Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = brushless direct current (BLDC) drive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1322 KB  
Article
A Block Controller with Integral Super-Twisting Algorithm for the Path Following of a Self-Driving Electric Vehicle Considering Actuator Dynamics
by Luis Arturo Torres-Romero and Luis Enrique González-Jiménez
World Electr. Veh. J. 2025, 16(12), 643; https://doi.org/10.3390/wevj16120643 - 25 Nov 2025
Viewed by 252
Abstract
This research presents the design of a robust nonlinear controller for the lateral dynamics of a self-driving car. It is based on the block control and super-twisting sliding mode control techniques in order to effectively mitigate the uncertainties and disturbances of the vehicle. [...] Read more.
This research presents the design of a robust nonlinear controller for the lateral dynamics of a self-driving car. It is based on the block control and super-twisting sliding mode control techniques in order to effectively mitigate the uncertainties and disturbances of the vehicle. The dynamic model of the system is composed of the standard bicycle dynamic model (not kinematic) for the vehicle and the dynamics of a BLDC motor connected to a steering rack system as the steering actuator. Moreover, the control scheme considers an inner loop for controlling the actuator position based on the field-oriented control (FOC) and PID control approaches. The controller’s overall performance is validated through its application to a mathematical model of a brushless direct current (BLDC) motor, acting as the actuator, plus the steering rack dynamics and the lateral dynamic model of the vehicle. Measurements of voltages and currents are taken in both the abc and dq reference frames, the latter being commonly used in the field-oriented control (FOC) technique. Additionally, the system’s performance is evaluated in terms of trajectory tracking, orientation, and lateral deviation from the lane center. Full article
Show Figures

Figure 1

30 pages, 6224 KB  
Article
Enhanced Optimum PTFOIDN Speed Controller for Battery-Powered Brushless Direct Current Motor-Based Electromobility Applications
by Mokhtar Aly, Nadia A. Nagem, Sayed M. Said and Wessam A. Hafez
Fractal Fract. 2025, 9(12), 763; https://doi.org/10.3390/fractalfract9120763 - 24 Nov 2025
Viewed by 432
Abstract
Lithium-ion batteries form the backbone of the recent transition to electric vehicles (EVs). Due to limited capacities, costly replacements, and short lifetimes, proper control and management systems are essential for developing modern battery-powered EV systems. Brushless direct current (BLDC) motors have gained popularity [...] Read more.
Lithium-ion batteries form the backbone of the recent transition to electric vehicles (EVs). Due to limited capacities, costly replacements, and short lifetimes, proper control and management systems are essential for developing modern battery-powered EV systems. Brushless direct current (BLDC) motors have gained popularity in traction and industrial drive applications due to their high efficiency and long lifespan. The speed controller for the BLDC motor is a critical element in defining the system’s overall response and performance. Therefore, this paper presents a non-integer fractional-order control scheme to enhance a hybridized speed controller for BLDC motors. Unlike existing integer- and non-integer-based controllers in the literature, the new modified controller is a hybrid structure that combines the three control schemes. The proposed control is constructed using the hybrid proportional-tilt-fractional order Integrator-derivative with filter (PTFOIDN) controller. The proposed PTFOIDN controller inherently incorporates the merits of FOPI, TID, and FOPID control structures and branches within a single, hybridized structure. The proposed PTFOIDN controller features eight tunable parameters, allowing for more flexible design possibilities. Furthermore, a practical design methodology using a recent Marine Predators Algorithm (MPA) is proposed in this paper to determine the optimum set of control parameters simultaneously. Different drive cycles, comparative analysis, and operating scenarios are presented in the paper to validate the effectiveness of the new proposed PTFOID controller and MPA-based control design. Full article
Show Figures

Figure 1

21 pages, 9791 KB  
Article
Impact of Electric Motor Selection on the Efficiency and Reliability of Level Crossing Gate Drives in Polish Railway Infrastructure
by Zbigniew Goryca, Paweł Strączyński, Sebastian Różowicz, Karol Suchenia and Bartosz Woszczyna
Energies 2025, 18(22), 6050; https://doi.org/10.3390/en18226050 - 19 Nov 2025
Viewed by 335
Abstract
Railway barrier drives are key components of railway infrastructure and have a direct impact on traffic safety. Many of the commonly used drives are mechanical EEG-type barrier drives. EEG is a commercial designation of level-crossing gate drives produced by one of the Polish [...] Read more.
Railway barrier drives are key components of railway infrastructure and have a direct impact on traffic safety. Many of the commonly used drives are mechanical EEG-type barrier drives. EEG is a commercial designation of level-crossing gate drives produced by one of the Polish railway signalling equipment manufacturers, currently known as Alstom ZWUS Polska Sp. z o.o. (Katowice, Poland). These drives are characterized by their simple design and low cost, but limited efficiency and durability. Operational experience shows particular problems with the operation of this type of drive in winter conditions. This article presents an analysis of the impact of the selection of electric motors on the efficiency and reliability of level crossing drives. In addition to discussing the classic design with a PRMOa90-90 motor, commonly used in EEG drives, two proprietary solutions are presented: a commutator motor with rectangular neodymium magnets and a brushless DC motor (BLDC). Key operating parameters such as energy efficiency, starting torque, durability, maintenance requirements, and costs were compared. The results of the analyses indicate that the use of motors with neodymium magnets and BLDC solutions can significantly increase the efficiency and reliability of barrier drives, with each variant presenting a different profile of advantages and limitations. Full article
(This article belongs to the Special Issue New Solutions in Electric Machines and Motor Drives: 2nd Edition)
Show Figures

Figure 1

21 pages, 5316 KB  
Article
A Model Predictive Control Strategy with Minimum Model Error Kalman Filter Observer for HMEV-AS
by Ying Zhou, Chenlai Liu, Zhongxing Li and Yi Yu
Energies 2025, 18(6), 1557; https://doi.org/10.3390/en18061557 - 20 Mar 2025
Cited by 2 | Viewed by 850
Abstract
In hub-motor electric vehicles (HMEVs), performance is adversely affected by the mechanical-electromagnetic coupling effect arising from deformations of the air gap in the Permanent Magnet Brushless Direct Current Motor (PM BLDC), which are exacerbated by varying road conditions. In this paper, a Model [...] Read more.
In hub-motor electric vehicles (HMEVs), performance is adversely affected by the mechanical-electromagnetic coupling effect arising from deformations of the air gap in the Permanent Magnet Brushless Direct Current Motor (PM BLDC), which are exacerbated by varying road conditions. In this paper, a Model Predictive Control (MPC) strategy for HMEVs equipped with air suspension (AS) is introduced to enhance ride comfort. Firstly, an 18-degree of freedom (DOF) full-vehicle model incorporating unbalanced electromagnetic forces (UEMFs) induced by motor eccentricities is developed and experimentally validated. Additionally, a Minimum Model Error Extended Kalman Filter (MME-EKF) observer is designed to estimate unmeasurable state variables and account for errors resulting from sprung mass variations. To further improve vehicle performance, the MPC optimization objective is formulated by considering the suspension damping force and dynamic displacement constraints, solving for the optimal suspension force within a rolling time domain. Simulation results demonstrate that the proposed MPC approach significantly improves ride comfort, effectively mitigates coupling effects in hub driving motors, and ensures that suspension dynamic stroke adheres to safety criteria. Comparative analyses indicate that the MPC controller outperforms conventional PID control, achieving substantial reductions of approximately 41.59% in sprung mass vertical acceleration, 14.29% in motor eccentricity, 1.78% in tire dynamic load, 17.65% in roll angular acceleration, and 16.67% in pitch angular acceleration. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

27 pages, 2897 KB  
Review
Essential Features and Torque Minimization Techniques for Brushless Direct Current Motor Controllers in Electric Vehicles
by Arti Aniqa Tabassum, Haeng Muk Cho and Md. Iqbal Mahmud
Energies 2024, 17(18), 4562; https://doi.org/10.3390/en17184562 - 12 Sep 2024
Cited by 13 | Viewed by 3176
Abstract
The use of electric automobiles, or EVs, is essential to environmentally conscious transportation. Battery EVs (BEVs) are predicted to become increasingly accepted for passenger vehicle transportation within the next 10 years. Although enthusiasm for EVs for environmentally friendly transportation is on the rise, [...] Read more.
The use of electric automobiles, or EVs, is essential to environmentally conscious transportation. Battery EVs (BEVs) are predicted to become increasingly accepted for passenger vehicle transportation within the next 10 years. Although enthusiasm for EVs for environmentally friendly transportation is on the rise, there remain significant concerns and unanswered research concerns regarding the possible future of EV power transmission. Numerous motor drive control algorithms struggle to deliver efficient management when ripples in torque minimization and improved dependability control approaches in motors are taken into account. Control techniques involving direct torque control (DTC), field orientation control (FOC), sliding mode control (SMC), intelligent control (IC), and model predictive control (MPC) are implemented in electric motor drive control algorithms to successfully deal with this problem. The present study analyses only sophisticated control strategies for frequently utilized EV motors, such as the brushless direct current (BLDC) motor, and possible solutions to reduce torque fluctuations. This study additionally explores the history of EV motors, the operational method between EM and PEC, and EV motor design techniques and development. The future prospects for EV design include a vital selection of motors and control approaches for lowering torque ripple, as well as additional research possibilities to improve EV functionality. Full article
(This article belongs to the Special Issue Advances in Permanent Magnet Motor and Motor Control)
Show Figures

Figure 1

25 pages, 2927 KB  
Article
Optimization of an IPMSM for Constant-Angle Square-Wave Control of a BLDC Drive
by Mitja Garmut, Simon Steentjes and Martin Petrun
Mathematics 2024, 12(10), 1418; https://doi.org/10.3390/math12101418 - 7 May 2024
Cited by 4 | Viewed by 1747
Abstract
Interior permanent magnet synchronous machines (IPMSMs) driven with a square-wave control (i.e., six-step, block, or 120° control), known commonly as brushless direct current (BLDC) drives, are used widely due to their high power density and control simplicity. The advance firing (AF) angle is [...] Read more.
Interior permanent magnet synchronous machines (IPMSMs) driven with a square-wave control (i.e., six-step, block, or 120° control), known commonly as brushless direct current (BLDC) drives, are used widely due to their high power density and control simplicity. The advance firing (AF) angle is employed to achieve improved operation characteristics of the drive. The AF angle is, in general, applied to compensate for the commutation effects. In the case of an IPMSM, the AF angle can also be adjusted to exploit reluctance torque. In this paper, a detailed study was performed to understand its effect on the drive’s performance in regard to reluctance torque. Furthermore, a multi-objective optimization of the machine’s cross-section using neural network models was conducted to enhance performance at a constant AF angle. The reference and improved machine designs were evaluated in a system-level simulation, where the impact was considered of the commutation of currents. A significant improvement in the machine performance was achieved after optimizing the geometry and implementing a fixed AF angle of 10°. Full article
Show Figures

Figure 1

25 pages, 9327 KB  
Article
Application of Tilt Integral Derivative for Efficient Speed Control and Operation of BLDC Motor Drive for Electric Vehicles
by Khairy Sayed, Hebatallah H. El-Zohri, Adel Ahmed and Mohamed Khamies
Fractal Fract. 2024, 8(1), 61; https://doi.org/10.3390/fractalfract8010061 - 16 Jan 2024
Cited by 30 | Viewed by 4706
Abstract
This study presents the tilt integral derivative (TID) controller technique for controlling the speed of BLDC motors in order to improve the real-time control of brushless direct current motors in electric vehicles. The TID controller is applied to the considered model to enhance [...] Read more.
This study presents the tilt integral derivative (TID) controller technique for controlling the speed of BLDC motors in order to improve the real-time control of brushless direct current motors in electric vehicles. The TID controller is applied to the considered model to enhance its performance, e.g., torque and speed. This control system manages the torque output, speed, and position of the motor to ensure precise and efficient operation in EV applications. Brushless direct current motors are becoming more and more popular due to their excellent torque, power factor, efficiency, and controllability. The differences between PID, TID, and PI controllers are compared. The outcomes demonstrated that the TID control enhanced the torque and current stability in addition to the BLDC system’s capacity to regulate speed. TID controllers provide better input power for BLDC (brushless DC) drives than PI and PID controllers do. Better transient responsiveness and robustness to disturbances are features of TID controller design, which can lead to more effective use of input power. TID controllers are an advantageous choice for BLDC drive applications because of their increased performance, which can result in increased system responsiveness and overall efficiency. In an experimental lab, a BLDC motor drive prototype is implemented in this study. To fully enhance the power electronic subsystem and the brushless DC motor’s real-time performance, a test bench was also built. Full article
Show Figures

Figure 1

23 pages, 12652 KB  
Article
Enhanced Power Factor Correction and Torque Ripple Mitigation for DC–DC Converter Based BLDC Drive
by Geethu Krishnan, Moshe Sitbon and Shijoh Vellayikot
Electronics 2023, 12(16), 3533; https://doi.org/10.3390/electronics12163533 - 21 Aug 2023
Cited by 6 | Viewed by 2836
Abstract
A novel approach to the design of power factor correction (PFC) and torque ripple minimization in a brushless direct current (BLDC) motor drive with a new pulse width modulation (PWM) technique is demonstrated. The drive was designed to have a better power factor [...] Read more.
A novel approach to the design of power factor correction (PFC) and torque ripple minimization in a brushless direct current (BLDC) motor drive with a new pulse width modulation (PWM) technique is demonstrated. The drive was designed to have a better power factor (PF) and less torque ripple. On the other hand, the modified Zeta converter is used to enhance the power factor of the proposed system. The modified Zeta converter is operated in discontinuous inductor current mode (DICM) by using a voltage follower technique, which only needs a voltage sensor for power factor correction (PFC) operation and DC-link voltage control. The output voltage of the VSI is determined by switching patterns generated by the PWM-ON-PWM switching strategy, and it reduces the torque ripples. The proposed drive is developed and simulated in a MATLAB/Simulink environment. The power factor of 0.9999 is produced by the PFC modified zeta converter topology and the PWM-ON-PWM scheme reduce the torque ripple in the commutation region by 34.2% as compared with the PWM-ON scheme. This demonstrates the effectiveness of the suggested control method. Full article
(This article belongs to the Special Issue New Trends in Power Electronics for Microgrids)
Show Figures

Figure 1

17 pages, 5557 KB  
Article
A Novel Methodology to Enhance the Smooth Running of the PM BLDC Motor Drive Using PWM-PWM Logic and Advance Angle Method
by Balamurali Surakasi, Raavi Satish, Balamurali Pydi, Hossam Kotb, Mokhtar Shouran and Bdereddin Abdul Samad
Machines 2023, 11(1), 41; https://doi.org/10.3390/machines11010041 - 30 Dec 2022
Cited by 7 | Viewed by 4720
Abstract
This paper addresses the active torque ripple compensation of a permanent magnet brushless direct-current motor (PMBLDC) drive with a new pulse width modulation (PWM) technique and advance angle method. Torque ripple is a well-known problem in BLDC motors which is produced by a [...] Read more.
This paper addresses the active torque ripple compensation of a permanent magnet brushless direct-current motor (PMBLDC) drive with a new pulse width modulation (PWM) technique and advance angle method. Torque ripple is a well-known problem in BLDC motors which is produced by a discrepancy between the stator current and the back electromotive force (back-emf) waveforms. The advanced angle method proposed in this paper generates a maximum torque in the PM BLDC motor by decreasing the displacement between the phase voltage and phase current in proportion to the load. Further, a simple and comprehensive PWM-PWM logic is proposed in this paper to reduce the torque ripples. The test results show that the BLDC motor drive achieves good steady-state performance while maintaining a quick dynamic response. The performance of the PWM-PWM logic and advance angle method, have been tested and compared with the practical results for the characteristics of DC bus voltage, DC bus current, electromagnetic torque, shaft torque, mechanical torque, phase voltage, phase current and PWM signal. Full article
(This article belongs to the Special Issue Permanent Magnet Motors: State of the Art)
Show Figures

Figure 1

22 pages, 4225 KB  
Article
Comparative Study of BLDC Motor Drives with Different Approaches: FCS-Model Predictive Control and Hysteresis Current Control
by Mohamed Azab
World Electr. Veh. J. 2022, 13(7), 112; https://doi.org/10.3390/wevj13070112 - 24 Jun 2022
Cited by 19 | Viewed by 8515
Abstract
The control techniques of the brushless DC (BLDC) motor have gained a large amount of interest in recent years, with their use being implemented in order to achieve a high-performance drive, including quick transient response and high-quality waveforms at the steady state. This [...] Read more.
The control techniques of the brushless DC (BLDC) motor have gained a large amount of interest in recent years, with their use being implemented in order to achieve a high-performance drive, including quick transient response and high-quality waveforms at the steady state. This paper provides a comparative study between three control schemes of BLDC motors: the direct power control scheme using a finite control set model predictive control (FCS-MPC) approach, the stator current controlled scheme using an FCS-MPC approach, and the stator current controlled scheme using ON–OFF hysteresis current controllers. The three systems were studied and investigated under the same operating conditions. The comparative study included investigating the performance of the BLDC drive in both steady state and transient operations. Qualitative and quantitative analyses were performed on the results obtained with each control scheme. The obtained results demonstrate the validity and effectiveness of the three investigated schemes in controlling the motor speed to the desired value under sudden load changes and achieving satisfactory quick transient responses. However, the results indicate the superiority of the direct power control scheme using an FCS-MPC approach over the others in terms of its minimum torque ripple, lowest torque and speed pulsations, minimum active and reactive power ripples, and high-quality waveforms of the stator currents drawn by the motor with minimum THD. Full article
Show Figures

Figure 1

13 pages, 10791 KB  
Article
Comparison of the Design of 3-Pole BLDC Actuators/Motors with a Rotor Based on a Single Permanent Magnet
by Krzysztof Smółka, Anna Firych-Nowacka and Sławomir Wiak
Sensors 2022, 22(10), 3759; https://doi.org/10.3390/s22103759 - 15 May 2022
Cited by 7 | Viewed by 3474
Abstract
Permanent Magnet (PM) Brushless Direct Current (BLDC) actuators/motors have many advantages over conventional machines, including high efficiency, easy controllability over a wide range of operating speeds, etc. There are many prototypes for such motors; some of them have a very complicated construction, and [...] Read more.
Permanent Magnet (PM) Brushless Direct Current (BLDC) actuators/motors have many advantages over conventional machines, including high efficiency, easy controllability over a wide range of operating speeds, etc. There are many prototypes for such motors; some of them have a very complicated construction, and this ensures their high efficiency. However, in the case of household appliances, the most important thing is simplicity, and, thus, the lowest price of the design and production. This article presents a comparison of computer models of different design solutions for a small PM BLDC motor that uses a rotor in the form of a single ferrite magnet. The analyses were performed by using the finite element method. This paper presents unique self-defined parts of basic PM BLDC actuators. With their help, various design solutions were compared with the PM BLDC motor used in household appliances. The authors proved that the reference device is the lightest one and has a lower cogging torque compared to other actuators, but also has a slightly lower driving torque. Full article
Show Figures

Figure 1

18 pages, 5197 KB  
Article
Ten-Bit 0.909-MHz 8-Channel Dual-Mode Successive Approximation ADC for a BLDC Motor Drive
by Chong-Cheng Huang, Guo-Ming Sung, Xiong Xiao, Shan-Hao Sung and Chao-Hung Huang
Electronics 2021, 10(7), 830; https://doi.org/10.3390/electronics10070830 - 31 Mar 2021
Cited by 3 | Viewed by 3053
Abstract
This paper presents a 10-bit 0.909-MHz 8-channel dual-mode successive approximation (SAR) analogue-to-digital converter (ADC) for brushless direct current (BLDC) motor drive, using a Taiwan Semiconductor Manufacturing (TSMC) 0.25 μm 1P3M Complementary Metal Oxide Semiconductor (CMOS) process. The sample-and-hold (S/H) circuit operates with two [...] Read more.
This paper presents a 10-bit 0.909-MHz 8-channel dual-mode successive approximation (SAR) analogue-to-digital converter (ADC) for brushless direct current (BLDC) motor drive, using a Taiwan Semiconductor Manufacturing (TSMC) 0.25 μm 1P3M Complementary Metal Oxide Semiconductor (CMOS) process. The sample-and-hold (S/H) circuit operates with two sampling modes. One is individually sampling eight channels in sequence with an S/H circuit and the other is sampling four channels simultaneously with four S/H circuits. All sampled data will be digitized with high-speed SAR ADC in time division multiplexing (TDM). A dynamic latch-type comparator is utilized to latch the output at an upper or lower level. The advantage of the designed comparator is that it performs with positive feedback to quickly complete the latch function. The double-tail latch-type architecture is utilized to mitigate the significant kickback effect by separating the pre-amplifier stage from the latch. By integrating an input NMOSFET with an input PMOSFET, the designed latch-type comparator can perform with full-swing input voltage. Measurements show that the signal-to-noise ratio (SNR), signal-to-noise-and-distortion ratio (SNDR), effective number of bits (ENOB), power consumption, and chip area are 50.56 dB, 57.03 dB, 8.11 bits, 833 μW, and 1.35 × 0.98 mm2, respectively. The main advantages of the proposed multichannel dual-mode SAR ADC are its low power consumption of 833 μW and high measured resolution of 8.11 bits. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

14 pages, 8095 KB  
Article
Investigation of Regenerative Braking Performance of Brushless Direct Current Machine Drive System
by Omer Cihan Kivanc and Ozgur Ustun
Appl. Sci. 2021, 11(3), 1029; https://doi.org/10.3390/app11031029 - 24 Jan 2021
Cited by 12 | Viewed by 7354
Abstract
The brushless direct current (BLDC) machines which are preferred in light electric vehicles (LEVs) come forward as high regenerative braking capability machines due to their permanent magnet excitation and relatively simple operation. In this paper, the regenerative braking capability limits of BLDC machines [...] Read more.
The brushless direct current (BLDC) machines which are preferred in light electric vehicles (LEVs) come forward as high regenerative braking capability machines due to their permanent magnet excitation and relatively simple operation. In this paper, the regenerative braking capability limits of BLDC machines and their drive circuits are examined by taking into account nonlinear circuit parameters and battery internal resistance variation. During energy recovery from mechanical port to electrical port, the inverter of BLDC machine is operated as a boost converter which enables power flow to a battery. However, the regeneration performance is also heavily dependant on the battery condition, particularly the temperature. By means of the developed detailed circuit model including the non-ideal effects of the boosting converter and the increase of the internal resistance variation which is caused by the temperature variation of the battery and ambient temperature, the specific duty cycle can be determined. The specific duty ratio is then applied in a proposed approach for various operation scenarios. The experimental tests are implemented by a 400 W BLDC machine drive system controlled via a TMS320F28335 digital signal processor. The experimental results show that the proposed comprehensive model presents a proper performance estimation of regenerative braking system under varying battery temperature. Full article
Show Figures

Figure 1

13 pages, 2850 KB  
Article
A Linear Brushless Direct Current Motor Design Approach for Seismic Shake Tables
by Ozgur Ustun, Omer Cihan Kivanc and Mert Safa Mokukcu
Appl. Sci. 2020, 10(21), 7618; https://doi.org/10.3390/app10217618 - 29 Oct 2020
Cited by 8 | Viewed by 5304
Abstract
The progress in material and manufacturing technologies enables the emergence of new research areas in electromagnetic actuator applications. Permanent magnet (PM) linear motors are preferred to achieve precise position control and to meet the need for high dynamic forces in the seismic shake [...] Read more.
The progress in material and manufacturing technologies enables the emergence of new research areas in electromagnetic actuator applications. Permanent magnet (PM) linear motors are preferred to achieve precise position control and to meet the need for high dynamic forces in the seismic shake tables that are used in analyzing reactions of structure models. The design approaches on the linear motors used in the seismic shake tables may vary depending on the desired force, stroke and acceleration values. Especially, the maximum width, the maximum depth, the maximum linear motor length in longitudinal direction and the maximum travelling distance parameters are the primary design criteria in seismic shake table drive systems. In this paper, a design approach for a linear PM brushless direct current (BLDC) motor with high force/volume, force/weight and force/input power ratios is developed. The design was analyzed using two-dimensional (2D) and three-dimensional (3D) finite element method (FEM) approaches through the ANSYS Maxwell software. The mathematically designed linear BLDC motor was manufactured and subjected to displacement, acceleration and force tests that are used in seismic analyses. The results of the experimental tests validate the convenience of the proposed design approach and the selected parameters. Full article
(This article belongs to the Special Issue Modeling, Design and Control of Electric Machines)
Show Figures

Figure 1

12 pages, 4653 KB  
Article
Hall-Sensor-Based Position Detection for Quick Reversal of Speed Control in a BLDC Motor Drive System for Industrial Applications
by Mohanraj Nandakumar, Sankaran Ramalingam, Subashini Nallusamy and Shriram Srinivasarangan Rangarajan
Electronics 2020, 9(7), 1149; https://doi.org/10.3390/electronics9071149 - 16 Jul 2020
Cited by 22 | Viewed by 4862
Abstract
This paper proposes the novel idea of eliminating the front-end converters used indirect current (DC) bus voltage variation, thereby allowing for control of the speed of the brushless direct current (BLDC) motors in the two-quadrant operation of a permanent magnet brushless direct current [...] Read more.
This paper proposes the novel idea of eliminating the front-end converters used indirect current (DC) bus voltage variation, thereby allowing for control of the speed of the brushless direct current (BLDC) motors in the two-quadrant operation of a permanent magnet brushless direct current (PMBLDC) motor, which is required for multiple bi-directional hot roughing steel rolling mills. The first phase of steel rolling, the manufacture of plates, strips etc., using hot slabs from the continuous casting stage, is carried out for thickness reduction, before the same is sent to the finishing mill for further mechanical processing. The hot roughing process involves applying high, compressive pressure, using a hydraulically operated mechanism, through a pair of backup rolls and work rolls for rolling. Overall, the processes consist of multiple passes of forward and reverse rolling at increasing roll speeds. The rolling process was modeled, taking into account parameters like roller dimensions, angle and length of contact, and rolling force, at various temperatures, using actual data obtained from a steel mill. From this data, speed and torque profiles at the motor shaft, covering the entire rolling process, were created. A profile-based feedback controller is proposed for setting the six-pulse inverter frequency and parameters of the pulse width modulated (PWM) waveform for current control, based on Hall sensor position, and the same is implemented for closed loop operation of the brushless direct current motor drive system. The performance enhancement of the two different controllers was also evaluated, during the rolling of 1005 hot rolled (HR) steel, and was taken into consideration in the research analysis. The entire process was simulated in the MATLAB/Simulink platform, and the results verify the suitability of an entire-drive system for industrial steel rolling applications. Full article
(This article belongs to the Special Issue Advanced Control Systems for Electric Drives)
Show Figures

Figure 1

Back to TopTop