Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = butylamine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 18158 KiB  
Article
Novel Terpineol-Based Silver Nanoparticle Ink with High Stability for Inkjet Printing
by Aleksandrs Novikovs, Tamara Tsebriienko, Annamarija Trausa, Anete Berzina, George Chikvaidze, Dmitry Bocharov, Mohammad Yusuf Mulla, Juris Purans and Boris Polyakov
Nanomaterials 2025, 15(13), 955; https://doi.org/10.3390/nano15130955 - 20 Jun 2025
Viewed by 493
Abstract
This study presents a novel silver nanoparticle ink formulation designed for inkjet printing applications using terpineol as an eco-friendly solvent and butylamine as a stabilizer to ensure stability, high conductivity, and compatibility with inkjet technology. Silver nanoparticles were synthesized using a modified one-pot [...] Read more.
This study presents a novel silver nanoparticle ink formulation designed for inkjet printing applications using terpineol as an eco-friendly solvent and butylamine as a stabilizer to ensure stability, high conductivity, and compatibility with inkjet technology. Silver nanoparticles were synthesized using a modified one-pot method in the presence of highly effective stabilizers and surface modifiers such as oleic acid and oleylamine, resulting in uniform particles of less than 10 nm in size, which were then dispersed in a mixture of terpineol and butylamine. The resulting ink demonstrated exceptional stability over 85 days, maintaining optimal rheological properties for inkjet printing. The ink exhibited a perfect jetting performance. We were able to obtain silver conductive patterns reaching 81% of bulk silver conductivity. These results highlight the ink’s promise for scalable, sustainable manufacturing, combining environmental advantages with high-performance functionality. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

15 pages, 8207 KiB  
Article
The Effect of Tertiary Amines as Catalysts on the Ring-Opening Polymerization of Benzoxazines
by Fanghui Liu, Ximeng Wu, Kun Chen, Junbo Yao and Qichao Ran
Polymers 2025, 17(11), 1431; https://doi.org/10.3390/polym17111431 - 22 May 2025
Viewed by 624
Abstract
Benzoxazines are a kind of high-performance thermosetting resin that can undergo ring-opening polymerization to generate cross-linking structures. Here, two benzoxazine monomers, bisphenol A/aniline type (BA-a) and bisphenol A/tert-butylamine type (BA-tb), were synthesized and mixed with three tertiary amine catalysts like 2-methylimidazole (2MI), 1,2-dimethylimidazole [...] Read more.
Benzoxazines are a kind of high-performance thermosetting resin that can undergo ring-opening polymerization to generate cross-linking structures. Here, two benzoxazine monomers, bisphenol A/aniline type (BA-a) and bisphenol A/tert-butylamine type (BA-tb), were synthesized and mixed with three tertiary amine catalysts like 2-methylimidazole (2MI), 1,2-dimethylimidazole (12MI), 4-dimethylaminopyridine (DMAP). Differential scanning calorimetry (DSC) was performed to study the curing behaviors and the curing kinetics of two benzoxazine/catalyst systems. The results indicated that all amines had a catalytic effect on the polymerization of both benzoxazines, and the BA-a/catalyst systems showed relatively higher activity. In addition, Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectra were procured to analyze structural changes in the benzoxazine/catalyst systems during the curing process. The presence of the catalysts promoted the progress of the ring-opening reactions and the formation of the phenolic units in the cross-linking structures, and these evolutions were more obvious for the BA-a/catalyst system than the BA-tb/catalyst system. Furthermore, a thermogravimetric analysis (TGA) was conducted to analyze the thermal stability of the cured systems. Finally, possible curing reaction mechanisms were proposed for these benzoxazine/amine systems. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

11 pages, 2048 KiB  
Article
Amino-Modified ZIF-90 for Effective Adsorption of Au(III) in Environmental Water
by Na Zhou, Xueli Wu, Shaoxia Wang, Jianfei Qu, Yang Tan, Chuanlei Luan, Xiuli Yin, Xuran Wu and Xuming Zhuang
Molecules 2025, 30(8), 1826; https://doi.org/10.3390/molecules30081826 - 18 Apr 2025
Viewed by 410
Abstract
In this work, amino-modified ZIF-90 (NH2-ZIF-90) was prepared by using butylamine as a modifier, and its effectiveness in adsorbing Au(III) from environmental samples was investigated. The morphology and structure of NH2-ZIF-90 were analyzed via SEM, XRD, FT-IR, and XPS. [...] Read more.
In this work, amino-modified ZIF-90 (NH2-ZIF-90) was prepared by using butylamine as a modifier, and its effectiveness in adsorbing Au(III) from environmental samples was investigated. The morphology and structure of NH2-ZIF-90 were analyzed via SEM, XRD, FT-IR, and XPS. Optimal adsorption occurred after 12 h of shaking in a pH = 5 aqueous solution with 2 mg mL−1 NH2-ZIF-90. The adsorption kinetics conformed to a pseudo-second-order model, and the equilibrium data fit the Freundlich isotherm model well. Finally, NH2-ZIF-90 was successfully used in lake water and tap water samples for Au(III) adsorption, with recovery rates ranging from 81.0% to 93.3%. This study presents a novel approach for addressing Au(III) adsorption challenges. Full article
Show Figures

Figure 1

15 pages, 5488 KiB  
Article
Regulation of the Properties of the Hierarchical Porous Structure of Alumophosphate Molecular Sieves AEL by Reaction Gels Prepared with Different Templates
by Arthur R. Zabirov, Dmitry V. Serebrennikov, Rezeda Z. Kuvatova, Nadezhda A. Filippova, Rufina A. Zilberg, Olga S. Travkina and Marat R. Agliullin
Gels 2025, 11(4), 297; https://doi.org/10.3390/gels11040297 - 17 Apr 2025
Viewed by 413
Abstract
Microporous alumophosphate molecular sieves AlPO4-n are promising materials for use in catalysis, gas adsorption, and gas separation. However, AlPO4-n faces problems such as diffusion limitations that lead to a deterioration in mass transfer. To solve this problem, we studied [...] Read more.
Microporous alumophosphate molecular sieves AlPO4-n are promising materials for use in catalysis, gas adsorption, and gas separation. However, AlPO4-n faces problems such as diffusion limitations that lead to a deterioration in mass transfer. To solve this problem, we studied the crystallization of alumophosphate reaction gels prepared using aluminum isopropoxide and various secondary amines as templates, including diethyl-, di-n-propyl-, diisopropyl-, and di-n-butylamines. Using X-ray diffraction, Ramon spectroscopy, and STEM methods, it has been demonstrated that the reaction gels prepared using DPA, DIPA, and DBA are amorphous xerogels consisting of 5–10 nm nanoparticles. The reaction gel prepared with DEA is a combination of a layered phase and an amorphous aluminophosphate. It has been shown that the use of aluminum iso-propoxide allows the production of AlPO4-11 in the form of 2–4 µm aggregates consisting of primary AlPO4-11 nanocrystals. The template was found to exert a significant effect upon both the characteristics of the porous structure and the size of AlPO-11 nanocrystals. A template is proposed for the synthesis of hierarchical AlPO4-11 with a maximum volume of mesopores. The morphology and crystal size of AlPO4-11 were found to strongly influence its adsorption properties in the adsorption of octane. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Graphical abstract

15 pages, 4294 KiB  
Article
Synthesis and Reactivity of Oligo(ethylene glycol)-Tethered Morita–Baylis–Hillman Dimers in the Formation of Macrocyclic Structures Showing Remarkable Cytotoxicity
by Marco Paolino, Mario Saletti, Jacopo Venditti, Arianna Zacchei, Alessandro Donati, Claudia Bonechi, Germano Giuliani, Stefania Lamponi and Andrea Cappelli
Pharmaceuticals 2025, 18(4), 473; https://doi.org/10.3390/ph18040473 - 27 Mar 2025
Viewed by 512
Abstract
Background/Objectives: Crown ethers have received increasing interest owing to their ability to form stable complexes with cations. This molecular feature has been successfully exploited in the development of biologically relevant ionophores. Methods: In order to obtain innovative crown ethers derivatives, a [...] Read more.
Background/Objectives: Crown ethers have received increasing interest owing to their ability to form stable complexes with cations. This molecular feature has been successfully exploited in the development of biologically relevant ionophores. Methods: In order to obtain innovative crown ethers derivatives, a Morita–Baylis–Hillman adduct (MBHA) acetate (4) bearing a phenylacetylene moiety was dimerized via the click-chemistry CuAAC reaction with oligo(ethylene glycol) diazide derivatives to build-up a small series of dimeric MBHA derivatives (5a-d). These dimeric MBHA derivatives were reacted with n-butylamine to afford tunable macrocyclic crown ether-paracyclophane hybrid architectures (6a-d). Results: Compounds (E,Z)-6a, (E,E)-6a, 6b-d showed, in human breast cancer MDA-MB-231 and human melanoma A375 cells, IC50 values comparable with those of reference anticancer agent Doxorubicin. Conclusions: This exploration approach provides original new macrocyclic architectures potentially useful as anticancer agents. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

19 pages, 8747 KiB  
Article
Stereoview Images of Hydrogen-Bonded Quinoxalines with a Helical Axis; Pyrimidines and a Pyridazine That Form Extended Tapes
by Michael John Plater and William T. A. Harrison
Int. J. Mol. Sci. 2024, 25(22), 12329; https://doi.org/10.3390/ijms252212329 - 17 Nov 2024
Viewed by 916
Abstract
Different supramolecular motifs are formed by the crystallisation of amino-substituted derivatives of quinoxaline, pyrimidine and pyridazine. These were made from the corresponding mono- or dichlorinated heterocycles by a nucleophilic displacement reaction. The pyridine-type nitrogen atoms activate the chlorine atoms because they can stabilise [...] Read more.
Different supramolecular motifs are formed by the crystallisation of amino-substituted derivatives of quinoxaline, pyrimidine and pyridazine. These were made from the corresponding mono- or dichlorinated heterocycles by a nucleophilic displacement reaction. The pyridine-type nitrogen atoms activate the chlorine atoms because they can stabilise a negative charge, which forms when the amine attacks the ring. One amino group can be attached under mild conditions in hot ethanol or acetonitrile, but the first then deactivates the ring so the second requires more forceful conditions using a pressure vessel at 150 °C. Butylamine is frequently used because it reduces the polarity of the product, making it easier to purify and isolate. The extended structure of the quinoxaline derivatives 1618 show a common ‘pincer’ hydrogen-bond motif, with a quinoxaline nitrogen atom accepting two N–H···N hydrogen bonds, giving a spiral or helical axis. The chain symmetries are 41, 21 and 31, respectively, depending on the substituents. A stereoview of each is shown. The pyrimidine derivatives 19, 12, 20, 14 and 21 form hydrogen-bonded tapes and compound 20 forms inversion dimers. Full article
Show Figures

Graphical abstract

20 pages, 973 KiB  
Article
Study of the Acidic, Basic, and Thermal Degradation Kinetics of Three Antihypertensive Drugs—Individually and in Combination
by Nebojša Mandić-Kovacević, Irena Kasagić-Vujanović, Biljana Gatarić, Ranko Škrbić and Ana Popović Bijelić
Pharmaceutics 2024, 16(11), 1410; https://doi.org/10.3390/pharmaceutics16111410 - 2 Nov 2024
Cited by 3 | Viewed by 2304
Abstract
Background/Objectives: The importance of fixed-dose combinations (FDCs) for the treatment of hypertension is well established. However, from a stability perspective, FDCs present a challenge since the degradation of one active pharmaceutical ingredient (API) can be affected by the presence of another API. The [...] Read more.
Background/Objectives: The importance of fixed-dose combinations (FDCs) for the treatment of hypertension is well established. However, from a stability perspective, FDCs present a challenge since the degradation of one active pharmaceutical ingredient (API) can be affected by the presence of another API. The aim of this study was to compare the degradation behaviors and evaluate the degradation kinetics of three antihypertensive drugs, perindopril tert-butylamine (PER), amlodipine besylate (AML), and indapamide (IND). Methods: The degradation processes were studied using the previously developed reverse phase high-performance liquid chromatographic (RP-HPLC) method after exposing each drug individually, as well as the combinations of two/three drugs, to different stress factors, such as light, oxidation, acidic, basic, or neutral pH values at different temperatures. Results: The results show that PER is most unstable under basic conditions and that AML displays a negative, while IND displays a positive effect, on PER stability when combined. AML is most affected by basic conditions and oxidation, and its stability is affected by both drugs positively; IND undergoes extreme photolysis, which is positively affected by AML but negatively by PER. Conclusions: Great care must be taken when formulating FDCs with these three drugs, as well as solutions or oral suspensions adjusted for geriatric or pediatric populations, since the stability of all three drugs is greatly affected by pH conditions, as well as light or oxidation factors and their interactions. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

13 pages, 1773 KiB  
Article
Emerging Thermosensitive Probes Based on Triamino-Phenazinium Dyes
by Tatiana Munteanu, Frédéric Brunel, Michel Camplo and Olivier Siri
Molecules 2024, 29(20), 4830; https://doi.org/10.3390/molecules29204830 - 12 Oct 2024
Viewed by 907
Abstract
Temperature is an essential physical characteristic that influences all biological processes. Building on previous research on dialkylamino-functionalized rhodamine-based thermo-sensors, we investigate herein the thermosensitive properties of triamino-phenazinium dyes. Through a simple five-step synthetic route, we synthesized amino-phenazinium chromophores 6 and 7, featuring [...] Read more.
Temperature is an essential physical characteristic that influences all biological processes. Building on previous research on dialkylamino-functionalized rhodamine-based thermo-sensors, we investigate herein the thermosensitive properties of triamino-phenazinium dyes. Through a simple five-step synthetic route, we synthesized amino-phenazinium chromophores 6 and 7, featuring diethylamine substituents at different positions. A comparative analysis of optical properties and thermosensitivity was conducted on these compounds and an isomer, 5, in which butylamine moiety replaced the diethylamine group. The different emissive behaviors of the three fluorophores emphasize that not only the chemical nature but also the specific position of the alkylamine substituent play fundamental roles in the synthesis of highly emissive thermo-probes. Full article
(This article belongs to the Special Issue Advances in Main Group Chemistry)
Show Figures

Graphical abstract

8 pages, 1467 KiB  
Short Note
2-(Butylamino)-6-chloro-4-[3-(7-chloro-4-quinolylamino)propylamino]-1,3,5-triazine
by Zimo Ren, Yuzhu Guo, Yang Xiao, Alessandra Gianoncelli, Paolo Coghi and Giovanni Ribaudo
Molbank 2024, 2024(4), M1895; https://doi.org/10.3390/M1895 - 8 Oct 2024
Viewed by 1177
Abstract
We herein report the synthesis of a 7-chloro-aminoquinoline triazine conjugate. The s-triazine library was generated by stepwise nucleophilic substitution of cyanuric chloride with butylamine. The structure of the compound was comprehensively determined using various analytical techniques, including proton nuclear magnetic resonance (1 [...] Read more.
We herein report the synthesis of a 7-chloro-aminoquinoline triazine conjugate. The s-triazine library was generated by stepwise nucleophilic substitution of cyanuric chloride with butylamine. The structure of the compound was comprehensively determined using various analytical techniques, including proton nuclear magnetic resonance (1H NMR), carbon-13 nuclear magnetic resonance (13C NMR), heteronuclear single quantum coherence (HSQC), and Distortionless Enhancement by Polarization Transfer (DEPT-135) experiments. Additionally, ultraviolet (UV) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and high-resolution mass spectrometry (HRMS) were employed for full characterization. Preliminary studies explored the potential interaction of the molecule with dihydrofolate reductase (DHFR) using molecular modeling. Furthermore, its drug-likeness was assessed by predicting relevant pharmacokinetic properties. Full article
Show Figures

Figure 1

6 pages, 1319 KiB  
Short Note
2-Methylpropan-2-ammonium [(3R,5R)-7-[(1S,2S,6S,8S,8aR)-6-hydroxy-2-methyl-8-[(2S)-2-methylbutanoyl]oxy-1,2,6,7,8,8a-hexahydronaphthalen-1-yl]-3,5-heptanoate
by Ioana-Georgeta Grosu, Alexandru Turza, Xenia Filip and Maria-Olimpia Miclaus
Molbank 2024, 2024(3), M1885; https://doi.org/10.3390/M1885 - 24 Sep 2024
Viewed by 884
Abstract
Pravastatin is a popular statin agent with applications in the treatment of cardiovascular diseases for patients with an abnormal lipid panel. The starting form of pravastatin is amorphous and following recrystallization, it becomes a crystalline solid with tert-butylamine salt molecules embedded within the [...] Read more.
Pravastatin is a popular statin agent with applications in the treatment of cardiovascular diseases for patients with an abnormal lipid panel. The starting form of pravastatin is amorphous and following recrystallization, it becomes a crystalline solid with tert-butylamine salt molecules embedded within the lattice. Its molecular and crystal structure were elucidated based on single-crystal X-ray diffraction and characterized by ss-NMR. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

15 pages, 2241 KiB  
Article
One-Pot Synthesis of Acidic Mesoporous Activated Carbon Obtained from Yerba Mate Twigs as Suitable Catalyst for the Production of Levulinic Ester Biofuel Additives
by John J. Alvear-Daza, Alexis Sosa, Diego M. Ruiz, Gustavo A. Pasquale, Julián A. Rengifo-Herrera, Gustavo P. Romanelli and Luis R. Pizzio
Catalysts 2024, 14(8), 522; https://doi.org/10.3390/catal14080522 - 13 Aug 2024
Cited by 3 | Viewed by 1543
Abstract
A series of activated carbons (YMBC) obtained from yerba mate twig residue (YMT) were prepared by chemical (H3PO4) and thermal activation. Five materials were synthesized, varying the carbonization temperature (400–600 °C under N2 atmosphere) and H3PO [...] Read more.
A series of activated carbons (YMBC) obtained from yerba mate twig residue (YMT) were prepared by chemical (H3PO4) and thermal activation. Five materials were synthesized, varying the carbonization temperature (400–600 °C under N2 atmosphere) and H3PO4:YMT ratio (60–80 wt%). They were physicochemically and texturally characterized by SEM-EDX, BET, FT-IR, and 31P MAS-NMR. Potentiometric titration with the n-butylamine technique was used to evaluate their acidic properties. The materials exhibited a high specific surface area (572 m2 g−1 < SBET < 1031 m2 g−1) and mesoporosity (67% < Smeso/SBET < 93%). The results showed that the acid strength and the number of acid sites increased with the H3PO4:YMT ratio and decreased with the calcination temperature increment. The FT-IR and 31P characterization revealed the presence of Hn+2PnO3n+1 species firmly (via P-O-C linkages) and loosely attached (by electrostatic interaction). The latter were successfully removed by refluxing the material in water or n-propanol. The optimal reaction conditions were applied to the synthesis of other levulinic acid esters using YMBC-500-70NP as a catalyst. Furthermore, the effective separation of the product combined with the use of a recyclable catalyst resulted in a clean and environmentally friendly strategy for the synthesis of alkyl levulinates, bioproducts of relevance to the biorefinery industry, which can be applied as fragrances, flavoring agents, as well as fuel additives. Full article
(This article belongs to the Special Issue Catalytic Conversion of Biomass to Chemicals)
Show Figures

Graphical abstract

34 pages, 7952 KiB  
Article
MgO Modified by X2, HX, or Alkyl Halide (X = Cl, Br, or I) Catalytic Systems and Their Activity in Chemoselective Transfer Hydrogenation of Acrolein into Allyl Alcohol
by Marek Gliński, Urszula Ulkowska, Zbigniew Kaszkur, Dariusz Łomot and Piotr Winiarek
Molecules 2024, 29(13), 3180; https://doi.org/10.3390/molecules29133180 - 3 Jul 2024
Viewed by 1833
Abstract
A new type of catalyst containing magnesium oxide modified with various modifiers ranging from bromine and iodine, to interhalogen compounds, hydrohalogenic acids, and alkyl halides have been prepared using chemical vapor deposition (CVD) and wet impregnation methods. The obtained systems were characterized using [...] Read more.
A new type of catalyst containing magnesium oxide modified with various modifiers ranging from bromine and iodine, to interhalogen compounds, hydrohalogenic acids, and alkyl halides have been prepared using chemical vapor deposition (CVD) and wet impregnation methods. The obtained systems were characterized using a number of methods: determination of the concentration of X ions, surface area determination, powder X-ray diffraction (PXRD), surface acid–base strength measurements, TPD of probe molecules (acetonitrile, pivalonitrile, triethylamine, and n-butylamine), TPD-MS of reaction products of methyl iodide with MgO, and Fourier transform infrared spectroscopy (FTIR). The catalysts’ activity and chemoselectivity during transfer hydrogenation from ethanol to acrolein to allyl alcohol was measured. A significant increase in the activity of modified MgO (up to 80% conversion) in the transfer hydrogenation of acrolein was found, while maintaining high chemoselectivity (>90%) to allyl alcohol. As a general conclusion, it was shown that the modification of MgO results in the suppression of strong basic sites of the oxide, with a simultaneous appearance of Brønsted acidic sites on its surface. Independently, extensive research on the reaction progress of thirty alkyl halides with MgO was also performed in order to determine its ability to neutralize chlorinated wastes. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

17 pages, 4379 KiB  
Article
Partially Bio-Based Benzoxazine Monomers Derived from Thymol: Photoluminescent Properties, Polymerization Characteristics, Hydrophobic Coating Investigations, and Anticorrosion Studies
by Arunthip Suesuwan, Natapol Suetrong, Sila Yaemphutchong, Inthikan Tiewlamsam, Kantapat Chansaenpak, Suttipong Wannapaiboon, Nutthawat Chuanopparat, Ladda Srathongsian, Pongsakorn Kanjanaboos, Nalinthip Chanthaset and Worawat Wattanathana
Polymers 2024, 16(13), 1767; https://doi.org/10.3390/polym16131767 - 21 Jun 2024
Cited by 6 | Viewed by 2957
Abstract
In this work, four thymol-based benzoxazines were synthesized using four primary amines with different chain lengths, namely methylamine, ethylamine, 1-propylamine, and 1-butylamine, which are then named T-m, T-e, T-p, and T-b, respectively. The optical properties of the synthesized thymol-based benzoxazines were examined via [...] Read more.
In this work, four thymol-based benzoxazines were synthesized using four primary amines with different chain lengths, namely methylamine, ethylamine, 1-propylamine, and 1-butylamine, which are then named T-m, T-e, T-p, and T-b, respectively. The optical properties of the synthesized thymol-based benzoxazines were examined via the photoluminescent study of their solutions in acetone. The results show that all the prepared benzoxazines emitted blue light with the maximum wavelengths from 425 to 450 nm when irradiated by the excitation wavelengths from 275 to 315 nm. The maximum excitation wavelengths are found to be 275 nm. The polymerization of the thymol-based benzoxazines is triggered by heat treatments with different conditions (160, 180, and 200 °C for 1 h). According to the FTIR results, the heat-curing process introduces a presence of the OH peak, of which intensity increases as the curing temperature increases. Thermal decompositions of thymol-based benzoxazines regarding TGA analyses reveal the enhancement of thermal stability of the benzoxazines with respect to the N-substituent chain length, as significantly observed the change in the first thermal decomposition at temperature ranged from 253 to 260 °C. Synthesized benzoxazine derivatives are further employed to coat the substrate, e.g., the glass slides. The investigation of the water contact angle shows that the coating of the benzoxazines onto the surface improves the hydrophobicity of the substrate, resulting in the enlargement of the contact angle from 25.5° to 93.3°. Moreover, the anticorrosion performance of the polybenzoxazine coatings is examined using potentiodynamic polarization techniques. The results illustrate the anticorrosion efficiency of the thymol-based polybenzoxazine up to 99.99%. Both hydrophobic and electrochemical studies suggest the feasibility for employing benzoxazines in anticorrosion coating applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

23 pages, 7983 KiB  
Article
Breaking the Equilibrium and Improving the Yield of Schiff Base Reactions by Pervaporation: Application to a Reaction Involving n-butylamine and Benzaldehyde
by Rana Salem Al Khulaifi, Mohammed Mousa AlShehri, Inas Al-Qadsy, Mona A. Al Jufareen, Waseem Sharaf Saeed, Ahmed Yacine Badjah-Hadj-Ahmed and Taieb Aouak
Separations 2023, 10(12), 602; https://doi.org/10.3390/separations10120602 - 18 Dec 2023
Viewed by 4111
Abstract
A comparative study of a Schiff base reaction involving benzaldehyde and n-butylamine was carried out to improve the yield of the resulting imine. This reaction was carried out at different temperatures without and with the elimination of the water produced during the [...] Read more.
A comparative study of a Schiff base reaction involving benzaldehyde and n-butylamine was carried out to improve the yield of the resulting imine. This reaction was carried out at different temperatures without and with the elimination of the water produced during the process by the pervaporation (PV) technique using a typical cylindrical cell. To reach this goal, different dense membranes made of crosslinked poly(vinyl alcohol) with different oxalic acid (crosslinker) contents were prepared by the solvent casting method. Different parameters influencing the performance of the membrane in the separation process including swellability, diffusivity, crosslinking density, and thermal properties were investigated. The total and partial cumulative transmembranar fluxes as well as the separation factor were studied and the separation process was monitored by HPLC analysis. The n-butyl-1-phenylmethanimine produced was characterized by FTIR and 1HNMR analyses. The results obtained were a clear improvement in the yield of the reaction. For example, the yield obtained from the Schiff base reaction occurring without assistance by PV varied from 58 to 84 wt% when the temperature changed from 5 to 45 °C. On the other hand, when the PV process was used to eliminate water from this reaction mixture, the yield went from 90.4 to 98.6% by weight in this same temperature order. The cumulative total and partial fluxes significantly decreased with time. On the other hand, the separation factor reached a maximum at about one hour at 5, 15, and 45 °C. At 25 °C, the maximum total flux was reached at about 2 h of the PV process. The best selectivity of the PVA-0.5 membrane with regard to water was obtained at 15 °C. It was also revealed from the results obtained that the cumulative total and partial flux decreased rapidly with time and the separation factor reached a maximum at one hour into the PV process, in which 1.51 × 104 was reached at 15 °C, 6.25 × 103 and 3.50 × 103 at one hour of the separation process, and 10.23 × 103 at 25 °C at 2 h of the water removal by PV. Full article
Show Figures

Figure 1

13 pages, 2614 KiB  
Article
Effect of a Composite Alginate/Grape Pomace Extract Packaging Material for Improving Meat Storage
by Antonella Maria Aresta, Nicoletta De Vietro, Jennifer Gubitosa, Vito Rizzi, Ilaria De Pasquale, Paola Fini, Pinalysa Cosma, Maria Lucia Curri and Carlo Zambonin
Int. J. Mol. Sci. 2023, 24(21), 15958; https://doi.org/10.3390/ijms242115958 - 3 Nov 2023
Cited by 5 | Viewed by 1755
Abstract
The development of food packaging materials that reduce the production of plastic, preserving at the same time the quality of food, is a topic of great interest today for the scientific community. Therefore, this article aims to report the effectiveness of an eco-friendly [...] Read more.
The development of food packaging materials that reduce the production of plastic, preserving at the same time the quality of food, is a topic of great interest today for the scientific community. Therefore, this article aims to report the effectiveness of an eco-friendly packaging material based on alginic acid and grape pomace extract from Vitis vinifera L. (winemaking by-products) for storing red meat in a domestic refrigerator. Specifically, biogenic amines are considered “sentinels” of the putrefactive processes, and their presence was thus monitored. For this purpose, an experimental analytical protocol based on the use of solid-phase microextraction coupled with gas chromatography–mass spectrometry was developed during this work for the determination of six biogenic amines (butylamine, cadaverine, isobutylamine, isopentylamine, putrescine, and tyramine). Moreover, by combining the analytical results with those of pH and weight loss measurements, differential scanning calorimetry, and microbiological analysis, it was proved that the studied materials could be proposed as an alternative packaging material for storing foods of animal origin, thus lowering the environmental impact according to sustainability principles. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

Back to TopTop