. Min. Sci. Technol. 2015, 25, 165–169. [Google Scholar] [CrossRef]
- Semin, M.; Ivantsov, A.; Lyubimova, T.; Isaevich, A.; Sukhanov, A. Analyzing the impact of heat emissions from the borer miner on the efficiency of the exhaust ventilation system in a blind heading. Int. J. Heat Mass Transf. 2024, 235, 126183. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Applying computational fluid dynamics in research on ventilation safety during underground hard coal mining: A systematic literature review. Process. Saf. Environ. Prot. 2021, 151, 373–400. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Hekmat, M.H. Numerical and experimental investigation of air flow behavior and H2S gas emission through an inclined traversed tunnel. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–15. [Google Scholar] [CrossRef]
- Adjiski, V.; Mirakovski, D.; Despodov, Z.; Mijalkovski, S. Detemining optimal distance from outlet of auxiliary forcing ventilation system to development of heading in underground mines. J. Min. Environ. 2019, 10, 821–832. [Google Scholar]
- Obracaj, D.; Korzec, M.; Deszcz, P. Study on Methane Distribution in the Face Zone of the Fully Mechanized Roadway with Overlap Auxiliary Ventilation System. Energies 2021, 14, 6379. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Li, R.; Huang, Y.; Xu, Y.; Song, P. Increasing Oxygen Mass Fraction in Blind Headings of a Plateau Metal Mine by Oxygen Supply Duct Design: A CFD Modelling Approach. Math. Probl. Eng. 2020, 2020, 6379. [Google Scholar] [CrossRef]
- Yi, H.; Kim, M.; Lee, D.; Park, J. Applications of Computational Fluid Dynamics for Mine Ventilation in Mineral Development. Energies 2022, 15, 8405. [Google Scholar] [CrossRef]
- Branny, M.; Jaszczur, M.; Wodziak, W.; Szmyd, J. Experimental and numerical analysis of air flow in a dead-end channel. J. Phys. Conf. Ser. 2016, 745, 032045. [Google Scholar] [CrossRef]
- Kurnia, J.C.; Sasmito, A.P.; Mujumdar, A.S. CFD simulation of methane dispersion and innovative methane management in underground mining faces. Appl. Math. Model. 2014, 38, 3467–3484. [Google Scholar] [CrossRef]
- Salami, O.B.; Kumar, A.R.; Aamir, I.; Pushparaj, R.I.; Xu, G. Enhancing fire safety in underground mines: Ex-perimental and large eddy simulation of temperature attenuation, gas evolution, and bifurcation influence for improved emergency response. Process Saf. Environ. Prot. 2024, 183, 260–273. [Google Scholar] [CrossRef]
- Fernández-Alaiz, F.; Castañón, A.M.; Gómez-Fernández, F.; Bascompta, M. Mine Fire Behavior under Different Ventilation Conditions: Real-Scale Tests and CFD Modeling. Appl. Sci. 2020, 10, 3380. [Google Scholar] [CrossRef]
- Chung, D.; McKEON, B.J. Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 2010, 661, 341–364. [Google Scholar] [CrossRef]
- Roghanchi, P.; Kocsis, K.C. Improving the climatic conditions in development and production workings of hot underground mines by re-designing the auxiliary ventilation system: A case study. Int. J. Min. Miner. Eng. 2017, 8, 280–293. [Google Scholar] [CrossRef]
- Hargreaves, D.; Lowndes, I. The computational modeling of the ventilation flows within a rapid development drivage. Tunn. Undergr. Space Technol. 2006, 22, 150–160. [Google Scholar] [CrossRef]
- Isaevich, A.; Semin, M.; Levin, L.; Ivantsov, A.; Lyubimova, T. Study on the Dust Content in Dead-End Drifts in the Potash Mines for Various Ventilation Modes. Sustainability 2022, 14, 3030. [Google Scholar] [CrossRef]
- Xin, S.; Wang, W.; Zhang, N.; Zhang, C.; Yuan, S.; Li, H.; Yang, W. Comparative studies on control of thermal environment in development headings using force/exhaust overlap ventilation systems. J. Build. Eng. 2021, 38, 102227. [Google Scholar] [CrossRef]
- Huang, R.; Shen, X.; Wang, B.; Liao, X. Migration characteristics of CO under forced ventilation after excavation roadway blasting: A case study in a plateau mine. J. Clean. Prod. 2020, 267, 122094. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Analysis of the Impact of Auxiliary Ventilation Equipment on the Distribution and Concentration of Methane in the Tailgate. Energies 2018, 11, 3076. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, S.; Tu, Q.; Shi, G.; Zhu, Y. Study on the distribution characteristics of dust with different particle sizes under forced ventilation in a heading face. Powder Technol. 2022, 406, 117504. [Google Scholar] [CrossRef]
- Chang, P.; Xu, G.; Zhou, F.; Mullins, B.; Abishek, S.; Chalmers, D. Minimizing DPM pollution in an underground mine by optimizing auxiliary ventilation systems using CFD. Tunn. Undergr. Space Technol. 2019, 87, 112–121. [Google Scholar] [CrossRef]
- Xin, S.; Han, X.; Li, S.; Xiao, Y.; Yang, W. Application of Data Envelopment Analysis in the Ventilation and Cooling Efficiency Evaluation of Hot Development Headings. Processes 2022, 10, 1375. [Google Scholar] [CrossRef]
- Olkhovsky, D.; Zaitsev, A.; Bublik, S. Study on the influence of radiation heat transfer on microclimatic parameters in the blind heading of a deep potash mine. Int. J. Therm. Sci. 2024, 199, 108904. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Ren, T.; Wu, J.; Lin, H.; Shuang, H. Respirable dust pollution characteristics within an underground heading face driven with continuous miner—A CFD modelling approach. J. Clean. Prod. 2019, 217, 267–283. [Google Scholar] [CrossRef]
- Sahu, A.; Mishra, D.P. Coal dust monitoring and computational simulations of dust dispersion in continuous miner development heading through auxiliary ventilation systems. Curr. Sci. 2022, 122, 419–428. [Google Scholar] [CrossRef]
- Torno, S.; Toraño, J.; Ulecia, M.; Allende, C. Conventional and numerical models of blasting gas behaviour in auxiliary ventilation of mining headings. Tunn. Undergr. Space Technol. 2013, 34, 73–81. [Google Scholar] [CrossRef]
- Zaitsev, A.; Parshakov, O.; Semin, M. Heat Emissions from Mining Machinery: Implications for Microclimatic Conditions in Underground Workings. Mining 2024, 4, 1075–1092. [Google Scholar] [CrossRef]
- Chowdhury, I.A. State-of-the-Art CFD Simulation: A Review of Techniques, Validation Methods, and Application Scenarios. J. Recent Trends Mech. 2024, 9, 45–53. [Google Scholar] [CrossRef]
- Wu, R.; Zhu, Z.; Cao, G. Computational Fluid Dynamics Modeling of Rope-Guided Conveyances in Two Typical Kinds of Shaft Layouts. PLoS ONE 2015, 10, e0118268. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, H.; Ge, S.; Deng, C.; Fan, C.; Ma, G.; Li, W. Research on the Dust Diffusion and Pollution Behaviour of Dynamic Tunneling in Header Excavators Based on Dynamic Mesh Technology and Field Measurement. Energies 2022, 15, 8945. [Google Scholar] [CrossRef]
- Zhang, L.; Che, D. Turbulence Models for Fluid Flow and Heat Transfer Between Cross-Corrugated Plates. Numer. Heat Transfer Part A Appl. 2011, 60, 410–440. [Google Scholar] [CrossRef]
- Churchill, S.W. A Reinterpretation of the Turbulent Prandtl Number. Ind. Eng. Chem. Res. 2002, 41, 6393–6401. [Google Scholar] [CrossRef]
- Kays, W.M. Turbulent Prandtl number. Where are we? ASME J. Heat Transf. 1994, 116, 284–295. [Google Scholar] [CrossRef]
- Roy, S.; Pathak, U.; Sinha, K. Variable Turbulent Prandtl Number Model for Shock/Boundary-Layer Interaction. AIAA J. 2018, 56, 342–355. [Google Scholar] [CrossRef]
- Mrinal, K.R.; Siddique, H.; Samad, A. A Transient 3D CFD Model of a Progressive Cavity Pump. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. A transient 3D CFD model of a progressive cavity pump. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume 49873, p. V009T24A009. [Google Scholar]
- ANSYS Fluent Theory Guide, Release 18.0; Ansys. Inc.: Canonsburg, PA, USA, 2017.
- Zhou, H.; Zhong, K.; Jia, H.; Kang, Y. Analysis of the effects of dynamic mesh update method on simulating indoor airflow induced by moving objects. Build. Environ. 2022, 212, 108782. [Google Scholar] [CrossRef]
- Perestoronin, M.P.; Zaitsev, A.V.; Semin, M.A.; Borodavkin, D.A. Experimental study of transient thermal conditions in longwall faces. Gorn. Nauk. Tekhnologii (Min. Sci. Technol.) 2022, 7, 37–48. [Google Scholar] [CrossRef]
- Parmar, M.; Hayhurst, A. The heat transfer coefficient for a freely moving sphere in a bubbling fluidised bed. Chem. Eng. Sci. 2002, 57, 3485–3494. [Google Scholar] [CrossRef]
- Kwaśniowski, S. Problems of Heat Transfer Modelling in Cooling Systems of Earthmoving Machinery. In Mining Machines and Earth-Moving Equipment; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
Number of Cells | Average Air Velocity Near the BM Operator’s Cabin, m/s | Average Air Temperature Near the BM Operator’s Cabin, °C |
---|---|---|
2,892,830 | 1.304 | 39.46 |
3,230,783 | 1.321 | 39.45 |
3,717,122 | 1.300 | 39.44 |
Situation | MAE, % | RMSE, % |
---|---|---|
With shuttle car | 7 | 8 |
Without shuttle car | 6 | 2 |
Situation | Prt | Temperature, °C | |
---|---|---|---|
Duct | Cabin | ||
With shuttle car | 0.85 | Insul. | 39.9 |
0.85 | 38.8 | 40.0 | |
0.7 | 38.8 | 39.9 | |
Without shuttle car | 0.85 | Insul. | 38.9 |
0.85 | 38.8 | - | |
0.7 | 38.8 | 38.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levin, L.; Semin, M.; Maltsev, S.; Luzin, R.; Sukhanov, A. Numerical Analysis of the Impact of Variable Borer Miner Operating Modes on the Microclimate in Potash Mine Working Areas. Computation 2025, 13, 85. https://doi.org/10.3390/computation13040085
Levin L, Semin M, Maltsev S, Luzin R, Sukhanov A. Numerical Analysis of the Impact of Variable Borer Miner Operating Modes on the Microclimate in Potash Mine Working Areas. Computation. 2025; 13(4):85. https://doi.org/10.3390/computation13040085
Chicago/Turabian StyleLevin, Lev, Mikhail Semin, Stanislav Maltsev, Roman Luzin, and Andrey Sukhanov. 2025. "Numerical Analysis of the Impact of Variable Borer Miner Operating Modes on the Microclimate in Potash Mine Working Areas" Computation 13, no. 4: 85. https://doi.org/10.3390/computation13040085
APA StyleLevin, L., Semin, M., Maltsev, S., Luzin, R., & Sukhanov, A. (2025). Numerical Analysis of the Impact of Variable Borer Miner Operating Modes on the Microclimate in Potash Mine Working Areas. Computation, 13(4), 85. https://doi.org/10.3390/computation13040085