2-(Butylamino)-6-chloro-4-[3-(7-chloro-4-quinolylamino)propylamino]-1,3,5-triazine
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of N1-(7-Chloroquinolin-4-yl)Propane-1,3-Diamine (2)
3.1.2. Synthesis of N-Butyl-4,6-Dichloro-1,3,5-Triazin-2-Amine Diamine (4)
3.1.3. Synthesis of 2-(Butylamino)-6-Chloro-4-[3-(7-Chloro-4-Quinolylamino)Propylamino]-1,3,5-Triazine (5)
3.2. Computational Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- World Malaria Report 2023. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (accessed on 27 August 2023).
- Roux, A.T.; Maharaj, L.; Oyegoke, O.; Akoniyon, O.P.; Adeleke, M.A.; Maharaj, R.; Okpeku, M. Chloroquine and Sulfadoxine–Pyrimethamine Resistance in Sub-Saharan Africa—A Review. Front. Genet. 2021, 12, 668574. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Gao, B.; Amaratunga, C.; Dhorda, M.; Tran, T.N.-A.; White, N.J.; Dondorp, A.M.; Boni, M.F.; Aguas, R. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat. Commun. 2023, 14, 4568. [Google Scholar] [CrossRef] [PubMed]
- Siqueira-Neto, J.L.; Wicht, K.J.; Chibale, K.; Burrows, J.N.; Fidock, D.A.; Winzeler, E.A. Antimalarial drug discovery: Progress and approaches. Nat. Rev. Drug Discov. 2023, 22, 807–826. [Google Scholar] [CrossRef] [PubMed]
- Prasad Raiguru, B.; Panda, J.; Mohapatra, S.; Nayak, S. Recent developments in the synthesis of hybrid antimalarial drug discovery. Bioorg. Chem. 2023, 139, 106706. [Google Scholar] [CrossRef]
- Hu, Y.-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.-S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem. 2017, 139, 22–47. [Google Scholar] [CrossRef]
- Rastelli, G.; Sirawaraporn, W.; Sompornpisut, P.; Vilaivan, T.; Kamchonwongpaisan, S.; Quarrell, R.; Lowe, G.; Thebtaranonth, Y.; Yuthavong, Y. Interaction of pyrimethamine, cycloguanil, WR99210 and their analogues with Plasmodium falciparum dihydrofolate reductase: Structural basis of antifolate resistance. Bioorg. Med. Chem. 2000, 8, 1117–1128. [Google Scholar] [CrossRef]
- Arshad, M.; Bhat, A.R.; Hoi, K.K.; Choi, I.; Athar, F. Synthesis, characterization and antibacterial screening of some novel 1,2,4-triazine derivatives. Chin. Chem. Lett. 2017, 28, 1559–1565. [Google Scholar] [CrossRef]
- Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem. 2017, 142, 328–375. [Google Scholar] [CrossRef]
- Melato, S.; Prosperi, D.; Coghi, P.; Basilico, N.; Monti, D. A Combinatorial Approach to 2,4,6-Trisubstituted Triazines with Potent Antimalarial Activity: Combining Conventional Synthesis and Microwave-Assistance. ChemMedChem 2008, 3, 873–876. [Google Scholar] [CrossRef]
- Manohar, S.; Khan, S.I.; Rawat, D.S. Synthesis, antimalarial activity and cytotoxicity of 4-aminoquinoline-triazine conjugates. Bioorg. Med. Chem. Lett. 2010, 20, 322–325. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; Dong, C.-E.; Li, R.; Zhang, X.-Q.; Wang, W.; Zhang, X.-R.; Liu, W.-W.; Shi, D.-H. Design, synthesis and biological evaluation of quinoline-1,2,4-triazine hybrids as antimalarial agents. J. Mol. Struct. 2023, 1271, 133982. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Frade, R.F.; Albuquerque, I.S.; Perry, M.J.; Gut, J.; Machado, M.; Rosenthal, P.J.; Prudêncio, M.; Afonso, C.A.; Moreira, R. Targeting the erythrocytic and liver stages of malaria parasites with s-triazine-based hybrids. ChemMedChem 2015, 10, 883–890. [Google Scholar] [CrossRef]
- Egan, T.J.; Marques, H.M. The role of haem in the activity of chloroquine and related antimalarial drugs. Coord. Chem. Rev. 1999, 190–192, 493–517. [Google Scholar] [CrossRef]
- Biot, C.; Daher, W.; Ndiaye, C.M.; Melnyk, P.; Pradines, B.; Chavain, N.; Pellet, A.; Fraisse, L.; Pelinski, L.; Jarry, C.; et al. Probing the role of the covalent linkage of ferrocene into a chloroquine template. J. Med. Chem. 2006, 49, 4707–4714. [Google Scholar] [CrossRef]
- Smit, F.J.; N’Da, D.D. Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorg. Med. Chem. 2014, 22, 1128–1138. [Google Scholar] [CrossRef]
- Yuvaniyama, J.; Chitnumsub, P.; Kamchonwongpaisan, S.; Vanichtanankul, J.; Sirawaraporn, W.; Taylor, P.; Walkinshaw, M.D.; Yuthavong, Y. Insights into antifolate resistance from malarial DHFR-TS structures. Nat. Struct. Biol. 2003, 10, 357–365. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2019, 35, 1067–1069. [Google Scholar] [CrossRef]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef]
- Rojas Ruiz, F.A.; García-Sánchez, R.N.; Estupiñan, S.V.; Gómez-Barrio, A.; Torres Amado, D.F.; Pérez-Solórzano, B.M.; Nogal-Ruiz, J.J.; Martínez-Fernández, A.R.; Kouznetsov, V.V. Synthesis and antimalarial activity of new heterocyclic hybrids based on chloroquine and thiazolidinone scaffolds. Bioorg. Med. Chem. 2011, 19, 4562–4573. [Google Scholar] [CrossRef]
- Aldilla, V.R.; Bhadbhade, M.; Bhattacharyya, S.; Kumar, N.; Rich, A.M.; Marjo, C.E. Controlling the distance between hydrogen-bonded chloro-s-triazine tapes: Crystal engineering using N-alkyl chains and the influence of temperature. CrystEngComm 2017, 19, 4749–4758. [Google Scholar] [CrossRef]
- Joshi, A.A.; Viswanathan, C.L. Docking studies and development of novel 5-heteroarylamino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolines as potential antimalarials. Bioorg. Med. Chem. Lett. 2006, 16, 2613–2617. [Google Scholar] [CrossRef]
- Hadni, H.; Elhallaoui, M. Molecular docking and QSAR studies for modeling the antimalarial activity of hybrids 4-anilinoquinoline-triazines derivatives with the wild-type and mutant receptor pf-DHFR. Heliyon 2019, 5, e02357. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Z.; Guo, Y.; Xiao, Y.; Gianoncelli, A.; Coghi, P.; Ribaudo, G. 2-(Butylamino)-6-chloro-4-[3-(7-chloro-4-quinolylamino)propylamino]-1,3,5-triazine. Molbank 2024, 2024, M1895. https://doi.org/10.3390/M1895
Ren Z, Guo Y, Xiao Y, Gianoncelli A, Coghi P, Ribaudo G. 2-(Butylamino)-6-chloro-4-[3-(7-chloro-4-quinolylamino)propylamino]-1,3,5-triazine. Molbank. 2024; 2024(4):M1895. https://doi.org/10.3390/M1895
Chicago/Turabian StyleRen, Zimo, Yuzhu Guo, Yang Xiao, Alessandra Gianoncelli, Paolo Coghi, and Giovanni Ribaudo. 2024. "2-(Butylamino)-6-chloro-4-[3-(7-chloro-4-quinolylamino)propylamino]-1,3,5-triazine" Molbank 2024, no. 4: M1895. https://doi.org/10.3390/M1895
APA StyleRen, Z., Guo, Y., Xiao, Y., Gianoncelli, A., Coghi, P., & Ribaudo, G. (2024). 2-(Butylamino)-6-chloro-4-[3-(7-chloro-4-quinolylamino)propylamino]-1,3,5-triazine. Molbank, 2024(4), M1895. https://doi.org/10.3390/M1895