Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles
Abstract
1. Introduction
2. Experimental Apparatus and Procedure
3. Results and Discussion
3.1. Heat Transfer Performance
3.2. Classical Characters of Nucleation Boiling
3.2.1. Contact Area
3.2.2. Nucleation Site Density
3.2.3. Average Diameter of Stable Bubbles
3.3. Analysis of Droplet Asymmetry Effect
3.3.1. Asymmetry Evaporation
3.3.2. Asymmetry Factors
3.4. Correlation Between Influencing Factors
4. Conclusions
- (1)
- The micro-pillar structure effectively improves the heat transfer performance of subcooled boiling of liquid droplets, and the enhancement factor β increases with the surface inclination θ.
- (2)
- Micro-pillar structures on the inclined surface lengthen the droplet tail and increase the droplet asymmetry. This paper established two quantitative metrics: the volume asymmetry factor γ, and the one-dimensional asymmetry factor ε. By measuring the contact area, the droplet nucleation site, and stable diameter distribution of bubbles under different conditions, the significant influence of the droplet asymmetry on the boiling heat transfer rate was proven.
- (3)
- When increasing the surface tilt angle, the asymmetry of droplets on micro-pillar surfaces becomes more significant. Although there was a reduction in nucleation density and bubble stable diameter, the droplet asymmetry significantly increased the heat exchange area, resulting in a 37% improvement in the evaporation rate of the micro-pillar surfaces and about a 20% increase in its enhancement performance to smooth surfaces when the inclination angle increased from 0°to 60°. These results indicate that asymmetry causes changes in heat transfer conditions, specifically, a significant increase in the wetted area and deformation of the liquid film, which are the direct enhancement mechanisms of inclined micro-pillar surfaces.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
We | Weber number (-) |
T | Surface temperature (°C) |
t | Evaporation time of droplets (s) |
tS | Evaporation time of droplets on smooth surface (s) |
tP | Evaporation time of droplets on micro-pillar surface (s) |
A | Heat transfer area between droplet and surface (mm2) |
r0 | Right boundary position on the horizontal surface (mm) |
rl | Right boundary position on the inclined surface (mm) |
rθ | Maximum droplet thickness position (mm) |
l | Droplet slip distance (mm) |
d1 | Droplet average widths of A1 zone (mm) |
d2 | Droplet average widths of A2 zone (mm) |
Na | Nucleation site density (103 m−2) |
Rsd | Average diameter of droplet (μm) |
Surface inclined angle (°) | |
Enhanced heat transfer factor (-) | |
ε | One-dimensional asymmetry factor (-) |
γ | Volume asymmetry factor (-) |
α1 | Contact lengths between droplet and surface of A1 zone (mm) |
α2 | Contact lengths between droplet and surface of A2 zone (mm) |
δ1 | Droplet average thickness of A1 zone (mm) |
δ2 | Droplet average thickness of A2 zone (mm) |
λ | Radial distance (μm) |
References
- Chen, H.; Wang, Y.; Yang, H.; Badiei, A.; Li, G. Experimental Investigation and Exergy Analysis of a High Concentrating Photovoltaic System Integrated with Spray Cooling. Energy Convers. Manag. 2022, 268, 115957. [Google Scholar] [CrossRef]
- Bandaru, S.V.R.; Villanueva, W.; Konovalenko, A.; Komlev, A.; Thakre, S.; Skold, P.; Bechta, S. Upward-Facing Multi-Nozzle Spray Cooling Experiments for External Cooling of Reactor Pressure Vessels. Int. J. Heat Mass Transf. 2020, 163, 120516. [Google Scholar] [CrossRef]
- Chen, H.; Ruan, X.-H.; Peng, Y.-H.; Wang, Y.-L.; Yu, C.-K. Application Status and Prospect of Spray Cooling in Electronics and Energy Conversion Industries. Sustain. Energy Technol. Assess. 2022, 52, 102181. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, X.; Li, X.; Xu, J.; Qi, H.; Shan, D.; Guo, B. Enhanced Evaporation Performance on a Novel Microstructured Surface with Vertical Dimension Gradient. Int. J. Heat Mass Transf. 2022, 199, 123478. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, P.-X.; Ouyang, X.-L.; Chen, J.-N.; Christopher, D.M. Experimental Investigation of Spray Cooling on Smooth and Micro-Structured Surfaces. Int. J. Heat Mass Transf. 2014, 76, 366–375. [Google Scholar] [CrossRef]
- Li, X.; Mao, L.; Ma, X. Dynamic Behavior of Water Droplet Impact on Microtextured Surfaces: The Effect of Geometrical Parameters on Anisotropic Wetting and the Maximum Spreading Diameter. LANGMUIR 2013, 29, 1129–1138. [Google Scholar] [CrossRef]
- Misyura, S.Y. Contact Angle and Droplet Heat Transfer during Evaporation on Structured and Smooth Surfaces of Heated Wall. Appl. Surf. Sci. 2017, 414, 188–196. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, T.; Fan, J.; Sun, W.; Cao, Z. Droplet Impact Behavior on Heated Micro-Patterned Surfaces. J. Appl. Phys. 2016, 119, 114901. [Google Scholar] [CrossRef]
- Gao, L.; Lyu, J.; Zhou, Z.; Li, Y.; Gao, D.; Shi, L.; Lv, X.; Li, Y. Dynamics of Inner Bubble during Water Droplet Evaporation on Conical Micro-Pillars Surfaces. Int. Commun. Heat Mass Transf. 2022, 131, 105841. [Google Scholar] [CrossRef]
- Rymkiewicz, J.; Zapalowicz, Z. Analysis of the Evaporation Process for Water Droplet on Flat Heated Surface. Int. Commun. Heat Mass Transf. 1993, 20, 687–697. [Google Scholar] [CrossRef]
- Lu, G.; Wang, X.-D.; Yan, W.-M. Nucleate Boiling inside Small Evaporating Droplets: An Experimental and Numerical Study. Int. J. Heat Mass Transf. 2017, 108, 2253–2261. [Google Scholar] [CrossRef]
- Charitatos, V.; Pham, T.; Kumar, S. Droplet Evaporation on Inclined Substrates. Phys. Rev. Fluids 2021, 6, 084001. [Google Scholar] [CrossRef]
- Worthington, A.M. Xxviii. On the Forms Assumed by Drops of Liquids Falling Vertically on a Horizontal Plate. Proc. R. Soc. Lond. 1877, 25, 261–272. [Google Scholar] [CrossRef]
- Misyura, S.Y. Effect of Various Key Factors on the Law of Droplet Evaporation on the Heated Horizontal Wall. Chem. Eng. Res. Des. 2018, 129, 306–313. [Google Scholar] [CrossRef]
- Bernardin, J.D.; Mudawar, I.; Walsh, C.B.; Franses, E.I. Contact Angle Temperature Dependence for Water Droplets on Practical Aluminum Surfaces. Int. J. Heat Mass Transf. 1997, 40, 1017–1033. [Google Scholar] [CrossRef]
- Nikolopoulos, N.; Theodorakakos, A.; Bergeles, G. A Numerical Investigation of the Evaporation Process of a Liquid Droplet Impinging onto a Hot Substrate. Int. J. Heat Mass Transf. 2007, 50, 303–319. [Google Scholar] [CrossRef]
- Lee, H.; Cho, A.; Kim, H. Changes in Boiling Regime and Heat Transfer Effectiveness during Water Droplet Collision with a Superheated Wall. Int. J. Heat Mass Transf. 2024, 221, 125052. [Google Scholar] [CrossRef]
- Tartarini, P.; Lorenzini, G.; Randi, M. Experimental Study of Water Droplet Boiling on Hot, Non-Porous Surfaces. Heat Mass Transf. 1999, 34, 437–447. [Google Scholar] [CrossRef]
- Misyura, S.Y. Wall Effect on Heat Transfer Crisis. Exp. Therm. Fluid Sci. 2016, 70, 389–396. [Google Scholar] [CrossRef]
- Nakoryakov, V.; Misyura, S.Y.; Elistratov, S. The Behavior of Water Droplets on the Heated Surface. Int. J. Heat Mass Transf. 2012, 55, 6609–6617. [Google Scholar] [CrossRef]
- Clanet, C.; Béguin, C.; Richard, D.; Quéré, D. Maximal Deformation of an Impacting Drop. J. Fluid Mech. 2004, 517, 199–208. [Google Scholar] [CrossRef]
- Zhao, Y.; Wen, L.; Su, L.; Liu, B.; Wang, J.; Hu, L. Dynamics Behaviors of Droplets Impacting on a Heated Tailings Surface. In 12th International Symposium on High-Temperature Metallurgical Processing; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Misyura, S.Y. Nucleate Boiling in Bidistillate Droplets. Int. J. Heat Mass Transf. 2014, 71, 197–205. [Google Scholar] [CrossRef]
- Misyura, S.Y. Droplets Boiling Crisis of Ethanol Water Solution on Duralumin Substrate with Sio2 Nanoparticles Coating. Exp. Therm. Fluid Sci. 2016, 75, 43–53. [Google Scholar] [CrossRef]
- Song, D.; Song, B.; Hu, H.; Du, X.; Ma, Z. Contact Angle and Impinging Process of Droplets on Partially Grooved Hydrophobic Surfaces. Appl. Therm. Eng. 2015, 85, 356–364. [Google Scholar] [CrossRef]
- Hays, R.; Maynes, D.; Crockett, J. Thermal Transport to Droplets on Heated Superhydrophobic Substrates. Int. J. Heat Mass Transf. 2016, 98, 70–80. [Google Scholar] [CrossRef]
- Guggilla, G.; Sielaff, A.; Stephan, P. Boiling Regimes of a Single Droplet Impinging on a Superheated Surface: Effect of the Surrounding Medium. Int. J. Heat Mass Transf. 2024, 220, 124982. [Google Scholar] [CrossRef]
- Mollaret, R.; Sefiane, K.; Christy, J.R.E.; Veyret, D. Experimental and Numerical Investigation of the Evaporation into Air of a Drop on a Heated Surface. Chem. Eng. Res. Des A. 2004, 82, 471–480. [Google Scholar] [CrossRef]
- Hatta, N.; Fujimoto, H.; Takuda, H. Deformation Process of a Water Droplet Impinging on a Solid Surface. J. Fluids Eng. 1995, 117, 394–401. [Google Scholar] [CrossRef]
- Tang, C.; Qin, M.; Weng, X.; Zhang, X.; Zhang, P.; Li, J.; Huang, Z. Dynamics of Droplet Impact on Solid Surface with Different Roughness. Int. J. Multiph. Flow 2017, 96, 56–69. [Google Scholar] [CrossRef]
- Ravikumar, S.V.; Jha, J.M.; Mohapatra, S.S.; Sinha, A.; Pal, S.K.; Chakraborty, S. Experimental Study of the Effect of Spray Inclination on Ultrafast Cooling of a Hot Steel Plate. Heat Mass Transf. 2013, 49, 1509–1522. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Liu, D.; Xu, K.; Chen, Y. Experimental Study on the Effects of Spray Inclination on Water Spray Cooling Performance in Non-Boiling Regime. Exp. Therm. Fluid Sci. 2010, 34, 933–942. [Google Scholar] [CrossRef]
- Li, B.; Cader, T.; Schwarzkopf, J.; Okamoto, K.; Ramaprian, B. Spray Angle Effect during Spray Cooling of Microelectronics: Experimental Measurements and Comparison with Inverse Calculations. Appl. Therm. Eng. 2006, 26, 1788–1795. [Google Scholar] [CrossRef]
- Silk, E.A.; Kim, J.; Kiger, K. Spray Cooling of Enhanced Surfaces: Impact of Structured Surface Geometry and Spray Axis Inclination. Int. J. Heat Mass Transf. 2006, 49, 4910–4920. [Google Scholar] [CrossRef]
- Liu, N.; Zhan, T.-J.; Zhang, Y.-W.; Yin, X.-M.; Zhang, L.-X. Experimental Investigation of Comprehensive Effects of Surfactant and Inclined Mode on Spray Cooling Heat Transfer. Int. J. Therm. Sci. 2019, 136, 457–466. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Jiang, P.-X. Experimental Investigation of Spray Cooling on Flat and Enhanced Surfaces. Appl. Therm. Eng. 2013, 51, 102–111. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Ma, X.; Zhang, H. Dynamic Characteristics of Droplet Impacting on Prepared Hydrophobic/Superhydrophobic Silicon Surfaces. Surf. Coat. Technol. 2016, 307, 243–253. [Google Scholar] [CrossRef]
- LeClear, S.; LeClear, J.; Park, K.-C.; Choi, W. Drop Impact on Inclined Superhydrophobic Surfaces. J. Colloid Interface Sci. 2016, 461, 114–121. [Google Scholar] [CrossRef]
- Deendarlianto; Takata, Y.; Hidaka, S.; Indarto; Widyaparaga, A.; Kamal, S.; Purnomo; Kohno, M. Effect of Static Contact Angle on the Droplet Dynamics during the Evaporation of a Water Droplet on the Hot Walls. Int. J. Heat Mass Transf. 2014, 71, 691–705. [Google Scholar] [CrossRef]
- Deendarlianto; Takata, Y.; Kohno, M.; Hidaka, S.; Wakui, T.; Majid, A.I.; Kuntoro, H.Y.; Indarto; Widyaparaga, A. The Effects of the Surface Roughness on the Dynamic Behavior of the Successive Micrometric Droplets Impacting onto Inclined Hot Surfaces. Int. J. Heat Mass Transf. 2016, 101, 1217–1226. [Google Scholar] [CrossRef]
- Remer, M.; Psarski, M.; Gumowski, K.; Rokicki, J.; Sobieraj, G.; Kaliush, M.; Pawlak, D.; Celichowski, G. Dynamic Water Contact Angle during Initial Phases of Droplet Impingement. COLLOID Surf. A 2016, 508, 57–69. [Google Scholar] [CrossRef]
- Pittoni, P.G.; Lin, C.-H.; Yu, T.-S.; Lin, S.-Y. On the Uniqueness of the Receding Contact Angle: Effects of Substrate Roughness and Humidity on Evaporation of Water Drops. LANGMUIR 2014, 30, 9346–9354. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, G.; Sellier, M.; Jermy, M.; Taylor, M. Modeling the Effects of Contact Angle Hysteresis on the Sliding of Droplets down Inclined Surfaces. Eur. J. Mech.-B/Fluids 2014, 48, 218–230. [Google Scholar] [CrossRef]
- Deendarlianto; Takata, Y.; Widyatama, A.; Majid, A.I.; Wiranata, A.; Widyaparaga, A.; Kohno, M.; Hidaka, S.; Indarto. The Interfacial Dynamics of the Micrometric Droplet Diameters during the Impacting onto Inclined Hot Surfaces. Int. J. Heat Mass Transf. 2018, 126, 39–51. [Google Scholar] [CrossRef]
- Chaves, H.; Kubitzek, A.M.; Obermeier, F. Dynamic Processes Occurring during the Spreading of Thin Liquid Films Produced by Drop Impact on Hot Walls. Int. J. Heat Fluid Flow 1999, 20, 470–476. [Google Scholar] [CrossRef]
θ | Nav × 106, nm−2/(90 °C) | Nav × 106, nm−2 (70 °C) | Nav × 106, nm−2 (50 °C) | |||
---|---|---|---|---|---|---|
SS | MS | SS | MS | SS | MS | |
0° | 1.768 | 66.697 | 0.729 | 44.898 | 0.102 | 44.801 |
30° | 0 | 64.413 | 0 | 40.113 | 0 | 35.748 |
45° | 0 | 45.796 | 0 | 38.712 | 0 | 31.481 |
60° | 0 | 41.640 | 0 | 14.502 | 0 | 13.482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.-N.; Huang, G.-Q.; Zhao, L.-M.; Chen, H.-X. Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles. Energies 2025, 18, 4152. https://doi.org/10.3390/en18154152
Zhang Y-N, Huang G-Q, Zhao L-M, Chen H-X. Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles. Energies. 2025; 18(15):4152. https://doi.org/10.3390/en18154152
Chicago/Turabian StyleZhang, Yi-Nan, Guo-Qing Huang, Lu-Ming Zhao, and Hong-Xia Chen. 2025. "Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles" Energies 18, no. 15: 4152. https://doi.org/10.3390/en18154152
APA StyleZhang, Y.-N., Huang, G.-Q., Zhao, L.-M., & Chen, H.-X. (2025). Visualization of Kinetic Parameters of a Droplet Nucleation Boiling on Smooth and Micro-Pillar Surfaces with Inclined Angles. Energies, 18(15), 4152. https://doi.org/10.3390/en18154152