Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (422)

Search Parameters:
Keywords = broad-spectrum protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

26 pages, 542 KiB  
Review
Challenges to the Effectiveness and Immunogenicity of COVID-19 Vaccines: A Narrative Review with a Systematic Approach
by Alexander A. Soldatov, Nickolay A. Kryuchkov, Dmitry V. Gorenkov, Zhanna I. Avdeeva, Oxana A. Svitich and Sergey Soshnikov
Vaccines 2025, 13(8), 789; https://doi.org/10.3390/vaccines13080789 - 24 Jul 2025
Abstract
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 [...] Read more.
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 variants. This review aimed to evaluate the factors influencing the immunogenicity and effectiveness of COVID-19 vaccines to inform future vaccine advancement strategies. A narrative review with systematic approach was conducted following PRISMA guidelines for narrative review. Literature was sourced from databases including PubMed, Embase, and Web of Science for studies published between December 2019 and May 2025. Encompassed studies assessed vaccine efficacy, immunogenicity, and safety across various populations and vaccine platforms. Data were collected qualitatively, with quantitative data from reviews highlighted where available. We have uncovered a decline in vaccine efficacy over time and weakened protection against novel variants such as Delta and Omicron. Booster doses, specifically heterologous regimens, improved immunogenicity and increased protection. Vaccine-induced neutralizing antibody titers have been found to correlate with clinical protection, although the long-term correlates of immunity remain poorly defined. The induction of IgG4 antibodies after repeated mRNA vaccinations raised concerns about potential modulation of the immune response. COVID-19 vaccines have contributed significantly to pandemic control; however, their efficacy is limited by the evolution of the virus and declining immunity. Forthcoming vaccine strategies should focus on broad-spectrum, variant-adapted formulations and defining robust comparisons of protection. Recognizing the immunological basis of vaccine response, including the role of specific antibody subclasses, is fundamental for optimizing long-term protection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

13 pages, 1535 KiB  
Article
L-Lysine from Bacillus subtilis M320 Induces Salicylic-Acid–Dependent Systemic Resistance and Controls Cucumber Powdery Mildew
by Ja-Yoon Kim, Dae-Cheol Choi, Bong-Sik Yun and Hee-Wan Kang
Int. J. Mol. Sci. 2025, 26(14), 6882; https://doi.org/10.3390/ijms26146882 - 17 Jul 2025
Viewed by 241
Abstract
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime [...] Read more.
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime systemic acquired resistance (SAR) pathways in cucumber plants. Liquid chromatography–mass spectrometry analysis identified L-lysine as the primary bioactive metabolite in the BSM320 culture filtrate. Foliar application of purified L-lysine significantly reduced powdery mildew symptoms, lowering disease severity by up to 92% at concentrations ≥ 2500 mg/L. However, in vitro spore germination assays indicated that L-lysine did not exhibit direct antifungal activity, indicating that its protective effect is likely mediated through the activation of plant immune responses. Quantitative reverse transcription PCR revealed marked upregulation of key defense-related genes encoding pathogenesis-related proteins 1 and 3, lipoxygenase 1 and 23, WRKY transcription factor 20, and L-type lectin receptor kinase 6.1 within 24 h of treatment. Concurrently, salicylic acid (SA) levels increased threefold in lysine-treated plants, confirming the induction of an SA-dependent SAR pathway. These findings highlight L-lysine as a sustainable, residue-free priming agent capable of enhancing broad-spectrum plant immunity, offering a promising approach for amino acid-based crop protection. Full article
Show Figures

Figure 1

25 pages, 689 KiB  
Article
Bioactive Properties and Phenolic Profile of Bioaccessible and Bioavailable Fractions of Red Radish Microgreens After In Vitro Digestion
by Dorota Sosnowska, Małgorzata Zakłos-Szyda, Dominika Kajszczak and Anna Podsędek
Molecules 2025, 30(14), 2976; https://doi.org/10.3390/molecules30142976 - 15 Jul 2025
Viewed by 148
Abstract
The health-promoting activity of radish microgreens after consumption depends on their bioaccessibility and bioavailability. In this study, we compared the composition of phenolic compounds, their cytoprotective and anti-inflammatory activities in cell lines, and antioxidant properties of the undigested radish microgreens with their fractions [...] Read more.
The health-promoting activity of radish microgreens after consumption depends on their bioaccessibility and bioavailability. In this study, we compared the composition of phenolic compounds, their cytoprotective and anti-inflammatory activities in cell lines, and antioxidant properties of the undigested radish microgreens with their fractions obtained after simulated in vitro digestion in the stomach, as well as in the small and large intestine. The results have demonstrated higher levels of total phenolics (by 70.35%) and total hydroxycinnamic acids (3.5 times increase), an increase in scavenging efficiency toward ABTS•+ and superoxide anion radicals, and an increase in the reduction potential (FRAP method) in the gastric bioaccessible fraction. In contrast, small intestinal digestion negatively affected phenolic content (a reduction of 53.30–75.63%), except for total hydroxycinnamic acids (3-fold increase). Incubation of the non-bioavailable fraction with bacterial enzymes led to further degradation. Undigested microgreens had no negative impact on Caco-2, HT-29, and SH-SY5Y cells’ metabolism at 0.05–2 mg/mL, while all digested samples at 1 mg/mL revealed their cytotoxic potential. All samples used at a non-cytotoxic concentration showed protective activity against H2O2 and corticosterone-induced oxidative stress generation as well as reduced proinflammatory cytokines production. Overall, radish microgreens may exhibit a broad spectrum of biological activities when consumed. Full article
Show Figures

Graphical abstract

23 pages, 846 KiB  
Review
Multifaceted Marine Peptides and Their Therapeutic Potential
by Svetlana V. Guryanova and Tatiana V. Ovchinnikova
Mar. Drugs 2025, 23(7), 288; https://doi.org/10.3390/md23070288 - 15 Jul 2025
Viewed by 429
Abstract
Marine peptides, derived from a great number of aquatic organisms, exhibit a broad spectrum of biological activities that hold a significant therapeutic potential. This article reviews the multifaceted roles of marine peptides, focusing on their antibacterial, antibiofilm, antifungal, antiviral, antiparasitic, cytotoxic, anticancer, immunomodulatory, [...] Read more.
Marine peptides, derived from a great number of aquatic organisms, exhibit a broad spectrum of biological activities that hold a significant therapeutic potential. This article reviews the multifaceted roles of marine peptides, focusing on their antibacterial, antibiofilm, antifungal, antiviral, antiparasitic, cytotoxic, anticancer, immunomodulatory, chemotactic, opsonizing, anti-inflammatory, antiaging, skin-protective, and wound-healing properties. By elucidating mechanisms of their action and highlighting key research findings, this review aims to provide a comprehensive understanding of possible therapeutic applications of marine peptides, underscoring their importance in developing novel drugs as well as in cosmetology, food industry, aquatic and agriculture biotechnology. Further investigations are essential to harness their therapeutic potential and should focus on detailed mechanism studies, large-scale production, and clinical evaluations with a view to confirm their efficacy and safety and translate these findings into practical applications. It is also important to investigate the potential synergistic effects of marine peptide combinations with existing medicines to enhance their efficacy. Challenges include the sustainable sourcing of marine peptides, and therefore an environmental impact of harvesting marine organisms must be considered as well. Full article
Show Figures

Figure 1

17 pages, 3865 KiB  
Article
Epoxy Resin/Ionic Liquid Composite as a New Promising Coating Material with Improved Toughness and Antibiofilm Activity
by Sergiy Rogalsky, Olena Moshynets, Oleg Dzhuzha, Yevheniia Lobko, Anastasiia Hubina, Alina Madalina Darabut, Yaroslav Romanenko, Oksana Tarasyuk and Geert Potters
Coatings 2025, 15(7), 821; https://doi.org/10.3390/coatings15070821 - 14 Jul 2025
Viewed by 356
Abstract
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and [...] Read more.
Long-chain imidazolium-based ionic liquids (ILs) possess a broad-spectrum biological activity and are considered promising antifouling agents for protective coatings. A new hydrophobic IL, 1-dodecyl-3-methylimidazolium dodecylbenzenesulfonate (C12C1IM-DBS), has been synthesized, and a modified epoxy coating material containing 10, 20, and 30 wt% of this IL was prepared by dissolution of C12C1IM-DBS in commercial DER 331 epoxy resin, followed by a curing phase with diethylenetriamine. Infrared analysis revealed physicochemical interactions between the hydroxyl groups of the resin and the IL. Spectrophotometric studies showed no release of C12C1IM-DBS after 30 days of exposure of the modified coatings to water. The plasticizing effect of the IL on the epoxy resin was established by differential scanning calorimetry analysis. The introduction of 10 and 20% C12C1IM-DBS into DER 331 reduced its glass transition temperature from 122.8 °C to 109.3 and 91.5 °C, respectively. The hardness of epoxy resin decreased by approximately 26% after the introduction of the IL. Moreover, DER 331/C12C1IM-DBS coatings on steel substrates showed significantly improved impact resistance compared to neat resin. The antibiofilm efficiency of DER 331/C12C1IM-DBS coatings was evaluated by assessing the capability of two biofilm-forming model strains, Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa PA01, to form attached biofilms on the surface. The IL effectively inhibited S. aureus surface-associated biofilm development even at the lowest content of 10%. On the contrary, an approximately 50% inhibition of biofilm metabolic activity was detected for DER 331/C12C1IM-DBS coatings containing 20% and 30% of the IL. Overall, the results of this study indicate that the hydrophobic IL C12C1IM-DBS is an efficient modifying additive for epoxy resins, which can significantly improve their operational properties for various industrial applications. Full article
Show Figures

Figure 1

23 pages, 4667 KiB  
Article
An Experimental Study on the Charging Effects and Atomization Characteristics of a Two-Stage Induction-Type Electrostatic Spraying System for Aerial Plant Protection
by Yufei Li, Qingda Li, Jun Hu, Changxi Liu, Shengxue Zhao, Wei Zhang and Yafei Wang
Agronomy 2025, 15(7), 1641; https://doi.org/10.3390/agronomy15071641 - 5 Jul 2025
Viewed by 291
Abstract
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and [...] Read more.
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and electrostatic induction, and, through the integration of three-dimensional numerical simulation and additive manufacturing technology, a new two-stage inductive charging device was designed on the basis of the traditional hydrodynamic nozzle structure, and a synergistic optimization study of the charging effect and atomization characteristics was carried out systematically. With the help of a charge ratio detection system and Malvern laser particle sizer, spray pressure (0.25–0.35 MPa), charging voltage (0–16 kV), and spray height (100–1000 mm) were selected as the key parameters, and the interaction mechanism of each parameter on the droplet charge ratio (C/m) and the particle size distribution (Dv50) was analyzed through the Box–Behnken response surface experimental design. The experimental data showed that when the charge voltage was increased to 12 kV, the droplet charge-to-mass ratio reached a peak value of 1.62 mC/kg (p < 0.01), which was 83.6% higher than that of the base condition; the concentration of the particle size distribution of the charged droplets was significantly improved; charged droplets exhibited a 23.6% reduction in Dv50 (p < 0.05) within the 0–200 mm core atomization zone below the nozzle, with the coefficient of variation of volume median diameter decreasing from 28.4% to 16.7%. This study confirms that the two-stage induction structure can effectively break through the charge saturation threshold of traditional electrostatic spraying, which provides a theoretical basis and technical support for the optimal design of electrostatic spraying systems for plant protection UAVs. This technology holds broad application prospects in agricultural settings such as orchards and farmlands. It can significantly enhance the targeted deposition efficiency of pesticides, reducing drift losses and chemical usage, thereby enabling agricultural enterprises to achieve practical economic benefits, including reduced operational costs, improved pest control efficacy, and minimized environmental pollution, while generating environmental benefits. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

23 pages, 8170 KiB  
Article
Diammonium Glycyrrhizinate Exerts Broad-Spectrum Antiviral Activity Against Human Coronaviruses by Interrupting Spike-Mediated Cellular Entry
by Shuo Wu, Ge Yang, Kun Wang, Haiyan Yan, Huiqiang Wang, Xingqiong Li, Lijun Qiao, Mengyuan Wu, Ya Wang, Jian-Dong Jiang and Yuhuan Li
Int. J. Mol. Sci. 2025, 26(13), 6334; https://doi.org/10.3390/ijms26136334 - 30 Jun 2025
Viewed by 290
Abstract
Glycyrrhizic acid (GA) and its derivatives have been reported to have potent pharmacological effects against viral infections, including SARS-CoV and SARS-CoV-2. However, their antiviral mechanisms against coronaviruses are not fully understood. In this study, we found that diammonium glycyrrhizinate (DG) can effectively reduce [...] Read more.
Glycyrrhizic acid (GA) and its derivatives have been reported to have potent pharmacological effects against viral infections, including SARS-CoV and SARS-CoV-2. However, their antiviral mechanisms against coronaviruses are not fully understood. In this study, we found that diammonium glycyrrhizinate (DG) can effectively reduce infections of several human coronaviruses, including HCoV-OC43, HCoV-229E, and SARS-CoV-2, as well as newly emerged variants, with EC50 values ranging from 115 to 391 μg/mL being recorded. Time-of-addition and pseudotype virus infection studies indicated that DG treatment dramatically inhibits the process of virus entry into cells. Furthermore, we demonstrated that DG broadly binds to the RBD of human coronaviruses, thereby blocking spike-mediated cellular entry, by using TR-FRET-based receptor-binding domain (RBD)-ACE2 interaction assay, capillary electrophoresis (CE), and surface plasmon resonance (SPR) assay. In support of this notion, studies of molecular docking and amino acid mutation showed that DG may directly bind to a conserved hydrophobic pocket of the RBD of coronaviruses. Importantly, intranasal administration of DG had a significant protective effect against viral infection in a HCoV-OC43 mouse model. Finally, we found that combinations of DG and other coronavirus inhibitors exhibited antiviral synergy. In summary, our studies strongly reveal that DG exerts broad-spectrum antiviral activity against human coronaviruses by interrupting spike-mediated cellular entry, demonstrating the pharmacological feasibility of using DG as a candidate for alternative treatment and prevention of coronavirus infection. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 1874 KiB  
Article
A Novel Trivalent BVDV mRNA Vaccine Displayed by Virus-like Particles Eliciting Potent and Broad-Spectrum Antibody Responses
by Shi Xu, Jing Li, Mengwei Xu, Yafei Cai, Yingjuan Qian, Rui Liu, Qing He, Caiyi Fei, Aili Wang, Keyue Ruan, Shang Liu, Wei Geng, Xu Gao, Huiling Chen and Tiyun Han
Vaccines 2025, 13(7), 691; https://doi.org/10.3390/vaccines13070691 - 26 Jun 2025
Viewed by 403
Abstract
Background/Objectives: Bovine viral diarrhea virus (BVDV) causes significant economic losses in the cattle industry worldwide. The current vaccines have limited efficacy against diverse BVDV genotypes. Currently, multi-antigen target design and nanocarrier display technologies can provide ideas for broad-spectrum and efficient BVDV vaccine [...] Read more.
Background/Objectives: Bovine viral diarrhea virus (BVDV) causes significant economic losses in the cattle industry worldwide. The current vaccines have limited efficacy against diverse BVDV genotypes. Currently, multi-antigen target design and nanocarrier display technologies can provide ideas for broad-spectrum and efficient BVDV vaccine design. Methods: Here we developed a trivalent mRNA vaccine encoding the domains I-II of envelope glycoprotein E2 from three BVDV genotypes (3E2), introduced with bovine IgG1 Fc (bFc), STABILON (hStab), and artificial virus-like particle (ARVLP) containing CD80 transmembrane (TM) domain, FcγRII cytoplasmic domain, and WW domain of ITCH. Then, in vitro expression, in vivo immunogenicity and neutralizing antibody analysis were performed to evaluate the vaccines. Results: The in vitro expression results showed that bFc and hStab dramatically enhanced antigen expression and immunogenicity. In addition, the ARVLP further enhanced the secretion and potency of neutralizing antibodies. Finally, the immunogenicity of the bFc_BVDV_3E2_ARVLP_hStab mRNA vaccine was evaluated in mice, guinea pigs, and lactating goats and high levels of neutralizing antibodies against all three BVDV genotypes were detected. Conclusions: Our trivalent design strategy with bFc, hStab, and ARVLP shows highly efficient expression as well as strong immunogenicity and provides a promising approach for next-generation BVDV vaccines with broader and stronger protection. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Figure 1

35 pages, 3359 KiB  
Article
GSH/pH-Responsive Chitosan–PLA Hybrid Nanosystems for Targeted Ledipasvir Delivery to HepG2 Cells: Controlled Release, Improved Selectivity, DNA Interaction, Electrochemical and Stopped-Flow Kinetics Analyses
by Ahmed M. Albasiony, Amr M. Beltagi, Mohamed M. Ibrahim, Shaban Y. Shaban and Rudi van Eldik
Int. J. Mol. Sci. 2025, 26(13), 6070; https://doi.org/10.3390/ijms26136070 - 24 Jun 2025
Viewed by 460
Abstract
This study aimed to design dual-responsive chitosan–polylactic acid nanosystems (PLA@CS NPs) for controlled and targeted ledipasvir (LED) delivery to HepG2 liver cancer cells, thereby reducing the systemic toxicity and improving the therapeutic selectivity. Two formulations were developed utilizing ionotropic gelation and w/ [...] Read more.
This study aimed to design dual-responsive chitosan–polylactic acid nanosystems (PLA@CS NPs) for controlled and targeted ledipasvir (LED) delivery to HepG2 liver cancer cells, thereby reducing the systemic toxicity and improving the therapeutic selectivity. Two formulations were developed utilizing ionotropic gelation and w/o/w emulsion techniques: LED@CS NPs with a size of 143 nm, a zeta potential of +43.5 mV, and a loading capacity of 44.1%, and LED-PLA@CS NPs measuring 394 nm, with a zeta potential of +33.3 mV and a loading capacity of 89.3%, with the latter demonstrating significant drug payload capacity. Since most drugs work through interaction with DNA, the in vitro affinity of DNA to LED and its encapsulated forms was assessed using stopped-flow and other approaches. They bind through multi-modal electrostatic and intercalative modes via two reversible processes: a fast complexation followed by a slow isomerization. The overall binding activation parameters for LED (cordination affinity, Ka = 128.4 M−1, Kd = 7.8 × 10−3 M, ΔG = −12.02 kJ mol−1), LED@CS NPs (Ka = 2131 M−1, Kd = 0.47 × 10−3 M, ΔG = −18.98 kJ mol−1) and LED-PLA@CS NPs (Ka = 22026 M−1, Kd = 0.045 × 10−3 M, ΔG = −24.79 kJ mol−1) were obtained with a reactivity ratio of 1/16/170 (LED/LED@CS NPs/LED-PLA@CS NPs). This indicates that encapsulation enhanced the interaction between the DNA and the LED-loaded nanoparticle systems, without changing the mechanism, and formed thermodynamically stable complexes. The drug release kinetics were assessed under tumor-mimetic conditions (pH 5.5, 10 mM GSH) and physiological settings (pH 7.4, 2 μM GSH). The LED@CS NPs and LED-PLA@CS NPs exhibited drug release rates of 88.0% and 73%, respectively, under dual stimuli over 50 h, exceeding the release rates observed under physiological conditions, which were 58% and 54%, thereby indicating that the LED@CS NPs and LED-PLA@CS NPs systems specifically target malignant tissue. Release regulated by Fickian diffusion facilitates tumor-specific payload delivery. Although encapsulation did not enhance the immediate cytotoxicity compared to free LED, as demonstrated by an in vitro cytotoxicity in HepG2 cancer cell lines, it significantly enhanced the therapeutic index (2.1-fold for LED-PLA@CS NPs) by protecting non-cancerous cells. Additionally, the nanoparticles demonstrated broad-spectrum antibacterial effects, suggesting efficacy in the prevention of chemotherapy-related infections. The dual-responsive LED-PLA@CS NPs allowed controlled tumor-targeted LED delivery with better selectivity and lower off-target toxicity, making LED-PLA@CS NPs interesting candidates for repurposing HCV treatments into safer cancer nanomedicines. Furthermore, this thorough analysis offers useful reference information for comprehending the interaction between drugs and DNA. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

19 pages, 5677 KiB  
Article
Toxicological Effects of Glufosinate-Ammonium-Containing Commercial Formulations on Biomphalaria glabrata in Aquatic Environments: A Multidimensional Study from Embryotoxicity to Histopathology
by Yuncheng Qian, Jialu Xu, Yilu Feng, Ruiqi Weng, Keda Chen, Hezheng Zheng, Xianwei Li, Qingzhi Zhao, Xiaofen Zhang and Hongyu Li
Toxics 2025, 13(7), 528; https://doi.org/10.3390/toxics13070528 - 24 Jun 2025
Viewed by 551
Abstract
Glufosinate-ammonium (GLA) is a broad-spectrum herbicide widely used for weed control. However, its potential toxic effects on non-target aquatic organisms, especially in freshwater ecosystems, are of growing concern. This study investigates the toxic effects of GLA on Biomphalaria glabrata, a freshwater snail [...] Read more.
Glufosinate-ammonium (GLA) is a broad-spectrum herbicide widely used for weed control. However, its potential toxic effects on non-target aquatic organisms, especially in freshwater ecosystems, are of growing concern. This study investigates the toxic effects of GLA on Biomphalaria glabrata, a freshwater snail highly sensitive to environmental pollutants and commonly used as a model organism in toxicological studies. Acute toxicity tests revealed that the 96-h LC50 of GLA for adult snails was 3.77 mg/L, indicating moderate toxicity, while the LC50 for embryos was 0.01576 mg/L, indicating extremely high toxicity. Chronic exposure experiments further showed that at high concentrations (0.5 mg/L), the shell diameter and body weight of the snails not only failed to increase but also decreased, and they ceased to lay eggs. Moreover, their hepatopancreas and gonads suffered significant damage. Even at an environmentally relevant concentration of 0.05 mg/L, the body length, body weight, and reproductive capacity of the snails were inhibited, and damage to the hepatopancreas and gonads was observed. These findings provide important data for assessing the potential risks of GLA to aquatic ecosystems and offer a scientific basis for formulating environmental protection policies and optimizing herbicide usage standards. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

15 pages, 5419 KiB  
Article
Exploring the Antimicrobial and Immunomodulatory Potential of Gecko-Derived Cathelicidin Gj-CATH5
by Shasha Cai, Ningyang Gao, Junhan Wang and Jing Li
Biomolecules 2025, 15(7), 908; https://doi.org/10.3390/biom15070908 - 20 Jun 2025
Viewed by 383
Abstract
Regulating the innate immune response against infections, particularly drug-resistant bacteria, is a key focus in anti-infection therapy. Cathelicidins, found in vertebrates, are crucial for pathogen resistance. Few studies have explored gecko cathelicidins’ anti-infection properties. Recently, five new cathelicidins (Gj-CATH1-5) were identified in Gekko [...] Read more.
Regulating the innate immune response against infections, particularly drug-resistant bacteria, is a key focus in anti-infection therapy. Cathelicidins, found in vertebrates, are crucial for pathogen resistance. Few studies have explored gecko cathelicidins’ anti-infection properties. Recently, five new cathelicidins (Gj-CATH1-5) were identified in Gekko japonicus. The peptide Gj-CATH5, from G. japonicus, shows promise against Pseudomonas aeruginosa through various mechanisms. This study examined Gj-CATH5’s protective effects using in vitro and in vivo models, finding that it significantly reduced bacterial load in a mouse infection model when administered before or shortly after infection. Flow cytometry and the plate counting method showed that Gj-CATH5 boosts neutrophil and macrophage activity, enhancing chemotaxis, phagocytosis, and bactericidal functions. Gj-CATH5 increases ROS production, MPO activity, and NET formation, aiding pathogen clearance. Its amphipathic α-helical structure supports broad-spectrum bactericidal activity (MBC: 4–8 μg/mL) against Gram-negative and antibiotic-resistant bacteria. Gj-CATH5 is minimally cytotoxic (<8% hemolysis at 200 μg/mL) and preserves cell viability at therapeutic levels. These results highlight Gj-CATH5’s dual role in pathogen elimination and immune modulation, offering a promising approach to combat multidrug-resistant infections while reducing inflammation. This study enhances the understanding of reptilian cathelicidins and lays the groundwork for peptide-based immune therapies against difficult bacterial infections. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

41 pages, 1829 KiB  
Review
Evolving SARS-CoV-2 Vaccines: From Current Solutions to Broad-Spectrum Protection
by Rui Qiao, Jiayan Li, Jiami Gong, Yuchen Shao, Jizhen Yu, Yumeng Chen, Yinying Lu, Luxuan Yang, Luanfeng Lin, Zixin Hu, Pengfei Wang, Xiaoyu Zhao and Wenhong Zhang
Vaccines 2025, 13(6), 635; https://doi.org/10.3390/vaccines13060635 - 12 Jun 2025
Viewed by 3198
Abstract
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants of concern (VOCs) underscore the critical role of vaccination in pandemic control. These mutations not only enhance viral infectivity but also facilitate immune evasion and diminish vaccine [...] Read more.
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants of concern (VOCs) underscore the critical role of vaccination in pandemic control. These mutations not only enhance viral infectivity but also facilitate immune evasion and diminish vaccine efficacy, necessitating ongoing surveillance and vaccine adaptation. Current SARS-CoV-2 vaccines, including inactivated, live-attenuated, viral vector, protein subunit, virus-like particle, and nucleic acid vaccines, face challenges due to the immune evasion strategies of emerging variants. Moreover, other sarbecoviruses, such as SARS-CoV-1 and SARS-related coronaviruses (SARSr-CoVs) pose a potential risk for future outbreaks. Thus, developing vaccines capable of countering emerging SARS-CoV-2 variants and providing broad protection against multiple sarbecoviruses is imperative. Several innovative vaccine platforms are being investigated to elicit broad-spectrum neutralizing antibody responses, offering protection against both current SARS-CoV-2 variants and other sarbecoviruses. This review presents an updated overview of the key target antigens and therapeutic strategies employed in current SARS-CoV-2 vaccines. Additionally, we summarize ongoing approaches for the development of vaccines targeting infectious sarbecoviruses. Full article
(This article belongs to the Special Issue Vaccination-Induced Antibody and B Cell Immune Response)
Show Figures

Figure 1

23 pages, 4254 KiB  
Article
In Silico Designed Multi-Epitope Vaccine Based on the Conserved Fragments in Viral Proteins for Broad-Spectrum Protection Against Porcine Reproductive and Respiratory Syndrome Virus
by Shaukat Ullah, Hikmat Ullah, Kainat Fatima and Tan Lei
Vet. Sci. 2025, 12(6), 577; https://doi.org/10.3390/vetsci12060577 - 12 Jun 2025
Viewed by 783
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major viral threat to swine, causing significant economic loss in the global pig farming industry. This virus includes two major genotypes, PRRSV1 and PRRSV2, both characterized by high mutation rates and genetic variability, complicating [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a major viral threat to swine, causing significant economic loss in the global pig farming industry. This virus includes two major genotypes, PRRSV1 and PRRSV2, both characterized by high mutation rates and genetic variability, complicating the development of a universally effective vaccine and disease control. To address this challenge, this study utilizes immunoinformatics tools to identify conserved epitopes and design a multi-epitope vaccine candidate against PRRSV based on reverse vaccinology. The complete sequences of PRRSV-encoded proteins were retrieved worldwide, and the conserved fragments were identified through the alignment of polypeptide sequences. Subsequent screening was conducted to screen epitopes for their potential to be safe and to activate B cells, HTLs (helper T cells), and CTLs (cytotoxic T cells). By conjugating the selected epitopes with distinct adjuvant proteins, three vaccine candidates were designed and termed PRRSV-vaccine (PRRSV-V-1, PRRSV-V-2, and PRRSV-V-3, respectively). Furthermore, systematic evaluations of their physicochemical properties, structural stability, binding with pattern recognition receptors, and induction of the host immune system were performed. PRRSV-V-2 had the most promising physicochemical and structural characteristics, strong binding with toll-like receptors (TLR3 and TLR8), and the most vigorous reactions to host immune responses. As the most promising candidate, the recombinant PRRSV plasmid was in silico designed for expression in Escherichia coli. Our study proposed a novel approach to PRRSV vaccine development against PRRSV, offering a promising strategy for controlling the infection across diverse PRRSV strains in swine. Despite providing significant insights into vaccine design through computational methods, the results of this study remain predictive. So, it is open for the experimental validations of the scientific community to ensure its actual immunological properties, especially the safety and efficacy. Full article
Show Figures

Figure 1

14 pages, 594 KiB  
Systematic Review
In Vivo Evidence of Melatonin’s Protective Role in Alkylating-Agent-Induced Pulmonary Toxicity: A Systematic Review
by Emma Sola, Jose A. Morales-García, Francisco López-Muñoz, Eva Ramos and Alejandro Romero
Antioxidants 2025, 14(6), 712; https://doi.org/10.3390/antiox14060712 - 11 Jun 2025
Viewed by 463
Abstract
Alkylating agents, historically employed as chemical warfare agents and currently used as chemotherapeutic drugs, are known to induce significant pulmonary toxicity. Current clinical interventions often fail to fully prevent or reverse these pathological changes, highlighting the urgent need for safe, broad-spectrum therapeutic agents [...] Read more.
Alkylating agents, historically employed as chemical warfare agents and currently used as chemotherapeutic drugs, are known to induce significant pulmonary toxicity. Current clinical interventions often fail to fully prevent or reverse these pathological changes, highlighting the urgent need for safe, broad-spectrum therapeutic agents that are effective across diverse exposure scenarios. Melatonin has emerged as a promising protective agent due to its antioxidant, anti-inflammatory, and immunomodulatory properties, along with a well-established safety profile. This systematic review evaluates the potential of melatonin in mitigating vesicant-induced pulmonary damage, synthesizing and critically analyzing preclinical evidence in accordance with the PRISMA guidelines. Three in vivo rodent studies met the inclusion criteria and were analyzed. In all cases, melatonin demonstrated protective effects against alkylating agents such as mechlorethamine (HN2) and cyclophosphamide (CP). These effects were dose-dependent and observed across various animal models, administration protocols, and dosages (ranging from 2.5 to 100 mg/kg), highlighting the importance of context-specific considerations. The human equivalent doses (HEDs) ranged from 12 to 973 mg per day, suggesting that the effective doses may exceed those typically used in clinical trials for other conditions. Melatonin’s pleiotropic mechanisms, including a reduction in oxidative stress, the modulation of inflammatory pathways, and support for tissue repair, reinforce its therapeutic potential in both prophylactic and treatment settings for alkylating agent exposure. Nonetheless, this review underscores the critical need for further randomized clinical trials to establish the optimal dosing strategies, refine treatment protocols, and fully elucidate melatonin’s role in managing alkylating-agent-induced pulmonary toxicity. Full article
(This article belongs to the Special Issue Antioxidant Actions of Melatonin)
Show Figures

Figure 1

Back to TopTop