Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,086)

Search Parameters:
Keywords = boil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1119 KiB  
Article
The Impact of Storage Time and Reheating Method on the Quality of a Precooked Lamb-Based Dish
by Zhihao Yang, Chenlei Wang, Ye Jin, Wenjia Le, Liang Zhang, Lifei Wang, Bo Zhang, Yueying Guo, Min Zhang and Lin Su
Foods 2025, 14(15), 2748; https://doi.org/10.3390/foods14152748 (registering DOI) - 6 Aug 2025
Abstract
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis [...] Read more.
Ready-to-eat meat products face quality challenges during storage and reheating. This study aimed to (i) characterize the physicochemical/microbiological changes in stewed mutton during storage (4 °C/−18 °C, 0–28 days) and (ii) evaluate reheating methods (boiling vs. microwaving) on day-7 samples. The nutritional analysis confirmed moisture reduction (57.32 vs. 72.12 g/100 g)-concentrated protein/fat levels. Storage at −18 °C suppressed microbial growth (the total plate count (TPC), 3.73 vs. 4.80 log CFU/g at 28 days; p < 0.05) and lipid oxidation (thiobarbituric acid reactive substances (TBARS): 0.14 vs. 0.19 mg/kg) more effectively than storage at 4 °C. The total volatile basic nitrogen (TVB-N) kinetics projected a shelf life ≥90 days (4 °C) and ≥120 days (−18 °C). Microwave reheating after frozen storage (−18 °C) maximized the yield (86.21% vs. 75.90% boiling; p < 0.05) and preserved volatile profiles closest to those in the fresh samples (gas chromatography–mass spectrometry (GC-MS)/electronic nose). The combination of freezing storage and subsequent microwave reheating has been demonstrated to be an effective method for preserving the quality of a precooked lamb dish, thereby ensuring its nutritional value. Full article
Show Figures

Graphical abstract

21 pages, 4392 KiB  
Article
Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles
by Yi-Nan Zhang, Guo-Qing Huang, Lu-Ming Zhao and Hong-Xia Chen
Energies 2025, 18(15), 4152; https://doi.org/10.3390/en18154152 - 5 Aug 2025
Abstract
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation [...] Read more.
The evaporation dynamics of droplets on smooth and inclined micro-pillar surfaces were experimentally investigated. The surface temperature was increased from 50 °C to 120 °C, with the inclination angles being 0°, 30°, 45°, and 60° respectively. The dynamic parameters, including contact area, nucleation density, bubble stable diameter, and droplet asymmetry, were recorded using two high-speed video cameras, and the corresponding evaporation performance was analyzed. Experimental results showed that the inclination angle had a significant influence on the evaporation of micro-pillar surfaces than smooth surfaces as well as a positive correlation between the enhancement performance of the micro-pillars and increasing inclination angles. This angular dependence arises from surface inclination-induced tail elongation and the corresponding asymmetry of droplets. With definition of the one-dimensional asymmetry factor (ε) and volume asymmetry factor (γ), it was proven that although the asymmetric thickness of the droplets reduces the nucleation density and bubble stable diameter, the droplet asymmetry significantly increased the heat exchange area, resulting in a 37% improvement in the evaporation rate of micro-pillar surfaces and about a 15% increase in its enhancement performance to smooth surfaces when the inclination angle increased from 0°to 60°. These results indicate that asymmetry causes changes in heat transfer conditions, specifically, a significant increase in the wetted area and deformation of the liquid film, which are the direct enhancement mechanisms of inclined micro-pillar surfaces. Full article
(This article belongs to the Special Issue Advancements in Heat Transfer and Fluid Flow for Energy Applications)
Show Figures

Figure 1

16 pages, 3000 KiB  
Article
Metabolic Variations in Bamboo Shoot Boiled Liquid During Pediococcus pentosaceus B49 Fermentation
by Juqing Huang, Meng Sun, Xuefang Guan, Lingyue Zhong, Jie Li, Qi Wang and Shizhong Zhang
Foods 2025, 14(15), 2731; https://doi.org/10.3390/foods14152731 - 5 Aug 2025
Abstract
Bamboo shoot boiled liquid (BSBL), a processing byproduct containing soluble proteins, peptides, amino acids, carbohydrates, and phenolics, is typically discarded, causing resource waste and environmental issues. This study analyzed metabolic changes in BSBL during Pediococcus pentosaceus B49 fermentation. The result of partial least [...] Read more.
Bamboo shoot boiled liquid (BSBL), a processing byproduct containing soluble proteins, peptides, amino acids, carbohydrates, and phenolics, is typically discarded, causing resource waste and environmental issues. This study analyzed metabolic changes in BSBL during Pediococcus pentosaceus B49 fermentation. The result of partial least squares discriminant analysis (PLS-DA) revealed significant metabolite profile differences across fermentation times (0 h, 24 h, 48 h, 72 h, 96 h). The most substantial alterations occurred within the first 24 h, followed by stabilization. Compared to unfermented BSBL, fermented samples exhibited significantly elevated signal intensities for 5,7-dimethoxyflavone, cinnamic acid, 3,4-dihydro-2H-1-benzopyran-2-one, 6,8-dimethyl-4-hydroxycoumarin, and 2-hydroxycinnamic acid (p < 0.05), showing upward trends over time. Conversely, (+)-gallocatechin intensity decreased gradually. Bitter peptides, such as alanylisoleucine, isoleucylisoleucine, leucylvaline, and phenylalanylisoleucine, in BSBL exhibited a significant reduction following fermentation with P. pentosaceus B49 (p < 0.05). KEGG enrichment indicated tyrosine metabolism (ko00350) and arginine/proline metabolism (ko00330) as the most impacted pathways. These findings elucidate metabolic regulation in BSBL fermentation, supporting development of functional fermented bamboo products. Full article
Show Figures

Figure 1

14 pages, 2310 KiB  
Article
A High-Fidelity Model of the Peach Bottom 2 Turbine-Trip Benchmark Using VERA
by Nicholas Herring, Robert Salko and Mehdi Asgari
J. Nucl. Eng. 2025, 6(3), 28; https://doi.org/10.3390/jne6030028 - 4 Aug 2025
Abstract
This work presents a high-fidelity simulation of the Peach Bottom turbine trip (PBTT) benchmark using the Virtual Environment for Reactor Applications (VERA), a multiphysics reactor modeling tool developed by the U.S. Department of Energy’s Consortium for Advanced Simulation of Light Water Reactors energy [...] Read more.
This work presents a high-fidelity simulation of the Peach Bottom turbine trip (PBTT) benchmark using the Virtual Environment for Reactor Applications (VERA), a multiphysics reactor modeling tool developed by the U.S. Department of Energy’s Consortium for Advanced Simulation of Light Water Reactors energy innovation hub. The PBTT benchmark, based on a 1977 transient event at the end of cycle 2 in a General Electric Type-4 boiling water reactor (BWR), is a critical test case for validating core physics models with thermal feedback during rapid reactivity events. VERA was employed to perform end-to-end, pin-resolved simulations from conditions at the beginning of cycle 1 through the turbine-trip transient, incorporating detailed neutron transport, fuel depletion, and subchannel thermal hydraulics. The simulation reproduced key benchmark observables with high accuracy: the peak power excursion occurred at 0.75 s, matching the scram time and closely aligning with the benchmark average of 0.742 s; the simulated maximum power spike was approximately 7600 MW, which is within 3% of the benchmark average of 7400 MW; and void-collapse dynamics were consistent with benchmark expectations. Reactivity predictions during cycles 1 and 2 remained within 1500 pcm and 400 pcm of criticality, respectively. These results confirm VERA’s ability to model complex coupled neutronic and thermal hydraulic behavior in a BWR turbine-trip transient, which will support its use in future studies of modeling dryout, fuel performance, and uncertainty quantification for transients of this type. Full article
(This article belongs to the Special Issue Validation of Code Packages for Light Water Reactor Physics Analysis)
Show Figures

Figure 1

17 pages, 6882 KiB  
Article
Development and Evaluation of a Solar Milk Pasteurizer for the Savanna Ecological Zones of West Africa
by Iddrisu Ibrahim, Paul Tengey, Kelci Mikayla Lawrence, Joseph Atia Ayariga, Fortune Akabanda, Grace Yawa Aduve, Junhuan Xu, Robertson K. Boakai, Olufemi S. Ajayi and James Owusu-Kwarteng
Solar 2025, 5(3), 38; https://doi.org/10.3390/solar5030038 - 4 Aug 2025
Abstract
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of [...] Read more.
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of soil fertility, which, in turn, compromise environmental health and food security. Solar pasteurization provides a reliable and sustainable method for thermally inactivating pathogenic microorganisms in milk and other perishable foods at sub-boiling temperatures, preserving its nutritional quality. This study aimed to evaluate the thermal and microbial performance of a low-cost solar milk pasteurization system, hypothesized to effectively reduce microbial contaminants and retain milk quality under natural sunlight. The system was constructed using locally available materials and tailored to the climatic conditions of the Savanna ecological zone in West Africa. A flat-plate glass solar collector was integrated with a 0.15 cm thick stainless steel cylindrical milk vat, featuring a 2.2 cm hot water jacket and 0.5 cm thick aluminum foil insulation. The system was tested in Navrongo, Ghana, under ambient temperatures ranging from 30 °C to 43 °C. The pasteurizer successfully processed up to 8 L of milk per batch, achieving a maximum milk temperature of 74 °C by 14:00 GMT. Microbial analysis revealed a significant reduction in bacterial load, from 6.6 × 106 CFU/mL to 1.0 × 102 CFU/mL, with complete elimination of coliforms. These results confirmed the device’s effectiveness in achieving safe pasteurization levels. The findings demonstrate that this locally built solar pasteurization system is a viable and cost-effective solution for improving milk safety in arid, electricity-limited regions. Its potential scalability also opens avenues for rural entrepreneurship in solar-powered food and water treatment technologies. Full article
Show Figures

Figure 1

14 pages, 3520 KiB  
Article
Design and Fabrication of Embedded Microchannel Cooling Solutions for High-Power-Density Semiconductor Devices
by Yu Fu, Guangbao Shan, Xiaofei Zhang, Lizheng Zhao and Yintang Yang
Micromachines 2025, 16(8), 908; https://doi.org/10.3390/mi16080908 (registering DOI) - 4 Aug 2025
Viewed by 66
Abstract
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of [...] Read more.
The rapid development of high-power-density semiconductor devices has rendered conventional thermal management techniques inadequate for handling their extreme heat fluxes. This manuscript presents and implements an embedded microchannel cooling solution for such devices. By directly integrating micropillar arrays within the near-junction region of the substrate, efficient forced convection and flow boiling mechanisms are achieved. Finite element analysis was first employed to conduct thermo–fluid–structure simulations of micropillar arrays with different geometries. Subsequently, based on our simulation results, a complete multilayer microstructure fabrication process was developed and integrated, including critical steps such as deep reactive ion etching (DRIE), surface hydrophilic/hydrophobic functionalization, and gold–stannum (Au-Sn) eutectic bonding. Finally, an experimental test platform was established to systematically evaluate the thermal performance of the fabricated devices under heat fluxes of up to 1200 W/cm2. Our experimental results demonstrate that this solution effectively maintains the device operating temperature at 46.7 °C, achieving a mere 27.9 K temperature rise and exhibiting exceptional thermal management capabilities. This manuscript provides a feasible, efficient technical pathway for addressing extreme heat dissipation challenges in next-generation electronic devices, while offering notable references in structural design, micro/nanofabrication, and experimental validation for related fields. Full article
Show Figures

Figure 1

16 pages, 1650 KiB  
Article
Profiling of Disubstituted Chloroacetamides’ Potential Biological Activity by Liquid Chromatography
by Suzana Apostolov, Dragana Mekić, Marija Mitrović, Slobodan Petrović and Gyöngyi Vastag
Organics 2025, 6(3), 35; https://doi.org/10.3390/org6030035 - 4 Aug 2025
Viewed by 61
Abstract
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to [...] Read more.
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to toxicity risks. Since the pharmacokinetic behavior and toxicity of a compound are influenced by its lipophilicity, this essential physicochemical parameter for disubstituted chloroacetamides was determined in silico and experimentally through thin-layer chromatography on reversed phases (RPTLC C18/UV254s) in mixtures of water and distinct organic modifiers. The pharmacokinetic profile of chloroacetamides was analyzed by using the BOILED-Egg model. The correlation between the obtained chromatographic parameters and software-based lipophilicity, pharmacokinetic, and ecotoxicity predictors of the studied chloroacetamides was assessed by using linear regression, but more comprehensive insight was obtained through multivariate methods—Cluster Analysis and Principal Component Analysis. It was observed that the total number of carbon atoms in the structure of their molecules, along with the type of hydrocarbon substituents, are the most important factors affecting lipophilicity, pharmacokinetics, and potential toxicity to non-target organisms. Full article
Show Figures

Figure 1

29 pages, 21967 KiB  
Article
Ore Genesis Based on Microtextural and Geochemical Evidence from the Hydrothermal As–Sb Mineralization of the Matra Deposit (Alpine Corsica, France)
by Danis Ionut Filimon, John A. Groff, Emilio Saccani and Maria Di Rosa
Minerals 2025, 15(8), 814; https://doi.org/10.3390/min15080814 (registering DOI) - 31 Jul 2025
Viewed by 186
Abstract
The Matra As–Sb deposit (Alpine Corsica, France) is hosted in the normal N–S trending Matra Fault. Sulfide minerals in ore consist of realgar, stibnite, and pyrite with minor orpiment and hörnesite. The gangue includes quartz, dolomite, and calcite. In this study, the microstructural [...] Read more.
The Matra As–Sb deposit (Alpine Corsica, France) is hosted in the normal N–S trending Matra Fault. Sulfide minerals in ore consist of realgar, stibnite, and pyrite with minor orpiment and hörnesite. The gangue includes quartz, dolomite, and calcite. In this study, the microstructural analysis of selected ore samples has been combined with the geochemical characterization of the sulfides. The results depict a succession of events that record the evolution of the ore deposit related to fault movement. In the pre–ore stage, plumose, crustiform, jigsaw, and feathery textures of quartz testify to a short–lived boiling event. The mineral assemblage of the main–ore stage includes an Fe(–Zn) substage dominated by the formation of different textures of pyrite. In general, pyrite samples contain significant concentrations of As (≤32,231 ppm) and Sb (≤10,684 ppm), with lesser amounts of by Tl (≤1257 ppm) and Ni (≤174 ppm). This is followed by an Sb–As–Fe substage of pyrite–stibnite–realgar ±orpiment. The precipitation of the sulfides was mainly driven by changes in ƒS2. The increasing level of oxidation is attributed to a progressive influx of meteoric water resulting from reactivation of the Matra Fault. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Graphical abstract

17 pages, 502 KiB  
Article
Influence of Various Cooking Methods on Selenium Concentrations in Commonly Consumed Seafood Species in Thailand
by Narisa Rueangsri, Kunchit Judprasong, Piyanut Sridonpai, Nunnapus Laitip, Jörg Feldmann and Alongkote Singhato
Foods 2025, 14(15), 2700; https://doi.org/10.3390/foods14152700 - 31 Jul 2025
Viewed by 217
Abstract
Selenium (Se) is an important trace element in our body; however, food composition data remain limited due to analytical challenges and interferences. Seafood, abundant in Thailand, is recognized as a rich source of Se. This study aimed to expand knowledge on Se content [...] Read more.
Selenium (Se) is an important trace element in our body; however, food composition data remain limited due to analytical challenges and interferences. Seafood, abundant in Thailand, is recognized as a rich source of Se. This study aimed to expand knowledge on Se content in seafood prepared using traditional Thai cooking methods. Twenty seafood species were selected and prepared by boiling, frying, and grilling. Inductively Coupled Plasma–Triple Quadrupole–Mass Spectrometry (ICP-MS/MS) was used to analyze total Se contents in selected seafood species. Results revealed significant variation in Se content across species and cooking methods. The Indo-Pacific horseshoe crab showed the highest Se concentration, with fried samples reaching 193.9 μg/100 g. Se concentrations were in the range of 8.6–155.5 μg/100 g (fresh), 14.3–106.6 μg/100 g (boiled), 17.3–193.9 μg/100 g (fried), and 7.3–160.1 μg/100 g (grilled). Results found significant effects of species and cooking method on Se content (p < 0.05). Fried seafood exhibited the highest estimated marginal mean Se concentration (a 78.8 μg/100 g edible portion), significantly higher than other methods. True retention (%TR) of Se ranged from 40.4% to 100%, depending on species and method. Bigfin reef squid, wedge shell, and silver pomfret showed the highest %TR (100%), while splendid squid exhibited the lowest (52.5%). Significant interaction effects on %TR were also observed (p < 0.05). Fried seafood had the highest mean %TR (88.8%), followed by grilled (82.1%) and boiled (79.7%). These findings highlight the effects of both species and cooking method on Se retention, emphasizing the nutritional value of selected seafood in preserving bioavailable Se after cooking. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

21 pages, 932 KiB  
Article
Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity
by Rayssa Cruz Lima, Carini Aparecida Lelis, Jelmir Craveiro de Andrade and Carlos Adam Conte-Junior
Foods 2025, 14(15), 2696; https://doi.org/10.3390/foods14152696 - 31 Jul 2025
Viewed by 221
Abstract
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This [...] Read more.
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This study characterized commercial açaí seed powder and evaluated the effect of temperature on the recovery of total phenolic content (TPC) in the aqueous extract using a Central Composite Rotatable Design (CCRD). An intermediate extraction condition (6.0 ± 0.5 g 100 mL−1 at 100 °C) was selected, resulting in 21.78 mg GAE/g TPC, 36.23 mg QE/g total flavonoids, and notable antioxidant capacity (FRAP: 183.33 µmol TE/g; DPPH: 23.06 mg TE/g; ABTS: 51.63 mg TE/g; ORAC: 31.46 µmol TE/g). Proton Nuclear Magnetic Resonance (1H NMR) analysis suggested the presence of amino acids, carbohydrates, and organic acids. During in vitro digestion, TPC decreased from 54.31 to 17.48 mg GAE 100 mL−1 when RASE was combined with goat milk. However, higher bioaccessibility was observed with skimmed (33%) and semi-skimmed (35%) cow milk. These findings highlight RASE as a phenolic-rich, antioxidant beverage with functional stability when prepared with boiling water. This is the first study to report the phytochemical profile of RASE and its interactions with different milk types, supporting its potential as a coffee alternative. Full article
(This article belongs to the Special Issue Fruit By-Products and Their Applications in Food Industry)
Show Figures

Graphical abstract

10 pages, 1309 KiB  
Proceeding Paper
A Sustainable Approach to Cooking: Design and Evaluation of a Sun-Tracking Concentrated Solar Stove
by Hasan Ali Khan, Malik Hassan Nawaz, Main Omair Gul and Mazhar Javed
Mater. Proc. 2025, 23(1), 4; https://doi.org/10.3390/materproc2025023004 - 29 Jul 2025
Viewed by 154
Abstract
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, [...] Read more.
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, dual-axis solar tracking parabolic dish cooker designed for such regions, featuring adjustable pot holder height and portability for ease of use. The system uses an Arduino UNO, LDR sensors, and a DC gear motor to automate sun tracking, ensuring optimal alignment throughout the day. A 0.61 m parabolic dish with ≥97% reflective silver-coated mirrors concentrates sunlight to temperatures exceeding 300 °C. Performance tests in April, June, and November showed boiling times as low as 3.37 min in high-irradiance conditions (7.66 kWh/m2/day) and 6.63 min under lower-irradiance conditions (3.86 kWh/m2/day). Compared to fixed or single-axis systems, this design achieved higher thermal efficiency and reliability, even under partially cloudy skies. Built with locally available materials, the system offers an affordable, clean, and effective cooking solution that supports energy access, health, and sustainability in underserved communities. Full article
Show Figures

Figure 1

13 pages, 2596 KiB  
Article
Bark Extracts of Chamaecyparis obtusa (Siebold & Zucc.) Endl. Attenuate LPS-Induced Inflammatory Responses in RAW264.7 Macrophages
by Bo-Ae Kim, Ji-A Byeon, Young-Ah Jang and Yong-Jin Kwon
Plants 2025, 14(15), 2346; https://doi.org/10.3390/plants14152346 - 29 Jul 2025
Viewed by 305
Abstract
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) is an evergreen conifer native to temperate regions such as South Korea and Japan, traditionally used for its anti-inflammatory properties. However, the molecular mechanisms underlying the anti-inflammatory effects of C. obtusa bark extracts [...] Read more.
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) is an evergreen conifer native to temperate regions such as South Korea and Japan, traditionally used for its anti-inflammatory properties. However, the molecular mechanisms underlying the anti-inflammatory effects of C. obtusa bark extracts remain poorly understood. In this study, I compared the biological activities of C. obtusa bark extracts prepared using boiling water (COWB) and 70% ethanol (COEB), and investigated their anti-inflammatory mechanisms in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. COEB significantly suppressed both mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), along with decreased production of their respective inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, COEB selectively downregulated interleukin (IL)-1β expression, without affecting tumor necrosis factor-α (TNF-α), and unexpectedly upregulated IL-6. Notably, COEB did not inhibit the LPS-induced activation of major inflammatory signaling pathways, including mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). These findings suggest that COEB exerts anti-inflammatory effects by modulating key inflammatory mediators independently of canonical signaling pathways and may offer a novel therapeutic strategy for controlling inflammation. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 3137 KiB  
Article
The Heat Transfer Coefficient During Pool Boiling of Refrigerants in a Compact Heat Exchanger
by Marcin Kruzel, Tadeusz Bohdal, Krzysztof Dutkowski, Krzysztof J. Wołosz and Grzegorz Robakowski
Energies 2025, 18(15), 4030; https://doi.org/10.3390/en18154030 - 29 Jul 2025
Viewed by 223
Abstract
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were [...] Read more.
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were heated from the inside with warm water. The flow of the refrigerant was gravity-based. The heat exchanger was practically flooded with liquid refrigerant at a saturation temperature (ts), which flowed out after evaporation in a gaseous form. The tests were conducted for four refrigerants: R1234ze, R1234yf, R134a (a high-pressure refrigerant), and HFE7100 (a low-pressure refrigerant). Thermal characteristics describing the heat transfer process throughout the entire compact heat exchanger, specifically for the boiling process itself, were developed. It was found that in the case of micro-space boiling, there is an exponential dependence of the heat transfer coefficient on the heat flux density on the heated surface. Experimental data were compared to experimental and empirical data presented in other studies. Our own empirical models were proposed to determine the heat transfer coefficient for boiling in a mini-space for individual refrigerants. The proposed calculation models were also generalized for various refrigerants by introducing the value of reduced pressure into the calculation relationship. The developed relationship enables the determination of heat transfer coefficient values during boiling in a micro-space on the surface of horizontal tubes for various refrigerants with an accuracy of ±25%. Full article
Show Figures

Figure 1

15 pages, 2026 KiB  
Article
Behavioral Effects of Food-Based and Olfactory Enrichment in Zoo-Housed Binturongs: An Exploratory Study
by Courtney Archer, Joselyn Hoyt, Emma Loy, Emma Marthaler, Abigail Richardson, Katie Hall, Madison Bacon and Rielle Perttu
J. Zool. Bot. Gard. 2025, 6(3), 38; https://doi.org/10.3390/jzbg6030038 - 29 Jul 2025
Viewed by 223
Abstract
Environmental enrichment is essential for promoting species-specific behaviors and enhancing the welfare of zoo-housed animals. This study examined the behavioral responses of two juvenile male binturongs (Arctictis binturong) at the Minnesota Zoo to three enrichment stimuli: lavender oil (olfactory), thawed fish [...] Read more.
Environmental enrichment is essential for promoting species-specific behaviors and enhancing the welfare of zoo-housed animals. This study examined the behavioral responses of two juvenile male binturongs (Arctictis binturong) at the Minnesota Zoo to three enrichment stimuli: lavender oil (olfactory), thawed fish (olfactory and dietary), and hard-boiled egg (olfactory and dietary). Their behaviors were recorded using scan sampling before and after enrichment exposure, focusing on locomotion, foraging, resting, and visitor visibility. Food-based enrichments, particularly the hard-boiled egg, significantly increased foraging behavior, while lavender oil and thawed fish produced minimal behavioral changes. Locomotion and visibility remained stable across the conditions, although a slight increase in resting was observed with lavender oil. No evidence of scent-marking disruption was noted, and individual differences appeared to influence inactivity levels. These findings highlight the potential of biologically relevant, food-based enrichment to stimulate natural behaviors in binturongs and emphasize the importance of species-specific enrichment strategies. Future research should explore a broader range of olfactory cues, assess long-term behavioral responses, and incorporate physiological measures to further evaluate enrichment impacts on binturong welfare. Full article
Show Figures

Figure 1

31 pages, 3855 KiB  
Article
Exploring Sidewalk Built Environment Design Strategies to Promote Walkability in Tropical Humid Climates
by Pakin Anuntavachakorn, Purinat Pawarana, Tarid Wongvorachan, Chaniporn Thampanichwat and Suphat Bunyarittikit
Buildings 2025, 15(15), 2659; https://doi.org/10.3390/buildings15152659 - 28 Jul 2025
Viewed by 385
Abstract
The world is facing a state of “global boiling,” causing damage to various sectors. Developing pedestrian systems is a key to mitigating it, especially in tropical and humid cities where the climate discourages walking and increases the need for shaded walkways. Recent research [...] Read more.
The world is facing a state of “global boiling,” causing damage to various sectors. Developing pedestrian systems is a key to mitigating it, especially in tropical and humid cities where the climate discourages walking and increases the need for shaded walkways. Recent research shows a lack of data and in-depth studies on the built environment promoting walkability in such climates, creating a research gap this study aims to fill. Using Singapore as a case study, four locations—Marina Bay, Orchard Road, Boat Quay, and Chinatown—were surveyed and analyzed through visual decoding and questionnaires. Results show that natural light is the most frequently observed and important element in pedestrian pathway design in tropical and humid areas. Trees and sidewalks are also important in creating a walk-friendly environment. Green spaces significantly influence the desire to walk, though no clear positive outcomes were found. Additionally, “Other Emotions” negatively affect the decision to walk, suggesting these should be avoided in future pedestrian pathway designs to encourage walking. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop