Fire Numerical Simulation, Second Volume

A special issue of Fire (ISSN 2571-6255).

Deadline for manuscript submissions: 24 September 2025 | Viewed by 588

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Engineering, China University of Geosciences, Wuhan, China
Interests: CFD simulation; fire; pyrolysis; biomass energy; FireFOAM
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, China
Interests: computational fluid dynamics; fire; combustion; heat and mass transfer
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Electric Power Research Institute, State Grid Anhui Electric Power Co., Ltd., 299 Ziyun Road, Economic and Technological Development Zone, Hefei 230601, China
Interests: electric fire; cable fire; fire safety of UHV converter station/substation; fire safety issues in energy utilization; fire numerical simulation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fire numerical simulation plays an important role in fire research. It takes advantage of the advances in mathematics, modeling and computing to capture the underlying physics of complex fire problems and predict fire behaviors at various scales. In addition to experiments, fire numerical simulation allows us to further understand fire and to prevent and contain it. Recently, with the development of the numerical simulation method and computing power, fire numerical simulation has faced new opportunities and challenges.

This Special Issue aims to present the recent state-of-art of fire numerical simulation, the development of fire sub-models and new physics findings based on fire numerical simulations.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Current development and application of fire numerical simulation tools;
  • Newly developed fire sub-models;
  • Physics findings based on fire numerical simulation;
  • Case studies with fire numerical simulation to reproduce the real fire scenarios;
  • Evacuation and human behavior numerical simulation in fires;
  • Fire suppression numerical simulation;
  • Numerical simulation regarding fire resistance of structures;
  • Wildland fire-induced geological disaster numerical simulation.

We look forward to receiving your contributions.

Prof. Dr. Yanming Ding
Dr. Kazui Fukumoto
Dr. Jiaqing Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fire is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fire simulation
  • fire sub-models
  • fire spread
  • smoke spread
  • fire suppression
  • FireFOAM
  • FDS
  • CFAST

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3709 KiB  
Article
Simulations on Evacuation Strategy and Evacuation Process of the Subway Train Under the Fire
by Xingji Wang, Bin Liu, Weilian Ma, Yuehai Feng, Qiang Li and Ting Sun
Fire 2024, 7(12), 464; https://doi.org/10.3390/fire7120464 - 6 Dec 2024
Viewed by 446
Abstract
This study focuses on the safe evacuation strategy and evacuation process in the subway train under the fires. The subway station evacuation mode should be adopted if the power system of a subway train is normal on fire. While, the tunnel evacuation mode [...] Read more.
This study focuses on the safe evacuation strategy and evacuation process in the subway train under the fires. The subway station evacuation mode should be adopted if the power system of a subway train is normal on fire. While, the tunnel evacuation mode should be adopted if the power system of the train fails because of the effects of fire. Under the tunnel evacuation mode, the direction of tunnel smoke should be opposite to that of most passengers, and passengers should be evacuated toward the fresh wind. By using the numerical simulation software Pathfinder and PyroSim, the passenger evacuation time under different conditions is calculated, and the safety of the evacuation process is evaluated. The results show that the evacuation time of the station evacuation mode is obviously shorter than that of the tunnel evacuation mode. With the same conditions, the evacuation time of the tunnel evacuation mode is 2193 s, which is about four times as much as the evacuation time of the station evacuation mode (526 s). The total evacuation time increases with the total number of passengers and the proportion of older people and children. Under an oil pool fire, which is an extreme fire condition, the fire environment inside the train may reach a level threatening the passengers’ safety before the evacuation is complete, even before the door opens; therefore, special attention should be paid to the safety issues in stage from the fire begins to the evacuation complete. Full article
(This article belongs to the Special Issue Fire Numerical Simulation, Second Volume)
Show Figures

Figure 1

Back to TopTop