Exploring Sidewalk Built Environment Design Strategies to Promote Walkability in Tropical Humid Climates
Abstract
1. Introduction
2. Literature
2.1. Sidewalk Design That Encourage Walking
2.2. Design Guidelines for the Built Environment of Sidewalks in Green Cities
3. Materials and Methods
3.1. Case Study
3.2. Data Collection
3.2.1. Procedure
- (1)
- Site survey implementation
- (2)
- Data analysis procedures
- -
- Do the presented images encourage you to walk (on the sidewalks)?
- -
- How much do these images influence your motivation to walk more or less often?
- -
- Do the images inspire you to recommend others to walk (on the sidewalks)?
3.3. Data Analysis
3.3.1. Summary of Results Using Descriptive Statistics
3.3.2. Summary of Results Using Correlation Analysis to Determine Consistency
- (1)
- Questionnaire decoding.
- (2)
- To obtain results for Question 2
4. Results
4.1. Study Results Reporting the Observed Characteristics from Image Decoding
Observed Characteristics from Image Decoding at Pedestrian-Friendly Locations in Singapore
- -
- Boat Quay
- -
- Chinatown
- -
- Orchard Road
- -
- Marina Bay
4.2. Findings from the Correlation Analysis to Identify Patterns of Consistency
Data Analysis Results
4.3. Results for Research Question 2: What Are the Design Guidelines for Sidewalks Related to Green Spaces in Tropical Humid Areas That Effectively Encourage People to Walk?
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Form | Space | Movement | Functional | Emotional | Object | View | |
---|---|---|---|---|---|---|---|
PIC1 | 0.01345 | 0.0218 | 0.0167 | 0.000233 | 0.08272 | 0 | 0.14655 |
PIC2 | 0 | 0.0102 | 0.02025 | 0.001133 | 0.16538 | 0 | 0.09825 |
PIC3 | 0.011825 | 0.070967 | 0.01875 | 0.045067 | 0.05662 | 0 | 0.2339 |
PIC4 | 0 | 0.0582 | 0.0053 | 0.000633 | 0.0462 | 0 | 0.2058 |
PIC5 | 0 | 0.058183 | 0.0125 | 0.0684 | 0.02306 | 0 | 0.5 |
PIC6 | 0 | 0.031717 | 0.008 | 0.025633 | 0.00546 | 0 | 0.5 |
PIC7 | 0 | 0.15885 | 0.00375 | 0.067367 | 0 | 0 | 0.1393 |
PIC8 | 0.02535 | 0.05605 | 0.00635 | 0 | 0.02518 | 0 | 0.5 |
PIC9 | 0 | 0.04805 | 0.0467 | 0.004633 | 0 | 0 | 0.588 |
PIC10 | 0 | 0.049633 | 0.0374 | 0.000467 | 0.05178 | 0 | 0.5347 |
PIC11 | 0.0039 | 0.0829 | 0.09055 | 0.0894 | 0.11168 | 0 | 0.5383 |
PIC12 | 0.00435 | 0.066917 | 0 | 0.0726 | 0.05926 | 0 | 0.5355 |
PIC13 | 0 | 0.020683 | 0.03415 | 0.026 | 0.029 | 0 | 0.50995 |
PIC14 | 0 | 0.037883 | 0.02095 | 0.059567 | 0.05466 | 0 | 0.5 |
PIC15 | 0.012825 | 0.0177 | 0.0042 | 0.013467 | 0.02136 | 0 | 0.53795 |
PIC16 | 0.04835 | 0.09405 | 0.02255 | 0.0104 | 0.03746 | 0.0172 | 0.07845 |
PIC17 | 0.03495 | 0.092933 | 0 | 0 | 0.01742 | 0 | 0.2606 |
PIC18 | 0.064625 | 0.109367 | 0 | 0.031067 | 0.04264 | 0 | 0.05485 |
PIC19 | 0.046375 | 0.08975 | 0 | 0.013667 | 0.02698 | 0 | 0.1644 |
PIC20 | 0.23425 | 0.088867 | 0.0339 | 0 | 0.05164 | 0 | 0.5 |
PIC21 | 0 | 0.066217 | 0.0005 | 0.010867 | 0.0463 | 0 | 0.5 |
PIC22 | 0 | 0.036217 | 0.0423 | 0 | 0 | 0 | 0.5 |
PIC23 | 0.007775 | 0.058533 | 0.00585 | 0.061433 | 0.03702 | 0 | 0.5 |
PIC24 | 0 | 0.091483 | 0.0147 | 0 | 0.00374 | 0 | 0.16245 |
PIC25 | 0 | 0.087583 | 0.01495 | 0 | 0 | 0 | 0.31615 |
PIC26 | 0 | 0.035183 | 0.0143 | 0 | 0.03342 | 0 | 0.2694 |
PIC27 | 0.006875 | 0.073867 | 0.0261 | 0.055233 | 0 | 0 | 0.357 |
PIC28 | 0 | 0.064933 | 0.0193 | 0.015267 | 0.04366 | 0 | 0.32355 |
PIC29 | 0.007525 | 0.0526 | 0.01815 | 0.082667 | 0.12168 | 0 | 0.13895 |
PIC30 | 0 | 0.0584 | 0.043 | 0 | 0.06114 | 0 | 0.5 |
PIC31 | 0.0141 | 0.01575 | 0.00685 | 0.0124 | 0.08798 | 0 | 0.2432 |
PIC32 | 0 | 0.074983 | 0.0084 | 0 | 0.11196 | 0 | 0.3946 |
PIC33 | 0 | 0.0949 | 0.00315 | 0.028833 | 0.02364 | 0 | 0.5 |
PIC34 | 0.0972 | 0.005117 | 0 | 0 | 0.2322 | 0 | 0.1048 |
PIC35 | 0 | 0.1049 | 0.0607 | 0.011333 | 0.14204 | 0 | 0.33105 |
PIC36 | 0.047025 | 0.077283 | 0.00935 | 0.002667 | 0.13282 | 0 | 0.2738 |
PIC37 | 0.035425 | 0.047883 | 0.0034 | 0.012533 | 0.20666 | 0 | 0.2673 |
PIC38 | 0.018725 | 0.048 | 0.0048 | 0.011633 | 0.14744 | 0 | 0.2348 |
PIC39 | 0.03515 | 0.113967 | 0.00615 | 0 | 0.08654 | 0 | 0.22245 |
Appendix B
- -
- Gender
- -
- Age
- -
- Current Occupation
- -
- Income
Appendix C
MODE_Q1 | MODE_Q2 | MODE_Q3 | |
---|---|---|---|
PIC1 | 3 | 3 | 3 |
PIC2 | 3 | 3 | 3 |
PIC3 | 4 | 4 | 3 |
PIC4 | 3 | 3 | 3 |
PIC5 | 3 | 3 | 3 |
PIC6 | 3 | 3 | 3 |
PIC7 | 4 | 3 | 3 |
PIC8 | 3 | 3 | 3 |
PIC9 | 3 | 3 | 3 |
PIC10 | 4 | 4 | 4 |
PIC11 | 3 | 3 | 3 |
PIC12 | 3 | 3 | 3 |
PIC13 | 3 | 3 | 3 |
PIC14 | 3 | 3 | 4 |
PIC15 | 3 | 3 | 3 |
PIC16 | 3 | 3 | 3 |
PIC17 | 3 | 3 | 3 |
PIC18 | 3 | 4 | 3 |
PIC19 | 3 | 3 | 3 |
PIC20 | 4 | 3 | 3 |
PIC21 | 4 | 4 | 3 |
PIC22 | 4 | 3 | 3 |
PIC23 | 4 | 4 | 3 |
PIC24 | 3 | 4 | 4 |
PIC25 | 4 | 4 | 4 |
PIC26 | 3 | 3 | 3 |
PIC27 | 3 | 3 | 3 |
PIC28 | 3 | 3 | 3 |
PIC29 | 3 | 3 | 3 |
PIC30 | 2 | 2 | 2 |
PIC31 | 3 | 3 | 3 |
PIC32 | 3 | 3 | 2 |
PIC33 | 3 | 3 | 3 |
PIC34 | 3 | 3 | 3 |
PIC35 | 3 | 3 | 3 |
PIC36 | 2 | 2 | 2 |
PIC37 | 2 | 2 | 2 |
PIC38 | 2 | 2 | 2 |
PIC39 | 3 | 2 | 2 |
Appendix D
- Temperature
- -
- Singapore has a tropical rainforest climate (Af—Tropical Rainforest Climate), remaining hot and humid throughout the year with relatively stable temperatures.
- -
- The average nighttime temperature ranges between 23–24 °C, and daytime temperatures are typically around 31–33 °C, occasionally reaching up to 34 °C.
- -
- The lowest recorded temperature was approximately 20.2 °C (March 2000), and the highest was around 36 °C (March 1998).
- -
- The average temperature has increased by about 0.25 °C per decade, which is faster than the global average.
- Rainfall and Seasons
- -
- Rainfall occurs throughout the year, with an annual average of 2340–2580 mm.
- -
- November is the wettest month (~320 mm/20 days), while February is the driest (~129 mm/10 days).
- -
- Singapore experiences two monsoon seasons:
- (1)
- Northeast Monsoon (November–March): characterized by frequent rainfall and heavy cloud cover.
- (2)
- Southwest Monsoon (January–September): less rainfall overall but frequent afternoon and evening thunderstorms.
- -
- “Sumatra Squalls”—strong windstorms accompanied by rain—are common between April–May and October–November, typically occurring in the early morning.
- Cloud Cover and Sunshine
- -
- Most of the year is cloudy.
- Wind
- -
- Winds are generally light.
- -
- However, during the Northeast Monsoon (January–March), stronger winds are observed.
- -
- Sumatra Squalls can bring wind speeds exceeding 100 km/h.
References
- Choi, H.; Jo, Y.; Kim, M.; Yoon, Y. What Should the Tourism Industry Do in the “Global Boiling” Era? Available online: https://scholarworks.umass.edu/entities/publication/c07904b7-7039-4308-829e-a4e4828aec30 (accessed on 7 June 2025).
- NC 4: Global Boiling and Climate Change: Impacting Every Life Across Thailand. UNDP. Available online: https://www.undp.org/stories/climate-impact-thailand (accessed on 7 June 2025).
- Palinkas, L.A.; Wong, M. Global climate change and mental health. Curr. Opin. Psychol. 2020, 32, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Padhy, S.; Sarkar, S.; Panigrahi, M.; Paul, S. Mental health effects of climate change. Indian J. Occup. Environ. Med. 2015, 19, 3–7. [Google Scholar] [CrossRef]
- Cianconi, P.; Betrò, S.; Janiri, L. The Impact of Climate Change on Mental Health: A Systematic Descriptive Review. Front. Psychiatry 2020, 11, 74. [Google Scholar] [CrossRef]
- Thomas, S.P. Global Boiling: Implications for Mental Health. Issues Ment. Health Nurs. 2023, 44, 797–798. [Google Scholar] [CrossRef]
- World Health Organization: WHO. Heat and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-heat-and-health (accessed on 7 June 2025).
- Mol, N.; Priya, A.; Singh, A.K.; Mago, P.; Shalimar, N.; Ray, A.K. Unravelling the impacts of climatic heat events on cardiovascular health in animal models. Environ. Res. 2024, 248, 118315. [Google Scholar] [CrossRef] [PubMed]
- Navas-Martín, M.Á.; Cuerdo-Vilches, T.; López-Bueno, J.A.; Díaz, J.; Linares, C.; Sánchez-Martínez, G. Human adaptation to heat in the context of climate change: A conceptual framework. Environ. Res. 2024, 252, 118803. [Google Scholar] [CrossRef] [PubMed]
- Kiarsi, M.; Amiresmaili, M.; Mahmoodi, M.R.; Farahmandnia, H.; Nakhaee, N.; Zareiyan, A.; Aghababaeian, H. Heat waves and adaptation: A global systematic review. J. Therm. Biol. 2023, 116, 103588. [Google Scholar] [CrossRef]
- Climate Change and Heatwaves. World Meteorological Organization. Available online: https://wmo.int/content/climate-change-and-heatwaves (accessed on 7 June 2025).
- Waqas, M.; Naseem, A.; Humphries, U.W.; Hlaing, P.T.; Shoaib, M.; Hashim, S. A comprehensive review of the impacts of climate change on agriculture in Thailand. Farming Syst. 2024, 3, 100114. [Google Scholar] [CrossRef]
- What Is Climate Change Mitigation and Why Is It Urgent? UNDP Climate Promise. Available online: https://climatepromise.undp.org/news-and-stories/what-climate-change-mitigation-and-why-it-urgent (accessed on 7 June 2025).
- Filonchyk, M.; Peterson, M.P.; Yan, H.; Gusev, A.; Zhang, L.; He, Y.; Yang, S. Greenhouse gas emissions and reduction strategies for the world’s largest greenhouse gas emitters. Sci. Total Environ. 2024, 944, 173895. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chang, K.-C.; Lin, Y.-L. Policies for reducing the greenhouse gas emissions generated by the road transportation sector in Taiwan. Energy Policy 2024, 191, 114171. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Reducing transport sector CO2 emissions patterns: Environmental technologies and renewable energy. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100217. [Google Scholar] [CrossRef]
- Hou, L.; Wang, Y.; Zheng, Y.; Zhang, A. The impact of vehicle ownership on carbon emissions in the transportation sector. Sustainability 2022, 14, 12657. [Google Scholar] [CrossRef]
- World Health Organization: WHO. Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health?gad_source=1&gclid=CjwKCAiAg8S7BhATEiwAO2-R6j_oRkxTUa1EnPDNnJRXORyQhD5ukAXUhK0E9JkD222Jfx_BFnyFXBoCYEIQAvD_BwE (accessed on 7 June 2025).
- Velázquez, J.; Infante, J.; Gómez, I.; Hernando, A.; Gülçin, D.; Herráez, F.; Rincón, V.; Castanho, R.A. Walkability under Climate Pressure: Application to Three UNESCO World Heritage Cities in Central Spain. Land 2023, 12, 944. [Google Scholar] [CrossRef]
- Baobeid, A.; Koç, M.; Al-Ghamdi, S.G. Walkability and its relationships with health, sustainability, and livability: Elements of physical environment and evaluation frameworks. Front. Built Environ. 2021, 7, 721218. [Google Scholar] [CrossRef]
- Stevens, R.B.; Brown, B.B. Walkable new urban LEED_Neighborhood-Development (LEED-ND) community design and children’s physical activity: Selection, environmental, or catalyst effects? Int. J. Behav. Nutr. Phys. Act. 2011, 8, 139. [Google Scholar] [CrossRef] [PubMed]
- Zuniga-Teran, A.A.; Orr, B.J.; Gimblett, R.H.; Chalfoun, N.V.; Going, S.B.; Guertin, D.P.; Marsh, S.E. Designing healthy communities: A walkability analysis of LEED-ND. Front. Arch. Res. 2016, 5, 433–452. [Google Scholar] [CrossRef]
- Rivera-Collazo, I. Environment, climate and people: Exploring human responses to climate change. J. Anthr. Archaeol. 2022, 68, 101460. [Google Scholar] [CrossRef]
- Blumstein, D.T.; Hayes, L.D.; Pinter-Wollman, N. Social consequences of rapid environmental change. Trends Ecol. Evol. 2022, 38, 337–345. [Google Scholar] [CrossRef]
- Gul, Y. The Effectiveness of walkability index for social sustainability in developing countries using Geographical Information System. J. Des. Sci. Appl. Arts 2021, 2, 364–384. [Google Scholar] [CrossRef]
- Sonta, A.; Jiang, X. Rethinking walkability: Exploring the relationship between urban form and neighborhood social cohesion. Sustain. Cities Soc. 2023, 99, 104903. [Google Scholar] [CrossRef]
- Paglione, L.; Donato, M.A.; Cofone, L.; Sabato, M.; Appolloni, L.; D’alessandro, D. The healthy city reimagined: Walkability, active mobility, and the challenges of measurement and evaluation. Urban Sci. 2024, 8, 157. [Google Scholar] [CrossRef]
- Bokharaei, S.; Nasar, J.L. Investigating effects of environmental physical attributes on neighborhood walkability. City Environ. Interact. 2023, 20, 100114. [Google Scholar] [CrossRef]
- Roe, J.; Mondschein, A.; Neale, C.; Barnes, L.; Boukhechba, M.; Lopez, S. The urban built environment, walking and mental health outcomes among older adults: A pilot study. Front. Public Health 2020, 8, 575946. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Xia, B.; Han, Y. Pathways between neighbourhood walkability and mental wellbeing: A case from Hankow, China. J. Transp. Health 2021, 20, 101012. [Google Scholar] [CrossRef]
- Junior, J.d.A.S.; Lopes, A.A.d.S.; Godtsfriedt, C.E.S.; Della Justina, M.D.; de Paiva, K.M.; D’oRsi, E.; Rech, C.R. Neighbourhood walkability and mental health in older adults: A cross-sectional analysis from EpiFloripa Aging Study. Front. Aging 2022, 3, 915292. [Google Scholar] [CrossRef]
- Aktan, T.Ö.; Ozyavuz, M. Criteria of walkability: As a sense of urban experiment. J. Balk. Sci. Technol. 2022, 1, 73–80. [Google Scholar] [CrossRef]
- Manzolli, J.A.; Oliveira, A.; Neto, M.d.C. Evaluating walkability through a multi-criteria decision analysis approach: A lisbon case study. Sustainability 2021, 13, 1450. [Google Scholar] [CrossRef]
- Ariffin, R.N.R.; Rahman, N.H.A.; Zahari, R.K. Systematic literature review of walkability and the built environment. J. Policy Gov. 2021, 1, 1–20. [Google Scholar] [CrossRef]
- Vichiensan, V.; Nakamura, K. Walkability perception in Asian cities: A comparative study in Bangkok and Nagoya. Sustainability 2021, 13, 6825. [Google Scholar] [CrossRef]
- Khder, H.M.; Mousavi, S.M.; Khan, T.H. Impact of Street’s Physical Elements on Walkability: A Case of Mawlawi Street in Sulaymaniyah, Iraq. Int. J. Built Environ. Sustain. 2016, 3. [Google Scholar] [CrossRef]
- Lin, Z.-E.; Wang, S.-Y.; Hung, K.-A.; Hsieh, C.-J.; Lin, T.-P. The influence of shading facilities on outdoor thermal comfort, pedestrian walking speed, and indoor satisfaction. Int. J. Biometeorol. 2025, 69, 1407–1427. [Google Scholar] [CrossRef]
- Basu, R.; Colaninno, N.; Alhassan, A.; Sevtsuk, A. Hot and bothered: Exploring the effect of heat on pedestrian route choice behavior and accessibility. Cities 2024, 155, 105435. [Google Scholar] [CrossRef]
- Subramanian, R.; Benita, F.; Tunçer, B. Assessment of sheltered walkways in tropics: Understanding contextual influence and user perception of outdoor thermal comfort. Environ. Dev. Sustain. 2024, 1–23. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, L.; Zhai, Y.; Jin, L.; Meng, Q.; Yan, J.; Wu, R.; Brown, R.D. The impact of dynamic thermal experiences on pedestrian thermal comfort: A whole-trip perspective from laboratory studies. Build. Environ. 2024, 258, 111599. [Google Scholar] [CrossRef]
- Drapeau, H.F.; Singh, P.; Benyaminov, F.; Wright, K.; Spence, J.C.; Nuzhat, S.; Walsh, A.; Islam, K.; Azarm, Z.; Lee, K.K. Meteorological gaps in audits of pedestrian environments: A scoping review. BMC Public Health 2024, 24, 2010. [Google Scholar] [CrossRef]
- Gooroochurn, M.; Giridharan, R. Enhancing energy performance and comfort of built environment in tropical climates. In Urban Microclimate Modelling for Comfort and Energy Studies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 137–161. [Google Scholar] [CrossRef]
- Ratanawichit, P.; Arifwidodo, S.; Anambutr, R. First-mile walking, neighbourhood walkability and physical activity in Bangkok, Thailand. Front. Built Environ. 2025, 11, 1470792. [Google Scholar] [CrossRef]
- Tarek, S.; Ouf, A.S.E.-D. Biophilic smart cities: The role of nature and technology in enhancing urban resilience. J. Eng. Appl. Sci. 2021, 68, 1–22. [Google Scholar] [CrossRef]
- Milliken, S.; Kotzen, B.; Walimbe, S.; Coutts, C.; Beatley, T. Biophilic cities and health. Cities Health 2023, 7, 175–188. [Google Scholar] [CrossRef]
- Alhefnawi, M.A.M. Integrating the biophilia physiognomies in the context of Neom smart city in Saudi Arabia. Acta Sci. Pol. Adm. Locorum 2022, 21, 159–171. [Google Scholar] [CrossRef]
- Demirkol, A.K.; Önaç, A.K. Integratıng bıophılıc desıgn elements ınto offıce desıgns. Ain Shams Eng. J. 2024, 15, 102962. [Google Scholar] [CrossRef]
- Knapskog, M.; Hagen, O.H.; Tennøy, A.; Rynning, M.K. Exploring ways of measuring walkability. Transp. Res. Procedia 2019, 41, 264–282. [Google Scholar] [CrossRef]
- Thampanichwat, C.; Meksrisawat, P.; Jinjantarawong, N.; Sinnugool, S.; Phaibulputhipong, P.; Chunhajinda, P.; Bhutdhakomut, B. A Systematic Review of Architecture Stimulating Attention Through the Six Senses of Humans. Sustainability 2024, 16, 6371. [Google Scholar] [CrossRef]
- Ragavendira, R. Architecture and Human Senses. Int. J. Innov. Eng. Technol. 2017, 8, 131–135. [Google Scholar] [CrossRef]
- Juul, V.; Nordbø, E.C.A. Examining activity-friendly neighborhoods in the Norwegian context: Green space and walkability in relation to physical activity and the moderating role of perceived safety. BMC Public Health 2023, 23, 259. [Google Scholar] [CrossRef]
- Roscoe, C.; Sheridan, C.; Geneshka, M.; Hodgson, S.; Vineis, P.; Gulliver, J.; Fecht, D. Green Walkability and Physical Activity in UK Biobank: A Cross-Sectional Analysis of Adults in Greater London. Int. J. Environ. Res. Public Health 2022, 19, 4247. [Google Scholar] [CrossRef]
- Zuniga-Teran, A.A.; Stoker, P.; Gimblett, R.H.; Orr, B.J.; Marsh, S.E.; Guertin, D.P.; Chalfoun, N.V. Exploring the influence of neighborhood walkability on the frequency of use of greenspace. Landsc. Urban Plan. 2019, 190, 103609. [Google Scholar] [CrossRef]
- Wong, G.K.; Ma, A.T.; Cheung, L.T.; Lo, A.Y.; Jim, C. Visiting urban green space as a climate-change adaptation strategy: Exploring push factors in a push–pull framework. Clim. Risk Manag. 2024, 43, 100589. [Google Scholar] [CrossRef]
- Chênes, C.; Giuliani, G.; Ray, N. Modelling Physical Accessibility to Public Green Spaces in Switzerland to Support the SDG11. Geomatics 2021, 1, 383–398. [Google Scholar] [CrossRef]
- Zhong, W.; Schröder, T.; Bekkering, J. Biophilic design in architecture and its contributions to health, well-being, and sustainability: A critical review. Front. Arch. Res. 2022, 11, 114–141. [Google Scholar] [CrossRef]
- Thampanichwat, C.; Wongvorachan, T.; Sirisakdi, L.; Somngam, P.; Petlai, T.; Singkham, S.; Bhutdhakomut, B.; Jinjantarawong, N. The architectural language of biophilic design after architects use text-to-image AI. Buildings 2025, 15, 662. [Google Scholar] [CrossRef]
- Orel, A. Біoмoрфний урбанізм. Філoсoфія рoзумнoгo міста. Multiversum. Philos. Alm. 2022, 1, 158–176. [Google Scholar] [CrossRef]
- Ong, J.; Prihatmanti, R. The biomorphic and biophilic design approaches in rebuilding place of heritage shophouses. In Proceedings of the ICRP 2019—4th International Conference on Rebuilding Place, Gelugor, Malaysia, 6–7 November 2019. [Google Scholar]
- Gadhi, A.; Tiwari, A.; Qurnfulah, E. Biophilic Urbanism’s Impact on Sustainable Development: Challenges and Opportunities. J. Sustain. Dev. 2024, 17, 1. [Google Scholar] [CrossRef]
- Cabanek, A.; de Baro, M.E.Z.; Newman, P. Biophilic streets: A design framework for creating multiple urban benefits. Sustain. Earth 2020, 3, 1–17. [Google Scholar] [CrossRef]
- Lefosse, D.C.; Naghibi, M.; Luo, S.; van Timmeren, A. Biophilic urbanism across scales: Enhancing urban nature through experience and design. Land 2025, 14, 1112. [Google Scholar] [CrossRef]
- Lefosse, D.C.; Naghibi, M.; Luo, S.; Van Timmeren, A. Biophilic Urbanism from Macro to Micro: Enhancing Urban Nature through Experience and Design. Sustain. Sci. Technol. 2024; preprint. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Świerk, D.; Szczepańska, M.; Urbański, P. Changes in the area of urban green space in cities of western Poland. Bull. Geogr. Socio-economic Ser. 2018, 39, 65–77. [Google Scholar] [CrossRef]
- Bjerke, T.; Østdahl, T.; Thrane, C.; Strumse, E. Vegetation density of urban parks and perceived appropriateness for recreation. Urban For. Urban Green. 2006, 5, 35–44. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Tan, C.L.; Lu, Y. Impact of urban green spaces and maintenance regimes on flora and fauna diversity. Urban For. Urban Green. 2025, 104, 128678. [Google Scholar] [CrossRef]
- Novosadová, L.; van der Knaap, W. The role of biophilic agents in building a green resilient city; the case of birmingham, UK. Sustainability 2021, 13, 5033. [Google Scholar] [CrossRef]
- Küçükali, U.F. Biophilic Design in Green Buildings. User Exp. Urban Creat. 2024, 6, 34–43. [Google Scholar] [CrossRef]
- Panlasigui, S.; Spotswood, E.; Beller, E.; Grossinger, R. Biophilia beyond the Building: Applying the Tools of Urban Biodiversity Planning to Create Biophilic Cities. Sustainability 2021, 13, 2450. [Google Scholar] [CrossRef]
- Nkubiyaho, B. The Concept of Biophilic City and Biophilic Design 1. Biophilic City. Glob. J. Innov. Urban Nat. 2020. [Google Scholar] [CrossRef]
- Hong, X.-C.; He, B.-J.; Liu, J.; Qi, J.-D.; Wang, G.; Cheng, S. Biophilic Cities and Communities: Towards Natural Resources, Environmental and Social Sustainability. Sustainability 2025, 17, 1881. [Google Scholar] [CrossRef]
- Beatley, T.; Newman, P. Biophilic cities are sustainable, resilient cities. Sustainability 2013, 5, 3328–3345. [Google Scholar] [CrossRef]
- Beatley, T. Toward Biophilic Cities: Strategies for Integrating Nature into Urban Design. 2008. Available online: https://www.researchgate.net/publication/285768079_Toward_biophilic_cities_Strategies_for_integrating_nature_into_urban_design (accessed on 7 July 2025).
- Han, K.-T. The effect of nature and physical activity on emotions and attention while engaging in green exercise. Urban For. Urban Green. 2017, 24, 5–13. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, X.; Feng, S.; Li, H. Engaging in Physical Activity in Green Spaces at Night Is Associated with Mental Well-Being and Happiness. Behav. Sci. 2025, 15, 313. [Google Scholar] [CrossRef]
- Woodworth, A.V. Biophilia and Human Health. In Programming for Health and Wellbeing in Architecture; Routledge: Abingdon, UK, 2021. [Google Scholar] [CrossRef]
- Yin, J.; Zhu, H.; Yuan, J. Health Impacts of Biophilic Design from a Multisensory Interaction Perspective: Empirical Evidence, Research Designs, and Future Directions. Land 2024, 13, 1448. [Google Scholar] [CrossRef]
- Ristianti, N.S.; Dewi, S.P.; Susanti, R.; Kurniati, R.; Zain, N.S. Using biophilic design to enhance resilience of urban parks in semarang city, indonesia. Nakhara J. Environ. Des. Plan. 2024, 23, 402. [Google Scholar] [CrossRef]
- Cengiz, C.; Boz, A.O. Biophilic Playgrounds as Playscapes in Child-Nature Interaction. Int. J. Sci. Technol. Res. 2019, 5, 216–226. [Google Scholar] [CrossRef]
- Zari, M.P. What Makes a City ‘Biophilic’? Observations and Experiences from the Wellington Nature Map Project. 2017. Available online: https://www.researchgate.net/publication/322784690_What_makes_a_city_’biophilic’_Observations_and_experiences_from_the_Wellington_Nature_Map_project (accessed on 7 June 2025).
- O’SUllivan, K.; Shirani, F.; Hale, R.; Pidgeon, N.; Henwood, K. Identity, place narrative and biophilic urban development: Connecting the past, present and future for sustainable liveable cities. Front. Sustain. Cities 2023, 5, 1139029. [Google Scholar] [CrossRef]
- Lengen, C.; Kistemann, T. Sense of place and place identity: Review of neuroscientific evidence. Health Place 2012, 18, 1162–1171. [Google Scholar] [CrossRef]
- Bilgic, N.; Ebbini, G.W. Balancing complexity and restoration in virtual interior environments: User perceptions of organized complexity in biophilic design. Int. J. Arch. Res. Archnet-IJAR 2023, 18, 895–913. [Google Scholar] [CrossRef]
- Andreucci, M.B.; Loder, A.; Brown, M.; Brajković, J. Exploring Challenges and Opportunities of Biophilic Urban Design: Evidence from Research and Experimentation. Sustainability 2021, 13, 4323. [Google Scholar] [CrossRef]
- Roös, P.B.; Jones, D.S.; Zeunert, J. Biophilic Inspired Railway Stations: The New Frontier for Future Cities. In Proceedings of the 9th International Urban Design Conference, Cape Town, South Africa, 7–9 November 2016; Available online: https://www.researchgate.net/publication/310047442_Biophilic_Inspired_Railway_Stations_The_New_Frontier_for_Future_Cities (accessed on 7 June 2025).
- Ziari, K.; Pourahmad, A.; Mehrabani, B.F.; Hosseini, A. Environmental sustainability in cities by biophilic city approach: A case study of Tehran. Int. J. Urban Sci. 2018, 22, 486–516. [Google Scholar] [CrossRef]
- Schindler, M.; Le Texier, M.; Caruso, G. How far do people travel to use urban green space? A comparison of three European cities. Appl. Geogr. 2022, 141, 102673. [Google Scholar] [CrossRef]
- Olsen, J.R.; Nicholls, N.; Panter, J.; Burnett, H.; Tornow, M.; Mitchell, R. Trends and inequalities in distance to and use of nearest natural space in the context of the 20-min neighbourhood: A 4-wave national repeat cross-sectional study, 2013 to 2019. Environ. Res. 2022, 213, 113610. [Google Scholar] [CrossRef]
- Teixeira, A.; Gabriel, R.; Martinho, J.; Oliveira, I.; Santos, M.; Pinto, G.; Moreira, H. Distance to natural environments, physical activity, sleep, and body composition in women: An exploratory analysis. Int. J. Environ. Res. Public Health 2023, 20, 3647. [Google Scholar] [CrossRef]
- Karaman, G.D.; Avci, A.N. Analyzing Natural Lighting Conditions from the Perspective of Biophilic Design in Indoor Office Environments. In IOP Conference Series Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1099, p. 012034. [Google Scholar] [CrossRef]
- Asojo, A.; Hazazi, F. Biophilic Design Strategies and Indoor Environmental Quality: A Case Study. Sustainability 2025, 17, 1816. [Google Scholar] [CrossRef]
- Volf, C.; Bueno, B.; Edwards, P.; Hobday, R.; Mäder, S.; Matusiak, B.S.; Wulff, K.; Osterhaus, W.; Manoli, G.; Della Giustina, C.; et al. Why daylight should be a priority for urban planning. J. Urban Manag. 2024, 13, 175–182. [Google Scholar] [CrossRef]
- Zhong, W.; Schroeder, T.; Bekkering, J. Designing with nature: Advancing three-dimensional green spaces in architecture through frameworks for biophilic design and sustainability. Front. Arch. Res. 2023, 12, 732–753. [Google Scholar] [CrossRef]
- Shbaita, A.S.; Denerel, S.B.; Asilsoy, B. An Evidence-Based Assessment of Biophilic Interior Design in a Traditional Context: The Case of the Kingdom of Saudi Arabia. Sustainability 2024, 16, 7979. [Google Scholar] [CrossRef]
- Hung, S.-H.; Chang, C.-Y. How do humans value urban nature? Developing the perceived biophilic design scale (PBDs) for preference and emotion. Urban For. Urban Green. 2022, 76, 127730. [Google Scholar] [CrossRef]
- Hady, S.I.M.A. Activating biophilic design patterns as a sustainable landscape approach. J. Eng. Appl. Sci. 2021, 68, 1–16. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Grabovyi, P. Integrating the 14 Patterns of Biophilic Design into the convenience and comfort of apartments in Ho Chi Minh City. E3S Web Conf. 2024, 403, 03009. [Google Scholar] [CrossRef]
- Totaforti, S. Emerging Biophilic Urbanism: The Value of the Human–Nature Relationship in the Urban Space. Sustainability 2020, 12, 5487. [Google Scholar] [CrossRef]
- Zhong, W.; Schröder, T.; Bekkering, J. Implementing biophilic design in architecture through three-dimensional green spaces: Guidelines for building technologies, plant selection, and maintenance. J. Build. Eng. 2024, 92, 109648. [Google Scholar] [CrossRef]
- Thomson, G.; Newman, P. Green infrastructure and biophilic urbanism as tools for integrating resource efficient and ecological cities. Urban Plan. 2021, 6, 75–88. [Google Scholar] [CrossRef]
- Xue, F.; Gou, Z.; Lau, S.S.-Y.; Chung, K.-H.; Zhang, J. From biophilic design to biophilic urbanism: Stakeholders’ perspectives. J. Clean. Prod. 2019, 211, 1444–1452. [Google Scholar] [CrossRef]
- Wang, J.; Xue, F.; Jing, R.; Lu, Q.; Huang, Y.; Sun, X.; Zhu, W. Regenerating Sponge City to Sponge Watershed through an Innovative Framework for Urban Water Resilience. Sustainability 2021, 13, 5358. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, Y.; Swallow, S. China’s sponge city development for urban water resilience and sustainability: A policy discussion. Sci. Total Environ. 2020, 729, 139078. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, H.; Zhang, J.; Deng, J.; She, L. Research on Sustainable Evaluation Model of Sponge City Based on Emergy Analysis. Water 2022, 15, 32. [Google Scholar] [CrossRef]
- Casanelles-Abella, J.; Egerer, M. Ecology for future cities. Basic Appl. Ecol. 2025, 83, 55–63. [Google Scholar] [CrossRef]
- Parris, K.M.; Amati, M.; Bekessy, S.A.; Dagenais, D.; Fryd, O.; Hahs, A.K.; Hes, D.; Imberger, S.J.; Livesley, S.J.; Marshall, A.J.; et al. The seven lamps of planning for biodiversity in the city. Cities 2018, 83, 44–53. [Google Scholar] [CrossRef]
- Lux, M.S. Networks and fragments: An integrative approach for planning urban green infrastructures in dense urban areas. Land 2024, 13, 1859. [Google Scholar] [CrossRef]
- Hou, S.; Yu, Y.; Jung, T.; Han, X. How to Coordinate Urban Ecological Networks and Street Green Space Construction? Insights from a Multi-Scale Perspective. Land 2024, 14, 26. [Google Scholar] [CrossRef]
- Shao, H.; Kim, G. A comprehensive review of different types of green infrastructure to mitigate urban heat islands: Progress, functions, and benefits. Land 2022, 11, 1792. [Google Scholar] [CrossRef]
- Lee, E.-J.; Park, S.-J. Biophilic Experience-Based Residential Hybrid Framework. Int. J. Environ. Res. Public Health 2022, 19, 8512. [Google Scholar] [CrossRef]
- Damla, K.; Emine, K. Biophilic architecture and Water: Examining Water as a Spatial Sensory Element. IDA Int. Des. Art J. 2022, 4, 252–270. [Google Scholar]
- Beatley, T. Biophilic cities: What are they? In Biophilic Cities; Island Press: Washington, DC, USA, 2011; pp. 45–81. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y. A framework of biophilic urbanism for improving climate change adaptability in urban environments. Urban For. Urban Green. 2021, 61, 127104. [Google Scholar] [CrossRef]
- MDPI. Biophilic Cities and Communities: Human-Environment Interaction and Sustainable Governance. Available online: https://www.mdpi.com/topics/DP2IH99GRY (accessed on 7 June 2025).
- El-Baghdadi, O.; Desha, C. Conceptualising a biophilic services model for urban areas. Urban For. Urban Green. 2017, 27, 399–408. [Google Scholar] [CrossRef]
- Meenar, M.; Pánek, J.; Kitson, J.; York, A. Mapping the emotional landscapes of parks in post-industrial communities enduring environmental injustices: Potential implications for biophilic city planning. Cities 2025, 158, 105692. [Google Scholar] [CrossRef]
- Kone, S.M. Re-Envisioning urban open spaces. In Emerging Approaches in Design and New Connections With Nature; Advances in Media, Entertainment and the Arts (AMEA) Book Series; IGI Global Scientific Publishing: Hershey, PA, USA, 2021; pp. 137–154. [Google Scholar] [CrossRef]
- Shahda, M.M. Vertical Farming: A Catalyst for Integrating Biophilic Design into Built Environment. J. Sustain. Arch. Civ. Eng. 2025, 37, 140–157. [Google Scholar] [CrossRef]
- Yang, F.; Van Timmeren, A.; Tillie, N. Symbiotic Peri-Urban Agricultural Interfaces: Applying Biophilic Design Principles to Facilitate Peri-Urban Agricultural Areas into Ecology, Foodscape, and Metropolitan Transition. In The Coming of Age of Urban Agriculture; Contemporary Urban Design Thinking; Springer: Berlin/Heidelberg, Germany, 2023; pp. 93–136. [Google Scholar] [CrossRef]
- Hung, S.-H.; Chou, W.-Y.; Chang, C.-Y. A study on practicing qigong and getting better health benefits in biophilic urban green spaces. Sustainability 2021, 13, 1692. [Google Scholar] [CrossRef]
- Bahauddin, A.; Prihantmanti, R.; Ong, J. Biophilic design patterns and local knowledge of plants application in Baba-Nyonya heritage shophouses’ courtyard. ARTEKS J. Tek. Arsit. 2021, 6, 305–314. [Google Scholar] [CrossRef]
- Sadick, A.-M.; Kamardeen, I.; Vu, X.P. Challenges for implementing biophilic strategies in Australian building design. J. Build. Eng. 2023, 74, 106849. [Google Scholar] [CrossRef]
- Qureshi, R.A.; Shah, S.J.; Akhtar, M.; Abbass, W.; Mohamed, A. Investigating sustainability of the traditional courtyard houses using deep beauty framework. Sustainability 2022, 14, 6894. [Google Scholar] [CrossRef]
- Hung, S.-H.; Chang, C.-Y. Designing for harmony in urban green space: Linking the concepts of biophilic design, environmental Qi, restorative environment, and landscape preference. J. Environ. Psychol. 2024, 96, 102294. [Google Scholar] [CrossRef]
- Carter, V.; Derudder, B.; Henríquez, C. Assessing local governments’ perception of the potential implementation of biophilic urbanism in Chile: A latent class approach. Land Use Policy 2021, 101, 105103. [Google Scholar] [CrossRef]
- Hung, S.-H. Does Perceived Biophilic Design Contribute to Human Well-Being in Urban Green Spaces? A Study of Perceived Naturalness, Biodiversity, Perceived Restorativeness, and Subjective Vitality. Urban For. Urban Green. 2025, 107, 128752. [Google Scholar] [CrossRef]
- Kambo, A.; Drogemuller, R.; Yarlagadda, P.K. Assessing Biophilic Design Elements for ecosystem service attributes—A sub-tropical Australian case. Ecosyst. Serv. 2019, 39, 100977. [Google Scholar] [CrossRef]
- Africa, J.; Heerwagen, J.; Loftness, V.; Balagtas, C.R. Biophilic Design and Climate Change: Performance Parameters for Health. Front. Built Environ. 2019, 5, 28. [Google Scholar] [CrossRef]
- Ding, X.; Cui, Y.; Chen, Z.; Zhang, H. Energy Efficiency in Biophilic Architecture: A Systematic Literature Review and Visual Analysis Using CiteSpace and VOSviewer. Buildings 2024, 14, 3800. [Google Scholar] [CrossRef]
- Cabanek, A.; de Baro, M.E.Z.; Byrne, J.; Newman, P. Regenerating Stormwater Infrastructure into Biophilic Urban Assets. Case Studies of a Sump Garden and a Sump Park in Western Australia. Sustainability 2021, 13, 5461. [Google Scholar] [CrossRef]
- Church, S.P. Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools. Landsc. Urban Plan. 2015, 134, 229–240. [Google Scholar] [CrossRef]
- Tashiro, S.; Harada, Y. Psychological and Physiological Thermal Effects of Biophilic Built Environment Using Virtual Reality: A Pilot Study for Certified Green Building. Build. Environ. 2025, 270, 112534. [Google Scholar] [CrossRef]
- Xie, M.; Mao, Y.; Yang, R. Flow experience and city identity in the restorative environment: A conceptual model and nature-based intervention. Front. Public Health 2022, 10, 1011890. [Google Scholar] [CrossRef]
- Samuelsson, K.; Giusti, M.; Peterson, G.D.; Legeby, A.; Brandt, S.A.; Barthel, S. Impact of environment on people’s everyday experiences in Stockholm. Landsc. Urban Plan. 2018, 171, 7–17. [Google Scholar] [CrossRef]
- Sushinsky, J.R.; Rhodes, J.R.; Shanahan, D.F.; Possingham, H.P.; Fuller, R.A. Maintaining experiences of nature as a city grows. Ecol. Soc. 2017, 22, 22. [Google Scholar] [CrossRef]
- Zheng, H.; Luo, M.; Wang, Y.; Wei, Y. Multi-sensory interaction and spatial perception in urban microgreen spaces: A focus on vision, auditory, and olfaction. Sustainability 2024, 16, 8809. [Google Scholar] [CrossRef]
- Parekh, J.; Liu, W.; Beattie, L. Multi-sensory evaluation of urban design in creating obesity encouraging environments: The experience of town centres in Auckland, New Zealand. Front. Sustain. Cities 2023, 5, 1178056. [Google Scholar] [CrossRef]
- Martínez-Soto, J.; Suárez, L.A.d.l.F.; Ruiz-Correa, S. Exploring the links between biophilic and restorative qualities of exterior and interior spaces in leon, guanajuato, mexico. Front. Psychol. 2021, 12, 717116. [Google Scholar] [CrossRef]
- Tahoun, Z.N.A. Awareness assessment of biophilic design principles application. IOP Conf. Ser. Earth Environ. Sci. 2019, 329, 012044. [Google Scholar] [CrossRef]
- Cobreros, C.; Medoza-Ruvalcaba, N.; Flores-García, M.; Roggema, R. Improving Psychological Well-Being in Urban University Districts through Biophilic Design: Two Cases in Mexico. Sustainability 2023, 15, 5703. [Google Scholar] [CrossRef]
- Yue, M.; Zhang, X.; Zhang, J. Biophilic Experience in High-Rise Residential Areas in China: Factor Structure and Validity of a Scale. Sustainability 2024, 16, 2866. [Google Scholar] [CrossRef]
- Maneethai, D.; Legendre, T.S.; Suess, C.; Guzzo, R.F. Designing cognitively and emotively attractive urban service environments for prospective employees: An application of biophilic design philosophies. J. Bus. Res. 2025, 191, 115283. [Google Scholar] [CrossRef]
- Sjövall, I.A.K.; Spiers, H.J. The Potential of Biophilic Design and Nature to Improve Health, Creativity and Well-Being. In Environmental Neuroscience; Springer: Berlin/Heidelberg, Germany, 2024; pp. 255–281. [Google Scholar] [CrossRef]
- Fadda, R.; Congiu, S.; Roeyers, H.; Skoler, T. Elements of Biophilic Design Increase Visual Attention in Preschoolers. Buildings 2023, 13, 1160. [Google Scholar] [CrossRef]
- Lefosse, D.; van Timmeren, A.; Ratti, C. Biophilia Upscaling: A Systematic Literature Review Based on a Three-Metric Approach. Sustainability 2023, 15, 15702. [Google Scholar] [CrossRef]
- Hoyle, H.; Hitchmough, J.; Jorgensen, A. All about the ‘wow factor’? The relationships between aesthetics, restorative effect and perceived biodiversity in designed urban planting. Landsc. Urban Plan. 2017, 164, 109–123. [Google Scholar] [CrossRef]
- Cheng, T.; Marzuki, A. Investigating the Influence of Introducing Biophilic Elements into the Shopping Mall Environment: Perception of Public Visitors. J. Sustain. Res. 2023, 5, e230011. [Google Scholar] [CrossRef]
- Reeve, A.C.; Desha, C.; Hargreaves, D.; Hargroves, K.; Shen, G. Biophilic urbanism: Contributions to holistic urban greening for urban renewal. Smart Sustain. Built Environ. 2015, 4, 215–233. [Google Scholar] [CrossRef]
- Blau, M.L.; Luz, F.; Panagopoulos, T. Urban River Recovery Inspired by Nature-Based Solutions and Biophilic Design in Albufeira, Portugal. Land 2018, 7, 141. [Google Scholar] [CrossRef]
- Namwad, S.; Badrike, N.V.; Shinde, M. Biophilic Design and its Influence on Stress Reduction in High-Density Living Environment. INTERANTIONAL J. Sci. Res. Eng. Manag. 2023, 07, 1–6. [Google Scholar] [CrossRef]
- Yin, J.; Yuan, J.; Arfaei, N.; Catalano, P.J.; Allen, J.G.; Spengler, J.D. Effects of biophilic indoor environment on stress and anxiety recovery: A between-subjects experiment in virtual reality. Environ. Int. 2020, 136, 105427. [Google Scholar] [CrossRef] [PubMed]
- Gaekwad, J.S.; Moslehian, A.S.; Roös, P.B. A meta-analysis of physiological stress responses to natural environments: Biophilia and Stress Recovery Theory perspectives. J. Environ. Psychol. 2023, 90, 102085. [Google Scholar] [CrossRef]
- Al Sayyed, H.; Al-Azhari, W. Investigating the role of biophilic design to enhance comfort in residential spaces: Human physiological response in immersive virtual environment. Front. Virtual Real. 2025, 6, 1411425. [Google Scholar] [CrossRef]
- Park, M.; Lee, H. Analysis of biophilic design elements in exterior city squares for a application of indoor squares design—Focused on relaxation. J. Korean Inst. Inter. Des. 2016, 25, 3–12. [Google Scholar] [CrossRef]
- Rosenbaum, M.S.; Ramirez, G.C.; Camino, J.R. A dose of nature and shopping: The restorative potential of biophilic lifestyle center designs. J. Retail. Consum. Serv. 2018, 40, 66–73. [Google Scholar] [CrossRef]
- Khalaf, O.A.; Ja`afar, N.H.; Malek, M.I.A.; Husini, E.M. A Review: Eco-Friendly Technologies and Sustainable Development of Urban Friendliness Spaces Toward New Urbanism Design Approach. J. Kejuruter. 2023, si6, 49–59. [Google Scholar] [CrossRef]
- Moesch, S.S.; Wellmann, T.; Haase, D.; Bhardwaj, M. Mammal Mia: A review on how ecological and human dimension research on urban wild mammals can benefit future biophilic cities. Basic Appl. Ecol. 2024, 79, 90–101. [Google Scholar] [CrossRef]
- Abdelaal, M.S. Biophilic campus: An emerging planning approach for a sustainable innovation-conducive university. J. Clean. Prod. 2019, 215, 1445–1456. [Google Scholar] [CrossRef]
- Xia, Y.; Shao, Y.; Zheng, Y.; Yan, X.; Lyu, H. Bridging Nature and Urbanization: A Comprehensive Study of Biophilic Design in the Knowledge Economy Era. J. Knowl. Econ. 2024, 16, 3574–3613. [Google Scholar] [CrossRef]
- Tu, H.-M.; Zúniga-González, C.A. Confirmative biophilic framework for heritage management. PLoS ONE 2022, 17, e0266113. [Google Scholar] [CrossRef] [PubMed]
- Abouelela, A. Biophilic design as an approach towards integrating nature into the design of residential units to improve human mental health and well-being. Eurasian Chem. Bull. 2023, 12, 1985–2006. [Google Scholar] [CrossRef]
- Tirri, C.; Swanson, H.; Meenar, M. Finding the “Heart” in the Green: Conducting a Bibliometric Analysis to Emphasize the Need for Connecting Emotions with Biophilic Urban Planning. Int. J. Environ. Res. Public Health 2021, 18, 9435. [Google Scholar] [CrossRef]
- Thomas, C.; Xing, Y. To what extent is Biophilia implemented in the built environment to improve Health and Wellbeing?—State-of-the-Art Review and a Holistic Biophilic Design framework. In Emerging Research in Sustainable Energy and Buildings for a Low-Carbon Future; Advances in Sustainability Science and Technology; Springer: Singapore, 2021; pp. 227–247. [Google Scholar] [CrossRef]
- Pandita, D.; Choudhary, H. Biophilic designs: A solution for the psychological well-being and quality of life of older people. Work. Older People 2024, 28, 417–427. [Google Scholar] [CrossRef]
- Raymundo, V.; Vargas, C.; Alcalá, C.; Marin, S.; Jaulis, C.; Esenarro, D.; Huerta, E.; Fernandez, D.; Martinez, P. Green Infrastructure as an Urban Landscape Strategy for the Revaluation of the Ite Wetlands in Tacna. Buildings 2025, 15, 355. [Google Scholar] [CrossRef]
- Andreucci, M.B.; Poli, I.; Ravagnan, C. Experience an Integrated Approach: Combining Sustainability and Aesthetic Quality with Inclusiveness and Equity Through a Multi-scalar and Multidisciplinary Design of Green Systems. In Beyond the Garden Designing Environments; Springer: Berlin/Heidelberg, Germany, 2024; pp. 173–180. [Google Scholar] [CrossRef]
- Scott, M.; Lennon, M.; Haase, D.; Kazmierczak, A.; Clabby, G.; Beatley, T. Nature-based solutions for the contemporary city/Re-naturing the city/Reflections on urban landscapes, ecosystems services and nature-based solutions in cities/Multifunctional green infrastructure and climate change adaptation: Brownfield greening as an adaptation strategy for vulnerable communities?/Delivering green infrastructure through planning: Insights from practice in Fingal, Ireland/Planning for biophilic cities: From theory to practice. Plan. Theory Pract. 2016, 17, 267–300. [Google Scholar] [CrossRef]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environ. Sci. Policy 2016, 62, 99–111. [Google Scholar] [CrossRef]
- Brielmann, A.A.; Buras, N.H.; Salingaros, N.A.; Taylor, R.P. What happens in your brain when you walk down the street? implications of architectural proportions, biophilia, and fractal geometry for urban science. Urban Sci. 2022, 6, 3. [Google Scholar] [CrossRef]
- Cacique, M.; Ou, S.-J. Biophilic design as a strategy for accomplishing the idea of healthy, sustainable, and resilient environments. Sustainability 2022, 14, 5605. [Google Scholar] [CrossRef]
- Sanchez, J.A.; Ikaga, T.; Sanchez, S.V. Quantitative improvement in workplace performance through biophilic design: A pilot experiment case study. Energy Build. 2018, 177, 316–328. [Google Scholar] [CrossRef]
- Hähn, N.; Essah, E.; Blanusa, T. Biophilic design and office planting: A case study of effects on perceived health, well-being and performance metrics in the workplace. Intell. Build. Int. 2020, 13, 241–260. [Google Scholar] [CrossRef]
- Nitu, M.A.; Gocer, O.; Wijesooriya, N.; Vijapur, D.; Candido, C. A biophilic design approach for improved energy performance in retrofitting residential projects. Sustainability 2022, 14, 3776. [Google Scholar] [CrossRef]
- Helmy, S.E.; Aboulnaga, M.M. Future Cities: The role of biomimicry architecture in improving livability in megacities and mitigating climate change risks. In Sustainable Ecological Engineering Design; Springer: Berlin/Heidelberg, Germany, 2020; pp. 35–49. [Google Scholar] [CrossRef]
- Uchiyama, Y.; Blanco, E.; Kohsaka, R. Application of Biomimetics to Architectural and Urban Design: A Review across Scales. Sustainability 2020, 12, 9813. [Google Scholar] [CrossRef]
- meteoblue. Simulated Historical Climate & Weather Data for Singapore. Available online: https://www.meteoblue.com/en/weather/historyclimate/climatemodelled/singapore_singapore_1880252 (accessed on 1 July 2025).
- López, M.C.R.; Wong, Y.D. Attitudes towards active mobility in Singapore: A qualitative study. Case Stud. Transp. Policy 2017, 5, 662–670. [Google Scholar] [CrossRef]
- Koh, P.P.; Wong, Y.D. Walking and cycling as an urban transport option in Singapore. Proc. Inst. Civ. Eng.-Munic. Eng. 2015, 168, 106–114. [Google Scholar] [CrossRef]
- Dillon, D.; Lee, S.T.H. Green Spaces as Healthy Places: Correlates of Urban Green Space Use in Singapore. Int. J. Environ. Res. Public Health 2023, 20, 6711. [Google Scholar] [CrossRef]
- Edwards, P.; Yean, S.; Goh, Y.S.; Simcock, R.; Lee, B.S.; Zhou, J.; Ping, H.Z. Connecting human wellbeing, urban trees, and greenspace in Singapore: Alternative novel approaches. Res. Sq. 2024, preprint. [Google Scholar] [CrossRef]
- Jaiswal, A. Google Form. In Open Electronic Data Capture Tools for Medical and Biomedical Research and Medical Allied Professionals; Elsevier: Amsterdam, The Netherlands, 2024; pp. 331–378. [Google Scholar] [CrossRef]
- da Silva, Y.M.; Miranda, Y.M.S.; de Medeiros, R.A.; Carneiro, P.M.A.; de Menezes, S.A.F.; Oliveira-Filho, A.B.; Frade, P.C.R.; Laurentino, R.V.; Fonseca, R.R.d.S.; Machado, L.F.A. Digital Evaluation of Undergraduates’ Knowledge about Scientific Research in Databases during the COVID-19 Pandemic. Educ. Sci. 2023, 13, 451. [Google Scholar] [CrossRef]
- Perneger, T.V.; Courvoisier, D.S.; Hudelson, P.M.; Gayet-Ageron, A. Sample size for pre-tests of questionnaires. Qual. Life Res. 2014, 24, 147–151. [Google Scholar] [CrossRef]
- Koo, M.; Yang, S.-W. Questionnaire use and development in health research. Encyclopedia 2025, 5, 65. [Google Scholar] [CrossRef]
- Hackman, L.; Mack, P.; Ménard, H. Behind every good research there are data. What are they and their importance to forensic science. Forensic Sci. Int. Synerg. 2024, 8, 100456. [Google Scholar] [CrossRef]
- John, Z. Environmental factors in willingness to walk and walking distance in a tropical city—A field study in Singapore. J. Transp. Health 2024, 8, 6–11. [Google Scholar] [CrossRef]
- Henderson, J. Attracting tourists to Singapore’s Chinatown: A case study in conservation and promotion. Tour. Manag. 2000, 21, 525–534. [Google Scholar] [CrossRef]
- Ari Widyati, P.; Saeful, B.; Lutfi, P.; Dedi, H. A Study of Historic Waterfront Revitalization: From Clarke Quay-Boat Quay, Singapore to Puerto Madero, Argentina. J. Urban Cult. Res. 2023, 26, 156–174. [Google Scholar] [CrossRef]
- Micheli, S.; Brugman, J. The Changi-Marina Bay Corridor: Green strategies for Singapore’s soft power. Arch. Res. Q. 2023, 27, 61–71. [Google Scholar] [CrossRef]
- Noble, H.; Heale, R. Triangulation in research, with examples. Evid. Based Nurs. 2019, 22, 67–68. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep Learning for Generic Object Detection: A Survey. Int. J. Comput. Vis. 2020, 128, 261–318. [Google Scholar] [CrossRef]
- Hoeser, T.; Bachofer, F.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation Data: A Review—Part II: Applications. Remote Sens. 2020, 12, 3053. [Google Scholar] [CrossRef]
- Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 2022, 82, 9243–9275. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.J.B.; Ramakrishnan, T. Assessment of walkability and pedestrian level of service in two cities of Kerala. In Transportation Research; Lecture Notes in Civil Engineering; Springer: Singapore, 2019; pp. 533–544. [Google Scholar] [CrossRef]
- Memon, M.A.; Ting, H.; Cheah, J.-H.; Thurasamy, R.; Chuah, F.; Cham, T.H. Sample size for survey research: Review and recommendations. J. Appl. Struct. Equ. Model. 2020, 4, i–xx. [Google Scholar] [CrossRef]
- Bujang, M.A.; Omar, E.D.; Foo, D.H.P.; Hon, Y.K. Sample size determination for conducting a pilot study to assess reliability of a questionnaire. Restor. Dent. Endod. 2024, 49, e3. [Google Scholar] [CrossRef]
- Bujang, M.A.; Omar, E.D.; Baharum, N.A. A review on sample size determination for cronbach’s alpha test: A simple guide for researchers. Malays. J. Med. Sci. 2018, 25, 85–99. [Google Scholar] [CrossRef]
- Eshrati, D.; Priest, K.L. Developing Beginning Design Students’ Self-Directed Learning Through Leadership Activity. Educ. Sci. 2025, 15, 426. [Google Scholar] [CrossRef]
- Oo, T.Z.; Kadyirov, T.; Kadyjrova, L.; Józsa, K. Design-based learning in higher education: Its effects on students’ motivation, creativity and design skills. Think. Ski. Creat. 2024, 53, 101621. [Google Scholar] [CrossRef]
Questions | Least | Little | Moderate | Much | Most |
---|---|---|---|---|---|
Do the presented images encourage you to walk (on the sidewalks)? | ☐ | ☐ | ☐ | ☐ | ☐ |
How much do these images influence your motivation to walk more or less often? | ☐ | ☐ | ☐ | ☐ | ☐ |
Do the images inspire you to recommend others to walk (on the sidewalks)? | ☐ | ☐ | ☐ | ☐ | ☐ |
Boat Quay Pic | Natural Light | Tree | Side Walk | Other | Connect to Natural | Natural Shape | Transitional Spaces | Order and Complexity | Environmental Feature | Shade and Shadow | Mobility | Natural Form | plants | Public Transportation Facility | Natural Materials | Water | Overhead Plane | Natural Pattern |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PIC1 | 0.07 | 0.62 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.00 | 0.21 | 0.01 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC2 | 1.00 | 0.19 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.03 | 0.00 | 0.01 | 0.00 | 0.06 | 0.00 | 0.00 | 0.05 | 0.00 | 0.10 |
PIC3 | 1.00 | 0.14 | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.07 | 0.00 | 0.08 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 |
PIC4 | 1.00 | 0.23 | 0.56 | 0.09 | 0.00 | 0.00 | 0.27 | 0.00 | 0.00 | 0.08 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |
PIC5 | 1.00 | 0.13 | 0.30 | 0.08 | 0.00 | 0.00 | 0.22 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |
PIC6 | 1.00 | 0.05 | 0.15 | 0.00 | 0.00 | 0.00 | 0.08 | 0.00 | 0.00 | 0.02 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC7 | 1.00 | 0.04 | 0.27 | 0.00 | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC8 | 1.00 | 0.07 | 0.11 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.08 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 |
PIC9 | 0.16 | 0.08 | 0.00 | 0.20 | 0.29 | 0.19 | 0.00 | 0.17 | 0.19 | 0.00 | 0.05 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC10 | 0.52 | 0.28 | 0.00 | 0.18 | 0.18 | 0.14 | 0.00 | 0.09 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC11 | 0.00 | 0.12 | 0.00 | 0.24 | 0.30 | 0.26 | 0.00 | 0.22 | 0.21 | 0.11 | 0.00 | 0.00 | 0.02 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC12 | 0.28 | 0.14 | 0.00 | 0.21 | 0.26 | 0.19 | 0.00 | 0.13 | 0.13 | 0.05 | 0.00 | 0.00 | 0.02 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC13 | 1.00 | 0.00 | 0.00 | 0.44 | 0.33 | 0.46 | 0.00 | 0.15 | 0.15 | 0.00 | 0.07 | 0.48 | 0.05 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 |
PIC14 | 1.00 | 0.31 | 0.23 | 0.07 | 0.04 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 |
MEAN | 0.72 | 0.17 | 0.14 | 0.11 | 0.10 | 0.09 | 0.07 | 0.06 | 0.06 | 0.05 | 0.04 | 0.03 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Chinatown Pic | Natural Light | Tree | Color | Natural Materials | Environmental Feature | Other | Overhead Plane | Plants | Shade and Shadow | Transitional Spaces | Mobility | Public Transportation Facility | Unnatural Materials |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PIC1 | 0.27 | 0.11 | 0.26 | 0.00 | 0.15 | 0.22 | 0.05 | 0.02 | 0.02 | 0.00 | 0.03 | 0.00 | 0.00 |
PIC2 | 0.18 | 0.06 | 0.21 | 0.00 | 0.42 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.04 | 0.00 | 0.20 |
PIC3 | 0.25 | 0.27 | 0.03 | 0.02 | 0.23 | 0.08 | 0.05 | 0.02 | 0.21 | 0.14 | 0.04 | 0.00 | 0.00 |
PIC4 | 0.20 | 0.31 | 0.00 | 0.21 | 0.02 | 0.07 | 0.00 | 0.04 | 0.21 | 0.00 | 0.01 | 0.00 | 0.00 |
PIC5 | 1.00 | 0.09 | 0.12 | 0.00 | 0.00 | 0.05 | 0.00 | 0.05 | 0.00 | 0.21 | 0.03 | 0.00 | 0.00 |
PIC6 | 1.00 | 0.16 | 0.00 | 0.03 | 0.00 | 0.09 | 0.00 | 0.03 | 0.00 | 0.00 | 0.02 | 0.08 | 0.00 |
PIC7 | 1.00 | 0.20 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.08 | 0.18 | 0.01 | 0.09 | 0.00 | 0.00 |
PIC8 | 1.00 | 0.47 | 0.12 | 0.00 | 0.00 | 0.18 | 0.00 | 0.09 | 0.00 | 0.00 | 0.01 | 0.09 | 0.00 |
PIC9 | 0.19 | 0.01 | 0.23 | 0.87 | 0.06 | 0.00 | 0.39 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC10 | 0.66 | 0.63 | 0.19 | 0.19 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.03 | 0.00 |
PIC11 | 0.55 | 0.33 | 0.52 | 0.11 | 0.03 | 0.16 | 0.19 | 0.14 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 |
PIC12 | 0.53 | 0.18 | 0.78 | 0.24 | 0.01 | 0.17 | 0.14 | 0.11 | 0.00 | 0.00 | 0.01 | 0.04 | 0.00 |
PIC13 | 0.47 | 0.22 | 0.31 | 0.15 | 0.28 | 0.00 | 0.07 | 0.07 | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 |
PIC14 | 0.35 | 0.54 | 0.25 | 0.10 | 0.08 | 0.45 | 0.14 | 0.14 | 0.10 | 0.00 | 0.01 | 0.00 | 0.00 |
MEAN | 0.55 | 0.25 | 0.22 | 0.14 | 0.12 | 0.11 | 0.07 | 0.06 | 0.05 | 0.03 | 0.03 | 0.02 | 0.01 |
Orchard road Pic | Natural Light | Color | Tree | Plants | Mobility | Transitional Spaces | Public Transportation Facility | Natural Materials | Natural Color | Overhead Plane | Order and Complexity | Environmental Feature | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PIC1 | 0.54 | 0.08 | 0.12 | 0.09 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.09 | 0.02 |
PIC2 | 0.69 | 0.00 | 0.11 | 0.27 | 0.05 | 0.00 | 0.17 | 0.00 | 0.00 | 0.03 | 0.06 | 0.00 | 0.05 |
PIC3 | 0.65 | 0.22 | 0.17 | 0.22 | 0.04 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC4 | 0.28 | 0.61 | 0.07 | 0.00 | 0.04 | 0.25 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 |
PIC5 | 1.00 | 0.31 | 0.33 | 0.02 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PIC6 | 0.49 | 0.13 | 0.02 | 0.04 | 0.01 | 0.04 | 0.00 | 0.17 | 0.14 | 0.06 | 0.00 | 0.00 | 0.00 |
PIC7 | 0.79 | 0.49 | 0.43 | 0.02 | 0.02 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
MEAN | 0.63 | 0.26 | 0.18 | 0.09 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
Orchard Road Pic | Natural Light | Tree | Other | Shade and Shadow | Plants | Color | Transitional Spaces | Mobility | Water | Natural Shape | Order and Complexity |
---|---|---|---|---|---|---|---|---|---|---|---|
PIC1 | 1.00 | 0.10 | 0.08 | 0.00 | 0.09 | 0.00 | 0.00 | 0.08 | 0.02 | 0.00 | 0.01 |
PIC2 | 1.00 | 0.01 | 0.17 | 0.00 | 0.04 | 0.19 | 0.18 | 0.01 | 0.09 | 0.03 | 0.03 |
PIC3 | 0.27 | 0.50 | 0.05 | 0.05 | 0.05 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 |
PIC4 | 0.45 | 0.46 | 0.11 | 0.18 | 0.07 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 |
MEAN | 0.68 | 0.27 | 0.10 | 0.06 | 0.06 | 0.05 | 0.05 | 0.04 | 0.03 | 0.01 | 0.01 |
Variable | Form | Space | Movement | Functional | Emotional | Object | View | Mode _Q1 | Mode _Q2 | Mode | |
---|---|---|---|---|---|---|---|---|---|---|---|
FORM | Spearman’s Rho | -- | |||||||||
p-value | -- | ||||||||||
SPACE | Spearman’s Rho | 0.133 | -- | ||||||||
p-value | 0.420 | -- | |||||||||
MOVEMENT | Spearman’s Rho | −0.381 * | −0.116 | -- | |||||||
p-value | 0.017 | 0.484 | -- | ||||||||
FUNCTIONAL | Spearman’s Rho | −0.060 | 0.055 | −0.067 | -- | ||||||
p-value | 0.718 | 0.737 | 0.638 | -- | |||||||
EMOTIONAL | Spearman’s Rho | 0.311 | −0.195 | −0.005 | −0.019 | -- | |||||
p-value | 0.054 | 0.235 | 0.974 | 0.909 | -- | ||||||
OBJECT | Spearman’s Rho | 0.245 | 0.202 | 0.144 | −0.029 | −0.043 | -- | ||||
p-value | 0.132 | 0.218 | 0.381 | 0.860 | 0.794 | -- | |||||
VIEW | Spearman’s Rho | −0.375 * | −0.177 | 0.308 | 0.149 | −0.257 | −0.262 | -- | |||
p-value | 0.019 | 0.281 | 0.057 | 0.364 | 0.115 | 0.108 | -- | ||||
MODE_Q1 | Spearman’s Rho | −0.213 | 0.160 | 0.102 | 0.011 | −0.405 * | −0.036 | 0.132 | -- | ||
p-value | 0.193 | 0.329 | 0.537 | 0.949 | 0.011 | 0.830 | 0.423 | -- | |||
MODE_Q2 | Spearman’s Rho | −0.228 | 0.133 | −0.007 | 0.109 | −0.374 * | −0.018 | 0.020 | 0.737 *** | -- | |
p-value | 0.162 | 0.420 | 0.965 | 0.511 | 0.019 | 0.915 | 0.903 | <0.001 | -- | ||
MODE_Q3 | Spearman’s Rho | −0.329 * | −0.038 | 0.187 | 0.100 | −0.457 ** | 0.019 | 0.095 | 0.567 *** | 0.742 *** | -- |
p-value | 0.041 | 0.817 | 0.253 | 0.546 | 0.003 | 0.909 | 0.564 | <0.001 | <0.001 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anuntavachakorn, P.; Pawarana, P.; Wongvorachan, T.; Thampanichwat, C.; Bunyarittikit, S. Exploring Sidewalk Built Environment Design Strategies to Promote Walkability in Tropical Humid Climates. Buildings 2025, 15, 2659. https://doi.org/10.3390/buildings15152659
Anuntavachakorn P, Pawarana P, Wongvorachan T, Thampanichwat C, Bunyarittikit S. Exploring Sidewalk Built Environment Design Strategies to Promote Walkability in Tropical Humid Climates. Buildings. 2025; 15(15):2659. https://doi.org/10.3390/buildings15152659
Chicago/Turabian StyleAnuntavachakorn, Pakin, Purinat Pawarana, Tarid Wongvorachan, Chaniporn Thampanichwat, and Suphat Bunyarittikit. 2025. "Exploring Sidewalk Built Environment Design Strategies to Promote Walkability in Tropical Humid Climates" Buildings 15, no. 15: 2659. https://doi.org/10.3390/buildings15152659
APA StyleAnuntavachakorn, P., Pawarana, P., Wongvorachan, T., Thampanichwat, C., & Bunyarittikit, S. (2025). Exploring Sidewalk Built Environment Design Strategies to Promote Walkability in Tropical Humid Climates. Buildings, 15(15), 2659. https://doi.org/10.3390/buildings15152659