Amino-Modified ZIF-90 for Effective Adsorption of Au(III) in Environmental Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of NH2-ZIF-90
2.2. Effect of pH, Adsorbent Dosage, and Time on Au(III) Adsorption
2.3. Adsorption Kinetics Studies
2.4. Adsorption Isotherm Studies
2.5. Adsorption Thermodynamics Studies
2.6. Influence of Interference Ions on Adsorption Properties
2.7. Adsorption Application of Au(III) to Water Samples
3. Materials and Methods
3.1. Materials
3.2. Apparatus
3.3. Synthesis of NH2-ZIF-90
3.4. Adsorption Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lei, J.; Qian, R.; Ling, P.; Cui, L.; Ju, H. Design and sensing applications of metal–organic framework composites. TRAC Trend. Anal. Chem. 2014, 58, 71–78. [Google Scholar] [CrossRef]
- Duan, H.; Wang, F.; Xu, W.; Sheng, G.; Sun, Z.; Chu, H. Recent advances in the nanoarchitectonics of metal–organic frameworks for light-activated tumor therapy. Dalton Trans. 2023, 52, 16085–16102. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. J. Mater. Chem. A 2014, 2, 16811–16831. [Google Scholar] [CrossRef]
- Wang, F.; Tan, Y.X.; Yang, H.; Zhang, H.; Kang, Y.; Zhang, J. A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake. Chem. Commun. 2011, 47, 5828–5830. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, Y.; Liu, W.; Zhang, L. Removal of heavy metal ions from aqueous solutions by adsorption onto ZIF-8 nanocrystals. Chem. Lett. 2015, 44, 758–760. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, X.; Guo, L.; Lan, J.; Zhang, L.; Cao, D. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol. 2018, 194, 462–469. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Z.G.; Zhang, X.F.; Ding, M.L.; Yao, J.F. In situ growth of amino-functionalized ZIF-8 on bacterial cellulose foams for enhanced CO2 adsorption. Carbohyd. Polym. 2021, 270, 118376. [Google Scholar] [CrossRef]
- Li, G.Z.; Si, Z.H.; Zhuang, Y.; Pang, S.Y.; Cui, Y.H.; Baeyens, J.; Qin, P.Y. A defects-free ZIF-90/6FDA-Durene membrane based on the hydrogen bonding/covalent bonding interaction for gas separation. J. Membr. Sci. 2022, 661, 120910. [Google Scholar] [CrossRef]
- Hubert, S.; John, L.C. Chapter: Noble Metals (Chemistry). In Encyclopedia of Physical Science and Technology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Wei, W.J.; Li, L.; Gao, Y.P.; Wang, Q.; Zhou, Y.Y.; Liu, X.; Yang, Y. Enzyme digestion combined with SP-ICP-MS analysis to characterize the bioaccumulation of gold nanoparticles by mustard and lettuce plants. Sci. Total Environ. 2021, 777, 146038. [Google Scholar] [CrossRef] [PubMed]
- Mei, D.C.; Yan, B. Rapid detection and selective extraction of Au(III) from electronic waste using an oxime functionalized MOF-on-MOF heterostructure. Small 2023, 19, 2304811. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Chung, T.S. Room–temperature synthesis of ZIF–90 nanocrystals and the derived nano–composite membranes for hydrogen separation. J. Mater. Chem. A 2013, 1, 6081–6090. [Google Scholar] [CrossRef]
- Huang, A.; Wang, N.; Kong, C.; Caro, J. Organosilica-Functionalized Zeolitic Imidazolate Framework ZIF-90 Membrane with High Gas-Separation Performance. Angew. Chem. Int. Ed. 2012, 51, 10551–10555. [Google Scholar] [CrossRef]
- Morris, W.; Doonan, C.J.; Furukawa, H.; Banerjee, R.; Yaghi, O.M. Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc. 2008, 130, 12626–12627. [Google Scholar] [CrossRef]
- Haneda, T.; Kawano, M.; Kawamichi, T.; Fujita, M. Direct Observation of the Labile Imine Formation through Single-Crystal-to-Single-Crystal Reactions in the Pores of a Porous Coordination Network. J. Am. Chem. Soc. 2008, 130, 1578–1579. [Google Scholar] [CrossRef]
- Naghshbandi, Z.; Gholinejad, M.; Sansano, J.M.; Eskandari, M. Graphene quantum dots incorporated ZIF-67 for stabilization of Au nanoparticles: Efficient catalyst for A3-coupling and nitroarenes reduction reactions. Appl. Organomet. Chem. 2024, 38, e7400. [Google Scholar] [CrossRef]
- Liguori, P.F.; Russo, B.; Melicchio, A.; Golemme, G. Synthesis and gas sorption behaviour of ZIF-90 with large pore volume. New J. Chem. 2017, 41, 13235–13239. [Google Scholar] [CrossRef]
- Ma, J.; Yan, B. Multi-component hybrid films based on covalent post-synthetic functionalization of silicon chip using both ZIF-90 and lanthanide complexes for luminescence tuning. New J. Chem. 2018, 42, 15061–15067. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Lee, Y.R.; Ahn, W.S. Post-synthesis functionalization of a zeolitic imidazolate structure ZIF-90: A study on removal of Hg(II) from water and epoxidation of alkenes. CrystEngComm 2015, 17, 2575–2582. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Z.; Tang, S.; Yao, M.; Zhang, D.; Cui, M.; Yang, D.; Tang, J.; Qiao, X.; Zhang, Z. One-step synthesis of a ZlF-8/90-based type I porous liquid. Dalton Trans. 2023, 52, 17213–17218. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, S.; Jia, J.; Xu, F.; Long, Z.; Hou, X. Ultrasensitive determination of inorganic arsenic by hydride generation-atomic fluorescence spectrometry using Fe3O4@ZIF-8 nanoparticles for preconcentration. Microchem. J. 2016, 124, 578–583. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Q.; Huang, A. A superhydrophobic zeolitic imidazolate framework (ZIF-90) with high steam stability for efficient recovery of bioalcohols. Chem. Commun. 2016, 52, 3400–3402. [Google Scholar] [CrossRef]
- Arıca, M.Y.; Bayramoǧlu, G.; Yılmaz, M.; Bektaş, S.; Genç, Ö. Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J. Hazard. Mater. 2004, 109, 191–199. [Google Scholar]
- Li, T.; Liu, Y.; Peng, Q.; Hu, X.; Liao, T.; Wang, H.; Lu, M. Removal of lead(II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling. Chem. Eng. J. 2013, 214, 189–197. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Choi, Y.L.; Chang, Y.Y.; Yang, J.K. Studies on removal of Pb(II) and Cr(III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy 2016, 165, 64–72. [Google Scholar] [CrossRef]
- Liu, T.; Duan, X.; Duan, G.; Wu, W.; Yang, Y.; Zhang, H. Adsorption of UO22+ on poly (N, N-diethylacrylamide-co-acrylic acid): Effects of pH, ionic strength, initial uranyl concentration, and temperature. J. Radioanal. Nucl. Chem. 2013, 298, 571–580. [Google Scholar]
- Yang, S.T.; Chang, Y.; Wang, H.; Liu, G.; Chen, S.; Wang, Y.; Liu, Y.; Cao, A. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J. Colloid Interf. Sci. 2010, 351, 122–127. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Zhu, Y. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 2012, 28, 8418–8425. [Google Scholar] [CrossRef]
- Nuhoglu, Y.; Malkoc, E. Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresour. Technol. 2009, 100, 2375–2380. [Google Scholar] [CrossRef]
- Abou Melha, K.S.A.; Al-Hazmi, G.A.A.; Refat, M.S. Synthesis of Nano-Metric Gold Complexes with New Schiff Bases Derived from 4-Aminoantipyrene, Their Structures and Anticancer Activity. Russ. J. Gen. Chem. 2017, 87, 3043–3051. [Google Scholar] [CrossRef]
Pseudo First Order | Pseudo Second Order | ||||
---|---|---|---|---|---|
Qe (mg g−1) | K1 (min−1) | R2 | Qe (mg g−1) | K2 (g mg−1 min−1) | R2 |
2.764 | 1.0557 | 0.996 | 4.686 | 0.01411 | 0.901 |
Elovich | Intraparticle Diffusion | |||
---|---|---|---|---|
β (g mg−1) | R2 | Kid (g mg−1·min−0.5) | R2 | |
0.706 | 0.717 | 0.113 | 0.816 |
ΔH (J mol−1) | ΔS (J mol−1·K−1) | ΔG (KJ mol−1) | |||
---|---|---|---|---|---|
293.15 K | 308.15 K | 323.15 K | R2 | ||
–37.09 | 5.952 | –2.378 | –2.241 | –1.822 | 0.945 |
Samples | Added (μg mL−1) | Found (μg mL−1) | RSD (%) | Recovery (%) |
---|---|---|---|---|
Lake water | 0 | – | – | – |
1 | 0.81 | 5.3 | 81.0 | |
2 | 1.74 | 4.9 | 87.0 | |
3 | 2.75 | 4.8 | 91.6 | |
Tap water | 0 | – | – | – |
1 | 0.83 | 5.8 | 83.0 | |
2 | 1.82 | 5.0 | 91.0 | |
3 | 2.80 | 4.9 | 93.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Wu, X.; Wang, S.; Qu, J.; Tan, Y.; Luan, C.; Yin, X.; Wu, X.; Zhuang, X. Amino-Modified ZIF-90 for Effective Adsorption of Au(III) in Environmental Water. Molecules 2025, 30, 1826. https://doi.org/10.3390/molecules30081826
Zhou N, Wu X, Wang S, Qu J, Tan Y, Luan C, Yin X, Wu X, Zhuang X. Amino-Modified ZIF-90 for Effective Adsorption of Au(III) in Environmental Water. Molecules. 2025; 30(8):1826. https://doi.org/10.3390/molecules30081826
Chicago/Turabian StyleZhou, Na, Xueli Wu, Shaoxia Wang, Jianfei Qu, Yang Tan, Chuanlei Luan, Xiuli Yin, Xuran Wu, and Xuming Zhuang. 2025. "Amino-Modified ZIF-90 for Effective Adsorption of Au(III) in Environmental Water" Molecules 30, no. 8: 1826. https://doi.org/10.3390/molecules30081826
APA StyleZhou, N., Wu, X., Wang, S., Qu, J., Tan, Y., Luan, C., Yin, X., Wu, X., & Zhuang, X. (2025). Amino-Modified ZIF-90 for Effective Adsorption of Au(III) in Environmental Water. Molecules, 30(8), 1826. https://doi.org/10.3390/molecules30081826