Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity
Abstract
1. Introduction
2. Material and Methods
2.1. Chemical and Reagents
2.2. Experimental Design
2.3. Roasted Açaí Seed Powder and Extracts Samples
2.4. Roasted Açaí Seed Extract Preparation to 1H NMR Analysis
2.5. Phytochemical Characterization of the Roasted Açaí Seed Extract
2.5.1. Total Phenolic Content (TPC)
2.5.2. Total Flavonoid Content (TFC)
2.5.3. Ferric-Reducing Antioxidant Power (FRAP)
2.5.4. Determination of DPPH Radical Scavenging Activity
2.5.5. ABTS Assay
2.5.6. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.6. In Vitro Simulated Digestion
2.7. Statistical Analysis
3. Results and Discussion
3.1. Central Composite Rotatable Design (CCRD)
3.2. Metabolite Profile by 1H NMR
3.3. Phytochemical Profile of the Roasted Açaí Seed Extract
Antioxidant Capacity
3.4. In Vitro Simulated Digestion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rossetto, R.; Maciel, G.M.; Bortolini, D.G.; Ribeiro, V.R.; Haminiuk, C.W.I. Acai pulp and seeds as emerging sources of phenolic compounds for enrichment of residual yeasts (Saccharomyces cerevisiae) through biosorption process. LWT 2020, 128, 109447. [Google Scholar] [CrossRef]
- de Oliveira, M.D.S.P.; Schwartz, G. Açaí—Euterpe oleracea. In Exotic Fruits, 1st ed.; Rodrigues, S., Silva, E.D.O., Brito, E.S.D., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Yamaguchi, K.K.d.L.; Pereira, L.F.R.; Lamarão, C.V.; Lima, E.S.; da Veiga-Junior, V.F. Amazon acai: Chemistry and biological activities: A review. Food Chem. 2015, 179, 137–151. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Produção de Açaí (Cultivo). 2023. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/acai-cultivo/br (accessed on 2 August 2024).
- Oliveira, S.R.; Chacón-Madrid, K.; Arruda, M.A.Z.; Júnior, F.B. In vitro gastrointestinal digestion to evaluate the total, bioaccessible and bioavailable concentrations of iron and manganese in açaí (Euterpe oleracea Mart.) pulps. J. Trace Elements Med. Biol. 2018, 53, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.A.; Carvalho, A.A.C.; Oliveira, A.P.; Naozuka, J.; Matta, F.V.; Felipe-Sotelo, M.; Ward, N.I.; Corrêa, N.C.F.; Nomura, C.S. Bioaccessibility of Essential Elements in Açaí (Euterpe oleracea Mart.) Pulp. ACS Food Sci. Technol. 2021, 1, 874–883. [Google Scholar] [CrossRef]
- Tran, K.; Eide, D.; Nickols, S.M.; Cromer, M.R.; Sabaa-Srur, A.; Smith, R.E. Finding of pesticides in fashionable fruit juices by LC–MS/MS and GC–MS/MS. Food Chem. 2012, 134, 2398–2405. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.F.; Miguez, I.S.; Silva, J.P.R.B.; da Silva, A.S. High concentration and yield production of mannose from açaí (Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis. Sci. Rep. 2019, 9, 10939. [Google Scholar] [CrossRef] [PubMed]
- Melo, P.S.; Selani, M.M.; Gonçalves, R.H.; Paulino, J.d.O.; Massarioli, A.P.; de Alencar, S.M. Açaí seeds: An unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds. Ind. Crops Prod. 2021, 161, 113204. [Google Scholar] [CrossRef]
- Reguengo, L.M.; Salgaço, M.K.; Sivieri, K.; Júnior, M.R.M. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res. Int. 2022, 152, 110871. [Google Scholar] [CrossRef] [PubMed]
- Dias, K.K.B.; de Jesus, G.A.; da Costa, A.A.F.; Costa, F.F.; do Filho, G.N.R.; Oliveira, R.J.; Noronha, R.C.R.; Nascimento, L.A.S.D. Biological activities from açaí (Euterpe spp. Mart.) seeds and their pharmacological aspects: A systematic review and meta-analysis. PharmaNutrition 2024, 29, 100405. [Google Scholar] [CrossRef]
- Martins, G.R.; Amaral, F.R.L.D.; Brum, F.L.; Mohana-Borges, R.; de Moura, S.S.T.; Ferreira, F.A.; Sangenito, L.S.; Santos, A.L.S.; Figueiredo, N.G.; da Silva, A.S. Chemical characterization, antioxidant and antimicrobial activities of açaí seed (Euterpe oleracea Mart.) extracts containing A- and B-type procyanidins. LWT-Food Sci. Technol. 2020, 132, 109830. [Google Scholar] [CrossRef]
- Barros, L.; Calhelha, R.C.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Santos, E.A.; Regis, W.C.B.; Ferreira, I.C.F.R. The powerful in vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Ind. Crops Prod. 2015, 76, 318–322. [Google Scholar] [CrossRef]
- Melo, P.S.; Arrivetti, L.d.O.R.; de Alencar, S.M.; Skibsted, L.H. Antioxidative and prooxidative effects in food lipids and synergism with α-tocopherol of açaí seed extracts and grape rachis extracts. Food Chem. 2016, 213, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Romão, M.H.; de Bem, G.F.; Santos, I.B.; Soares, R.d.A.; Ognibene, D.T.; de Moura, R.S.; da Costa, C.A.; Resende, Â.C. Açaí (Euterpe oleracea Mart.) seed extract protects against hepatic steatosis and fibrosis in high-fat diet-fed mice: Role of local renin-angiotensin system, oxidative stress and inflammation. J. Funct. Foods 2020, 65, 103726. [Google Scholar] [CrossRef]
- Santos, I.B.; de Bem, G.F.; da Costa, C.A.; de Carvalho, L.C.R.M.; de Medeiros, A.F.; Silva, D.L.B.; Romão, M.H.; Soares, R.d.A.; Ognibene, D.T.; de Moura, R.S.; et al. Açaí seed extract prevents the renin-angiotensin system activation, oxidative stress and inflammation in white adipose tissue of high-fat diet–fed mice. Nutr. Res. 2020, 79, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.R.; Mattos, M.M.G.; Nascimento, F.M.; Brum, F.L.; Mohana-Borges, R.; Figueiredo, N.G.; Neto, D.F.M.; Domont, G.B.; Nogueira, F.C.S.; Campos, F.d.A.d.P.; et al. Phenolic Profile and Antioxidant Properties in Extracts of Developing Açaí (Euterpe oleracea Mart.) Seeds. J. Agric. Food Chem. 2022, 70, 16218–16228. [Google Scholar] [CrossRef] [PubMed]
- Zawirska-Wojtasiak, R.; Piechowska, P.; Wojtowicz, E.; Przygoński, K.; Mildner-Szkudlarz, S. Bioactivity of selected materials for coffee substitute. PLoS ONE 2018, 13, e0206762. [Google Scholar] [CrossRef] [PubMed]
- Samsonowicz, M.; Regulska, E.; Karpowicz, D.; Leśniewska, B. Antioxidant properties of coffee substitutes rich in polyphenols and minerals. Food Chem. 2019, 278, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Correia, H.; Peneiras, S.; Levchook, N.; Peneiras, E.; Levchook, T.; Nayyar, J. Clinical Nutrition ESPENJ Effects of a non-caffeinated coffee substitute on functional dyspepsia. Clin. Nutr. ESPEN 2021, 41, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Gamarra-Castillo, O.; Sánchez-Camargo, A.d.P.; Hernández-Carrión, M. Biorefinery Approach for Colombian Açaí Drupe Valorization (Euterpe oleracea): Physicochemical Characterization, Anthocyanin Extraction, and Development of Antioxidant-Enriched Ice Cream and Cookies. ACS Food Sci. Technol. 2025, 5, 833–842. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Tarhan, O.; Rezaei, A.; Capanoglu, E.; Boostani, S.; Khoshnoudi-Nia, S.; Samborska, K.; Garavand, F.; Shaddel, R.; Akbari-Alavijeh, S.; et al. Addition of milk to coffee beverages; the effect on functional, nutritional, and sensorial properties. Crit. Rev. Food Sci. Nutr. 2022, 62, 6132–6152. [Google Scholar] [CrossRef] [PubMed]
- Qie, X.; Cheng, Y.; Chen, Y.; Zeng, M.; Wang, Z.; Qin, F.; Chen, J.; Li, W.; He, Z. In vitro phenolic bioaccessibility of coffee beverages with milk and soy subjected to thermal treatment and protein–phenolic interactions. Food Chem. 2022, 375, 131644. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, R.d.S.; de Souza, P.T.; Ferreira, R.S.B.; Pereira, G.S.L.; Batista, E.A.C.; Sampaio, K.A. Optimization of Extraction and Analysis of Inulin in Extracts of Roasted Açaí (Euterpe oleracea Mart.) Seeds by Ion Chromatography. Food Anal. Methods 2024, 17, 1073–1086. [Google Scholar] [CrossRef]
- Danieli, E.; Perlo, J.; Blümich, B.; Casanova, F. Small Magnets for Portable NMR Spectrometers. Angew. Chem. Int. Ed. 2010, 49, 4133–4135. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.C.; de Carvalho, A.P.A.; da Silva, B.D.; Neto, L.T.; Figueiredo, M.R.d.S.d.; Chaves, P.H.T.; de Almeida, A.E.C.C.; Conte-Junior, C.A. Green ultrasound-assisted extraction of bioactive compounds of babassu (Attalea speciosa) mesocarp: Effects of solid-liquid ratio extraction, antioxidant capacity, and antimicrobial activity. Appl. Food Res. 2023, 3, 100–331. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, P.; Ma, W.; Zeng, X.-A.; Fang, Z. Physicochemical properties, antioxidant activities and comprehensive phenolic profiles of tea-macerated Chardonnay wine and model wine. Food Chem. 2024, 436, 137748. [Google Scholar] [CrossRef] [PubMed]
- Ballus, C.A.; Meinhart, A.D.; Campos, F.A.d.S., Jr.; Godoy, H.T. Total Phenolics of Virgin Olive Oils Highly Correlate with the Hydrogen Atom Transfer Mechanism of Antioxidant Capacity. J. Am. Oil Chem. Soc. 2015, 92, 843–851. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Li, Y.; Dong, L.; Liu, Y.; Liu, L.; Farag, M.A.; Liu, L. Interaction and binding mechanism of ovalbumin with cereal phenolic acids: Improved structure, antioxidant activity, emulsifying and digestion properties for potential targeted delivery systems. Food Res. Int. 2024, 175, 113726. [Google Scholar] [CrossRef] [PubMed]
- Kautzmann, C.; Castanha, E.; Dammann, C.A.J.; de Jesus, B.A.P.; da Silva, G.F.; Magalhães, M.d.L.B.; Deolindo, C.T.P.; Kempka, A.P. Roasted yerba mate (Ilex paraguariensis) infusions in bovine milk model before and after in vitro digestion: Bioaccessibility of phenolic compounds, antioxidant activity, protein–polyphenol interactions and bioactive peptides. Food Res. Int. 2024, 183, 114206. [Google Scholar] [CrossRef] [PubMed]
- Alibekov, R.S.; Kamal, S.M.M.; Taip, F.S.; Sulaiman, A.; Azimov, A.M.; Urazbayeva, K.A. Recovery of Phenolic Compounds from Jackfruit Seeds Using Subcritical Water Extraction. Foods 2023, 12, 3296. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, S.A.; Gani, S.S.A.; Zaidan, U.H.; Halmi, M.I.E. Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules 2020, 25, 787. [Google Scholar] [CrossRef] [PubMed]
- Previtalli-Silva, H.; de Jesus Hardoim, D.; de Lucena Banaggia, R.; Moragas-Tellis, C.J.; do Socorro Chagas, M.D.S.; Behrens, M.D.; de Souza Dias-Silva, T.; da Silva Calabrese, K.; de Oliveira Cardoso, F. Antioxidant and anti-inflammatory activity of Euterpe oleracea Mart. (Açaí) seed bioproducts. Heliyon 2024, 10, e40510. [Google Scholar] [CrossRef] [PubMed]
- Buratto, R.T.; Chinchilla, M.I.; Cocero, M.J.; Martín, Á. Formulation of açaí (E. oleracea Mart.) Pulp and seeds extracts by co-precipitation in Supercritical Antisolvent (SAS) technology. J. Supercrit. Fluids 2021, 169, 105090. [Google Scholar] [CrossRef]
- Silva, D.F.; Vidal, F.C.B.; Santos, D.; Costa, M.C.P.; Morgado-Díaz, J.A.; do Nascimento, M.D.S.B.; de Moura, R.S. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines. BMC Complement. Altern. Med. 2014, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- da Costa, C.A.R.; Machado, G.G.L.; Rodrigues, L.J.; de Barros, H.E.A.; Natarelli, C.V.L.; Boas, E.V.d.B.V. Scientia Horticulturae Phenolic compounds profile and antioxidant activity of purple passion fruit’s pulp, peel and seed at different maturation stages. Sci. Hortic. 2023, 321, 112244. [Google Scholar] [CrossRef]
- Buratto, R.T.; Cocero, M.J.; Martín, Á. Characterization of industrial açaí pulp residues and valorization by microwave-assisted extraction. Chem. Eng. Process.-Process. Intensif. 2021, 160, 108269. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Hu, G.; Hong, D.; Bai, X.; Guo, T.; Zhou, H.; Li, J.; Qiu, M. Chemical ingredients characterization basing on 1H NMR and SHS-GC/MS in twelve cultivars of Coffea arabica roasted beans. Food Res. Int. 2021, 147, 110544. [Google Scholar] [CrossRef] [PubMed]
- Conte, T.L.; de Andrade, J.C.; Borges, R.L.d.S.; Effting, L.; Ravaglia, L.M.; Alcantara, G.B.; Conte-Junior, C.A.; Bona, E.; Galvan, D. Benchtop NMR spectroscopy and multivariate calibration for fast prediction of oxidation stability in commercial biodiesel. Microchem. J. 2025, 212, 113149. [Google Scholar] [CrossRef]
- Taheri, S.; de Andrade, J.C.; Conte-Junior, C.A. Emerging perspectives on analytical techniques and machine learning for food metabolomics in the era of industry 4.0: A systematic review. Crit. Rev. Food Sci. Nutr. 2024, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Emwas, A.-H.; Saccenti, E.; Gao, X.; McKay, R.T.; dos Santos, V.A.P.M.; Roy, R.; Wishart, D.S. Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine. Metabolomics 2018, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.; Abdelwareth, A.; Mohamed, T.A.; Fahmy, H.A.; Porzel, A.; Wessjohann, L.A.; Farag, M.A. Dissecting coffee seeds metabolome in context of genotype, roasting degree, and blending in the Middle East using NMR and GC/MS techniques. Food Chem. 2022, 373, 131452. [Google Scholar] [CrossRef] [PubMed]
- Berregi, I.; del Campo, G.; Caracena, R.; Miranda, J.I. Quantitative determination of formic acid in apple juices by 1H NMR spectrometry. Talanta 2007, 72, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Hong, J.; Kim, B.H.; Ahn, S. Determination of seed content in red pepper powders by 1H NMR and second-derivative FT-IR spectroscopy combined with statistical analyses. Bull. Korean Chem. Soc. 2022, 43, 450–459. [Google Scholar] [CrossRef]
- Mounet, F.; Lemaire-Chamley, M.; Maucourt, M.; Cabasson, C.; Giraudel, J.-L.; Deborde, C.; Lessire, R.; Gallusci, P.; Bertrand, A.; Gaudillère, M.; et al. Quantitative metabolic profiles of tomato flesh and seeds during fruit development: Complementary analysis with ANN and PCA. Metabolomics 2007, 3, 273–288. [Google Scholar] [CrossRef]
- Gogna, N.; Hamid, N.; Dorai, K. Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by 1H NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2015, 115, 74–85. [Google Scholar] [CrossRef] [PubMed]
- del Campo, G.; Berregi, I.; Caracena, R.; Zuriarrain, J. Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry. Talanta 2010, 81, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, F.; Vergaro, V.; De Castro, F.; Biondo, F.; Suranna, G.P.; Papadia, P.; Fanizzi, F.P.; Rongai, D.; Ciccarella, G. Enhanced Bioactivity of Pomegranate Peel Extract following Controlled Release from CaCO3 Nanocrystals. Bioinorg. Chem. Appl. 2022, 2022, 6341298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhu, Y.; Liu, J.; He, S.Y.W.; Zhang, T. Enhancing the in vitro Antioxidant Capacities via the interaction of amino acids. Emir. J. Food Agric. 2018, 30, 224. [Google Scholar] [CrossRef]
- Ribeiro, D.E.; Borém, F.M.; Nunes, C.A.; Alves, A.P.D.C.; Dos Santos, C.M.; Taveira, J.H.D.S.; de Dias, L.L.C. Profile of organic acids and bioactive compounds in the sensory quality discrimination of arabica coffee. Coffee Sci. 2018, 13, 187–197. [Google Scholar] [CrossRef]
- Upadhyay, R.; Mohan Rao, L.J. An Outlook on Chlorogenic Acids—Occurrence, Chemistry, Technology, and Biological Activities. Crit. Rev. Food Sci. Nutr. 2013, 53, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Furtado, A.; Smyth, H.E.; Henry, R.J. Influence of genotype and environment on coffee quality. Trends Food Sci. Technol. 2016, 57, 20–30. [Google Scholar] [CrossRef]
- Kang, J.; Li, Z.; Wu, T.; Jensen, G.S.; Schauss, A.G.; Wu, X. Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.). Food Chem. 2010, 122, 610–617. [Google Scholar] [CrossRef]
- Bambina, P.; Conte, P. HRMAS 1H NMR and CPMAS 13C NMR spectroscopies coupled with chemometrics for the metabolomic investigation of commercial teas. Food Chem. 2024, 461, 140816. [Google Scholar] [CrossRef] [PubMed]
- Garzón, G.A.; Narváez-Cuenca, C.-E.; Vincken, J.-P.; Gruppen, H. Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chem. 2017, 217, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R.R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Henning, S.M.; Zhang, Y.; Rontoyanni, V.G.; Huang, J.; Lee, R.-P.; Trang, A.; Nuernberger, G.; Heber, D. Variability in the Antioxidant Activity of Dietary Supplements from Pomegranate, Milk Thistle, Green Tea, Grape Seed, Goji, and Acai: Effects of in Vitro Digestion. J. Agric. Food Chem. 2014, 62, 4313–4321. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kori, S.; Parmar, A. Surfactant mediated extraction of total phenolic contents (TPC) and antioxidants from fruits juices. Food Chem. 2015, 185, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Tiveron, A.P.; Melo, P.S.; Bergamaschi, K.B.; Vieira, T.M.F.S.; Regitano-D’arce, M.A.B.; Alencar, S.M. Antioxidant Activity of Brazilian Vegetables and Its Relation with Phenolic Composition. Int. J. Mol. Sci. 2012, 13, 8943–8957. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Bin Dukhyil, A.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Soares, E.R.; Monteiro, E.B.; de Bem, G.F.; Inada, K.O.P.; Torres, A.G.; Perrone, D.; Soulage, C.O.; Monteiro, M.C.; Resende, A.C.; Moura-Nunes, N.; et al. Up-regulation of Nrf2-antioxidant signaling by Açaí (Euterpe oleracea Mart.) extract prevents oxidative stress in human endothelial cells. J. Funct. Foods 2017, 37, 107–115. [Google Scholar] [CrossRef]
- Komes, D.; Bušić, A.; Vojvodić, A.; Belščak-Cvitanović, A.; Hruškar, M. Antioxidative potential of different coffee substitute brews affected by milk addition. Eur. Food Res. Technol. 2015, 241, 115–125. [Google Scholar] [CrossRef]
- Geethalaxmi, M.; Sunil, C.; Rawson, A.; Venkatachalapathy, N. Tamarind seeds: Potential valorisation as coffee substitute-roasting and its characterization. Food Humanit. 2025, 4, 100563. [Google Scholar] [CrossRef]
- de Lima, A.C.P.; Bastos, D.L.R.; Camarena, M.A.; Bon, E.P.S.; Cammarota, M.C.; Teixeira, R.S.S.; Gutarra, M.L.E. Physicochemical characterization of residual biomass (seed and fiber) from açaí (Euterpe oleracea) processing and assessment of the potential for energy production and bioproducts. Biomass-Convers. Biorefin. 2019, 11, 925–935. [Google Scholar] [CrossRef]
- Vázquez, C.V.; Rojas, M.G.V.; Ramírez, C.A.; Chávez-Servín, J.L.; García-Gasca, T.; Ferriz Martínez, R.A.; García, O.P.; Rosado, J.L.; López-Sabater, C.M.; Castellote, A.I.; et al. Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin–Ciocalteu method. Food Chem. 2015, 176, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Qie, X.; Chen, Y.; Zeng, M.; Qin, F.; Chen, J. Effect of milk addition and processing on the antioxidant capacity and phenolic bioaccessibility of coffee by using an in vitro gastrointestinal digestion model. Food Chem. 2020, 308, 125598. [Google Scholar] [CrossRef] [PubMed]
- Otemuyiwa, I.O.; Williams, M.F.; Adewusi, S.A. Antioxidant activity of health tea infusions and effect of sugar and milk on in-vitro availability of phenolics in tea, coffee and cocoa drinks. Nutr. Food Sci. 2017, 47, 458–468. [Google Scholar] [CrossRef]
- Alongi, M.; Calligaris, S.; Anese, M. Fat concentration and high-pressure homogenization affect chlorogenic acid bioaccessibility and α-glucosidase inhibitory capacity of milk-based coffee beverages. J. Funct. Foods 2019, 58, 130–137. [Google Scholar] [CrossRef]
- Qin, W.; Ketnawa, S.; Ogawa, Y. Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. Food Sci. Hum. Wellness 2022, 11, 669–675. [Google Scholar] [CrossRef]
- Helal, A.; Tagliazucchi, D. Impact of in-vitro gastro-pancreatic digestion on polyphenols and cinnamaldehyde bioaccessibility and antioxidant activity in stirred cinnamon-fortified yogurt. LWT 2018, 89, 164–170. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Grassi, G.; Gambacorta, E. Effect of αS1-casein genotype on phenolic compounds and antioxidant activity in goat milk yogurt fortified with Rhus coriaria leaf powder. J. Dairy Sci. 2018, 101, 7691–7701. [Google Scholar] [CrossRef] [PubMed]
- Di Trana, A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di Grigoli, A.; Claps, S. Effects of Sulla forage (Sulla coronarium L.) on the oxidative status and milk polyphenol content in goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Ye, A.; Gilbert, E.P.; Yang, Z.; Everett, D.W.; Singh, H. Pepsin-induced hydrolysis and coagulation of proteins in goat, sheep and cow milk. Int. Dairy J. 2024, 153, 105898. [Google Scholar] [CrossRef]
- Ingham, B.; Smialowska, A.; Kirby, N.M.; Wang, C.; Carr, A.J. A structural comparison of casein micelles in cow, goat and sheep milk using X-ray scattering. Soft Matter 2018, 14, 3336–3343. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Structural changes in cow, goat, and sheep skim milk during dynamic in vitro gastric digestion. J. Dairy Sci. 2021, 104, 1394–1411. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, A.J.; Wallace, O.A.; Boggs, I.; Broadhurst, M.; Prosser, C.G. Gastric digestion of cow and goat milk: Impact of infant and young child in vitro digestion conditions. Food Chem. 2018, 245, 275–281. [Google Scholar] [CrossRef] [PubMed]
- De Gobba, C.; Espejo-Carpio, F.J.; Skibsted, L.H.; Otte, J. Antioxidant peptides from goat milk protein fractions hydrolysed by two commercial proteases. Int. Dairy J. 2014, 39, 28–40. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Gathercole, J.L.; Day, L.; Dalziel, J.E. Differences in peptide generation following in vitro gastrointestinal digestion of yogurt and milk from cow, sheep and goat. Food Chem. 2020, 317, 126419. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Wang, L.; Chao, A.; Fan, F.; Wang, M.; Zhao, Y. Effect and mechanisms of thermal sterilization methods on the in vitro phenolic bioaccessibility of rose tea with milk. Food Chem. 2024, 458, 140248. [Google Scholar] [CrossRef] [PubMed]
- Kamiloglu, S.; Ozdal, T.; Bakir, S.; Capanoglu, E. Bioaccessibility of terebinth (Pistacia terebinthus L.) coffee polyphenols: Influence of milk, sugar and sweetener addition. Food Chem. 2022, 374, 131728. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Lippolis, T.; Cofano, M.; Caponio, G.R.; De Nunzio, V.; Notarnicola, M. Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int. J. Mol. Sci. 2023, 24, 3813. [Google Scholar] [CrossRef] [PubMed]
- Caponio, G.R.; Cofano, M.; Lippolis, T.; Gigante, I.; De Nunzio, V.; Difonzo, G.; Noviello, M.; Tarricone, L.; Gambacorta, G.; Giannelli, G.; et al. Anti-Proliferative and Pro-Apoptotic Effects of Digested Aglianico Grape Pomace Extract in Human Colorectal Cancer Cells. Molecules 2022, 27, 6791. [Google Scholar] [CrossRef] [PubMed]
- Marrugat, J.; Covas, M.-I.; Fitó, M.; Schröder, H.; Miró-Casas, E.; Gimeno, E.; López-Sabater, M.C.; de la Torre, R.; Farré, M.; SOLOS Investigators. Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation A randomized controlled trial. Eur. J. Nutr. 2004, 43, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Kostić, A.Ž.; Milinčić, D.D.; Stanisavljević, N.S.; Gašić, U.M.; Lević, S.; Kojić, M.O.; Tešić, Ž.L.; Nedović, V.; Barać, M.B.; Pešić, M.B. Polyphenol bioaccessibility and antioxidant properties of in vitro digested spray-dried thermally-treated skimmed goat milk enriched with pollen. Food Chem. 2021, 351, 129310. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.J.; Figueira, M.d.S.; Sampaio, G.R.; Soares-Freitas, R.A.M.; Pinaffi-Langley, A.C.d.C.; Torres, E.A.F.d.S. Coffee simulated inhibition of pancreatic lipase and antioxidant activities: Effect of milk and decaffeination. Food Res. Int. 2022, 160, 111730. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Tao, Y.; Zeng, M.; Zhang, S.; Tao, G.; Qin, F.; Chen, J. High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chem. 2016, 200, 107–116. [Google Scholar] [CrossRef] [PubMed]
Level | Real Values | |||
---|---|---|---|---|
Run | ×1 | ×2 | ×1 (g 100 mL−1 H2O) | ×2 (°C) |
1 | −1 | −1 | 5.2 | 36 |
2 | −1 | 1 | 5.2 | 89 |
3 | 1 | −1 | 10.8 | 36 |
4 | 1 | 1 | 10.8 | 89 |
5 | −1.41 | 0 | 4 | 63 |
6 | 1.41 | 0 | 12 | 63 |
7 | 0 | −1.41 | 8 | 25 |
8 | 0 | 1.41 | 8 | 100 |
9 | 0 | 0 | 8 | 63 |
10 | 0 | 0 | 8 | 63 |
11 | 0 | 0 | 8 | 63 |
Treatment | Mixing Ratio |
---|---|
RASE | - |
RASE + whole milk | 1:1 (v:v) |
RASE + semi-skimmed milk | 1:1 (v:v) |
RASE + skimmed milk | 1:1 (v:v) |
RASE + whole goat milk | 1:1 (v:v) |
Model | Sum of Square | DF | Mean Square | p-Value | |
---|---|---|---|---|---|
TPC R2 = 0.9884 Radj2 = 0.9769 | Regression | 2.6842 × 104 | 5 | 5.3684 × 103 | 7.7217 × 10−5 |
Error | 826.9629 | 3 | 275.6543 | 0.0726 | |
Lack of fit | 142.9250 | 3 | 47.6417 | 0.6931 | |
Pure error | 171.2065 | 2 | 85.6033 | ||
Total SS | 2.7156 × 104 | 10 | 2.7156 × 103 |
Coefficients | TPC (mg GAE 100 mL−1) | p-Value |
---|---|---|
b0 | 9.3285 | 0.8385 |
b1 | −1.1400 | 0.1894 |
b2 | 3.1365 | 0.0080 |
b1 b2 | 8.8283 | 0.1556 |
b12 | 2.2336 | 0.6151 |
b22 | −0.0137 | 0.0347 |
Roasted Açaí Seed Extract | Phytochemical Screening | Antioxidant Capacity | ||||||
TPC | TFC | FRAP | DPPH | ABTS | ORAC | |||
mg GAE/g | mg QE/g | µM TE/g | mg TE/g | Free Radical Scavenging Activity (%) | mg TE/g | Free Radical Scavenging Activity (%) | mol TE/g | |
21.78 ± 0.77 | 36.23 ± 2.59 | 183.33 ± 9.71 | 23.06 ± 0.72 | 66.29 ± 2.23 | 51.63 ± 2.35 | 45.21 ± 0.07 | 31.46 ± 1.60 |
Açaí Seed Solvent Extraction | Extraction Method/Conditions | Analytical Method | Polyphenol Concentration | Ref. |
---|---|---|---|---|
Ethanol:water (57:43, v:v) | At room temperature (25 °C) | Folin-Ciocalteau | 64.58 ± 1.89 mg GAE/g | [9] |
- | Supercritical Anti-Solvent | Folin-Ciocalteau | 261 ± 3 mg GAE/g | [35] |
Ethanol | Supercritical Anti-Solvent | Folin-Ciocalteau | 500 ± 5 mg GAE/g | [35] |
Ethanol:water (1:1, v:v) | Solid/liquid ratio of 1:8 (m:v), for 60 min at 50 °C under orbital agitation at 120 rpm | RP-HPLC-DAD | Peak at 51 min (polymeric procyandins) | [12] |
Deionized water | Solid/liquid ratio of 1:30 (m:v), for 37.5 min at 30 °C at 75 rpm | Folin-Ciocalteau | 1805 to 1893 mg GAE L−1 | [1] |
Distilled and deionized water | Macerated for 30 min at 25 °C | HPLC-MS-DAD | Total proanthocyanidins (158 ± 1 mg EC/g) | [13] |
Hydroalcoholic | Macerated for 2 h, shaking and kept at 4 °C for 10 days | Folin-Ciocalteau | 28.3% | [36] |
Metabolite | 1H Chemical Shifts δ, ppm | Ref. |
---|---|---|
Lipids | ||
Fatty acids | 0.98, 1.30, 1.41 | [46] |
Amino acids | ||
Proline | 2.05 | [47] |
Cysteine | 3.97 | [48] |
Organic acids | ||
Propionic acid | 2.18 | [39] |
Quinic acid | 2.42 | [48] |
Formic acid | 8.49 | [49] |
Phenolics | ||
Hesperidin | 6.96 | [48] |
Total Phenolic Compounds (mg GAE 100 mL−1) | Bioaccessibility (%) * | TPC Reduction (%) † | |||
---|---|---|---|---|---|
Treatment | Before Digestion (BD) | Gastric Phase (GP) After 60 min | Intestinal Phase (IP) After 120 min | ||
RASE | 35.89 ± 1.95 B | 19.40 ± 2.23 C | 8.67 ± 1.53 C | 24% ± 4 B | 76% ± 4 A |
RASE + whole cow milk | 47.42 ± 0.45 A | 29.30 ± 2.68 B | 11.21 ± 0.48 B | 24% ± 1 B | 76% ± 1 A |
RASE + semi-skimmed cow milk | 33.72 ± 2.30 B | 23.33 ± 0.50 BC | 11.13 ± 1.06 B | 33% ± 5 A | 67% ± 5 B |
RASE + skimmed cow milk | 31.74 ± 3.31 B | 24.67 ± 1.30 BC | 10.90 ± 1.00 BC | 35% ± 4 A | 65% ± 4 B |
RASE + whole goat milk | 54.31 ± 0.93 A | 43.06 ± 3.49 A | 17.48 ± 1.03 A | 32% ± 5 AB | 68% ± 5 AB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz Lima, R.; Aparecida Lelis, C.; Craveiro de Andrade, J.; Conte-Junior, C.A. Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity. Foods 2025, 14, 2696. https://doi.org/10.3390/foods14152696
Cruz Lima R, Aparecida Lelis C, Craveiro de Andrade J, Conte-Junior CA. Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity. Foods. 2025; 14(15):2696. https://doi.org/10.3390/foods14152696
Chicago/Turabian StyleCruz Lima, Rayssa, Carini Aparecida Lelis, Jelmir Craveiro de Andrade, and Carlos Adam Conte-Junior. 2025. "Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity" Foods 14, no. 15: 2696. https://doi.org/10.3390/foods14152696
APA StyleCruz Lima, R., Aparecida Lelis, C., Craveiro de Andrade, J., & Conte-Junior, C. A. (2025). Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity. Foods, 14(15), 2696. https://doi.org/10.3390/foods14152696