Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,990)

Search Parameters:
Keywords = blood culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 680 KiB  
Case Report
Borderline Oxacillin-Resistant Staphylococcus aureus (BORSA) Bacteremia—Case Report
by Beverly Buffart, Philippe Clevenbergh, Alina Stiuliuc, Ioannis Raftakis, Mony Hing, Véronique Yvette Miendje Deyi, Olivier Denis, Delphine Martiny and Nicolas Yin
Antibiotics 2025, 14(8), 809; https://doi.org/10.3390/antibiotics14080809 - 7 Aug 2025
Abstract
Introduction: Borderline oxacillin-resistant Staphylococcus aureus (BORSA) represents a rare and poorly characterized phenotype of S. aureus. Its detection remains challenging, even in modern clinical laboratories. Moreover, there is no consensus on the optimal therapeutic approach, and treatment strategies remain controversial. In [...] Read more.
Introduction: Borderline oxacillin-resistant Staphylococcus aureus (BORSA) represents a rare and poorly characterized phenotype of S. aureus. Its detection remains challenging, even in modern clinical laboratories. Moreover, there is no consensus on the optimal therapeutic approach, and treatment strategies remain controversial. In this report, we present a rare case of BORSA bacteremia and discuss potential approaches to improve its detection and management. Case presentation: A 39-year-old woman with systemic lupus erythematosus was admitted for a suspected exacerbation, complicated by multiple serositis and nephritis. She was on chronic treatment with methylprednisolone and hydroxychloroquine. On admission, she was afebrile. Laboratory investigations revealed elevated C-reactive protein and increased D-dimer levels. Later, she developed a septic peripheral venous thrombophlebitis, and treatment was adjusted to amoxicillin–clavulanate. Blood cultures grew S. aureus, prompting a switch to intravenous oxacillin based on a negative penicillin-binding protein 2a test. A discrepancy in the antimicrobial susceptibility test was observed, with cefoxitin showing susceptibility and oxacillin resistance. Further characterizations were carried out, confirming a BORSA infection. Treatment was switched to linezolid and ciprofloxacin with good recovery. Conclusions: This case highlights the complexity of managing a patient with an uncommon and poorly documented infection. The lack of data on BORSA infections and the difficulties in detecting and treating them led to a prolonged delay in the appropriate management of this patient. Full article
Show Figures

Figure 1

21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

18 pages, 4635 KiB  
Article
Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma
by Fatema Hashemi, Silvia Cachaco, Rocio Prisby, Weidong Zhou, Gregory Petruncio, Elsa Ronzier, Remi Veneziano, Barbara Birkaya, Alessandra Luchini and Luisa Gregori
Pathogens 2025, 14(8), 778; https://doi.org/10.3390/pathogens14080778 - 6 Aug 2025
Abstract
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate [...] Read more.
Ensuring bacterial safety of blood transfusions remains a critical focus in medicine. We investigated a novel pathogen reduction technology utilizing nylon functionalized with synthetic dyes (nylon affinity networks) to capture and remove bacteria from plasma. In the initial screening process, we spiked phosphate buffer solution (PBS) and human plasma (1 mL each) with 10 or 100 colony forming units (cfu) of either Escherichia coli or Staphylococcus epidermidis, exposed the suspensions to affinity networks and assessed the extent of bacterial reduction using agar plate cultures as the assay output. Nineteen synthetic dyes were tested. Among these, Alcian Blue exhibited the best performance with both bacterial strains in both PBS and plasma. Next, bacterial suspensions of approximately 1 and 2 cfu/mL in 10 and 50 mL, respectively, were treated with Alcian Blue affinity networks in three sequential capture steps. This procedure resulted in complete bacterial depletion, as demonstrated by the lack of bacterial growth in the remaining fraction. The viability of the captured bacteria was confirmed by plating the post-treatment affinity networks on agar. Alcian Blue affinity networks captured and sequestered a few plasma proteins identified by liquid chromatography tandem mass spectrometry. These findings support the potential applicability of nylon affinity networks to enhance transfusion safety, although additional investigations are needed. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

17 pages, 1766 KiB  
Article
The Effects of the Red River Jig on the Wholistic Health of Adults in Saskatchewan
by Nisha K. Mainra, Samantha J. Moore, Jamie LaFleur, Alison R. Oates, Gavin Selinger, Tayha Theresia Rolfes, Hanna Sullivan, Muqtasida Fatima and Heather J. A. Foulds
Int. J. Environ. Res. Public Health 2025, 22(8), 1225; https://doi.org/10.3390/ijerph22081225 - 6 Aug 2025
Abstract
The Red River Jig is a traditional Métis dance practiced among Indigenous and non-Indigenous Peoples. While exercise improves physical health and fitness, the impacts of cultural dances on wholistic health are less clear. This study aimed to investigate the psychosocial (cultural and mental), [...] Read more.
The Red River Jig is a traditional Métis dance practiced among Indigenous and non-Indigenous Peoples. While exercise improves physical health and fitness, the impacts of cultural dances on wholistic health are less clear. This study aimed to investigate the psychosocial (cultural and mental), social, physical function, and physical fitness benefits of a Red River Jig intervention. In partnership with Li Toneur Nimiyitoohk Métis Dance Group, Indigenous and non-Indigenous adults (N = 40, 39 ± 15 years, 32 females) completed an 8-week Red River Jig intervention. Social support, cultural identity, memory, and mental wellbeing questionnaires, seated blood pressure and heart rate, weight, pulse-wave velocity, heart rate variability, baroreceptor sensitivity, jump height, sit-and-reach flexibility, one-leg and tandem balance, and six-minute walk test were assessed pre- and post-intervention. Community, family, and friend support scores, six-minute walk distance (553.0 ± 88.7 m vs. 602.2 ± 138.6 m, p = 0.002), jump, leg power, and systolic blood pressure low-to-high-frequency ratio increased after the intervention. Ethnic identity remained the same while affirmation and belonging declined, leading to declines in overall cultural identity, as learning about Métis culture through the Red River Jig may highlight gaps in cultural knowledge. Seated systolic blood pressure (116.5 ± 7.3 mmHg vs. 112.5 ± 10.7 mmHg, p = 0.01) and lower peripheral pulse-wave velocity (10.0 ± 2.0 m·s−1 vs. 9.4 ± 1.9 m·s−1, p = 0.04) decreased after the intervention. Red River Jig dance training can improve social support, physical function, and physical fitness for Indigenous and non-Indigenous adults. Full article
(This article belongs to the Special Issue Improving Health and Mental Wellness in Indigenous Communities)
Show Figures

Figure 1

12 pages, 244 KiB  
Article
Predisposing Factors Associated with Third-Generation Cephalosporin-Resistant Escherichia coli in a Rural Community Hospital in Thailand
by Ratchadaporn Ungcharoen, Jindanoot Ponyon, Rapeepan Yongyod and Anusak Kerdsin
Antibiotics 2025, 14(8), 790; https://doi.org/10.3390/antibiotics14080790 - 4 Aug 2025
Viewed by 205
Abstract
Background: Various predisposing factors contribute to the emergence and dissemination of the multidrug-resistant (MDR) phenotype in Escherichia coli and Klebsiella pneumoniae. Understanding these factors is crucial for guiding appropriate antimicrobial therapy and infection control strategies. This study investigated the predisposing factors contributing [...] Read more.
Background: Various predisposing factors contribute to the emergence and dissemination of the multidrug-resistant (MDR) phenotype in Escherichia coli and Klebsiella pneumoniae. Understanding these factors is crucial for guiding appropriate antimicrobial therapy and infection control strategies. This study investigated the predisposing factors contributing to the MDR characteristics of E. coli and K. pneumoniae isolated in a community hospital in northeastern Thailand. Methods: This case–control study utilized retrospective data from bacterial culture, as well as demographic, clinical, and antibiotic susceptibility records collected during 5 years (January 2016–December 2020). E. coli and K. pneumoniae isolates were analyzed from various clinical samples, including blood, urine, pus, sputum, and other body fluids. Data were analyzed using descriptive statistics and univariate logistic regression. Results: In total, 660 clinical isolates were analyzed (421 E. coli and 239 K. pneumoniae). Blood was the most common source of the detection of E. coli (63.0%) and sputum was the most common source of K. pneumoniae (51.0%). The median ages of patients were 67 and 63 years for E. coli and K. pneumoniae, respectively. E. coli cases were significantly associated with prior antibiotic use (OR = 1.79, 95% CI: 1.17–2.74 p = 0.008). MDR was observed in 50.1% of E. coli and 29.7% of K. pneumoniae (p < 0.001). E. coli compared to K. pneumoniae had lower resistance to third-gen cephalosporins (64.9% versus 95.8%) and carbapenems (8.0% versus 6.9%). ICU admission was the only factor significantly associated with MDR E. coli (OR = 2.40, 95% CI: 1.11–5.20 p = 0.026). No significant differences were observed in gender, age, or comorbidities between MDR cases. Antibiotic usage patterns also differed, with E. coli more likely to receive third-gen cephalosporins compared to carbapenems (OR = 3.02, 95% CI:1.18–7.74 p = 0.021). Conclusions: The use of third-generation cephalosporin may drive MDR E. coli more than K. pneumoniae. Prior antibiotic exposure was linked to E. coli bloodstream infections, while MDR E. coli showed greater clinical severity. These findings highlighted the need for improved antibiotic stewardship in rural hospitals. Full article
14 pages, 3361 KiB  
Article
Bacteremia Caused by a Putative Novel Species in the Genus Erwinia: A Case Report and Genomic Analysis
by Jiwoo Lee, Taek Soo Kim, Hyunwoong Park and Jae Hyeon Park
Life 2025, 15(8), 1227; https://doi.org/10.3390/life15081227 - 3 Aug 2025
Viewed by 205
Abstract
We report a case of catheter-associated bloodstream infection caused by a putative novel species in the genus Erwinia, identified using whole-genome sequencing (WGS). A female adolescent receiving long-term home parenteral nutrition via a central venous catheter (CVC) presented with a fever. Gram-negative [...] Read more.
We report a case of catheter-associated bloodstream infection caused by a putative novel species in the genus Erwinia, identified using whole-genome sequencing (WGS). A female adolescent receiving long-term home parenteral nutrition via a central venous catheter (CVC) presented with a fever. Gram-negative rods were isolated from two CVC-derived blood culture sets, while peripheral cultures remained negative. Conventional identification methods, including VITEK 2, Phoenix M50, MALDI-TOF MS, and 16S rRNA and rpoB gene sequencing, failed to achieve species-level identification. WGS was performed on the isolate using Illumina MiSeq. Genomic analysis revealed a genome size of 5.39 Mb with 56.8% GC content and high assembly completeness. The highest average nucleotide identity (ANI) was 90.3% with Pantoea coffeiphila, and ≤85% with known Erwinia species, suggesting that it represents a distinct taxon. Phylogenetic analyses placed the isolate within the Erwinia clade but separate from any known species. Antimicrobial susceptibility testing showed broad susceptibility. This case highlights the utility of WGS for the identification of rare or novel organisms not captured by conventional methods and expands the clinical spectrum of Erwinia species. While the criteria for species delineation were met, the phenotypic characterization remains insufficient to formally propose a new species. Full article
Show Figures

Figure 1

14 pages, 2736 KiB  
Case Report
Renal Malacoplakia Following Obstetric Intervention: A Rare Cause of Acute Kidney Injury in a Young Woman
by Letícia Miyuki Ito, Juliana Miki Oguma, André Kiyoshi Miyahara, Marco Aurélio Sales da Veiga, Leandro Favaro, David Wesley de Godoy, Bárbara Antunes Bruno da Silva, Luiz Antônio Moura, Marcelino de Souza Durão and Érika Bevilaqua Rangel
Clin. Pract. 2025, 15(8), 143; https://doi.org/10.3390/clinpract15080143 - 3 Aug 2025
Viewed by 119
Abstract
Introduction: Renal malacoplakia is a rare chronic granulomatous disease, often associated with immunosuppression and persistent Gram-negative infections, particularly Escherichia coli. Case Presentation: We present a case involving a 31-year-old woman with hypertension, gestational diabetes, and prior uterine curettage after labor [...] Read more.
Introduction: Renal malacoplakia is a rare chronic granulomatous disease, often associated with immunosuppression and persistent Gram-negative infections, particularly Escherichia coli. Case Presentation: We present a case involving a 31-year-old woman with hypertension, gestational diabetes, and prior uterine curettage after labor induction for preeclampsia at 23 weeks. She developed urinary sepsis post-procedure. Imaging revealed bilateral nephromegaly, while laboratory tests showed acute kidney injury (KDIGO stage III), anemia, and thrombocytopenia. Blood and urine cultures grew Escherichia coli. Renal biopsy confirmed malacoplakia, demonstrating PAS-positive Michaelis–Gutmann bodies and Von Hansemann cells. The patient responded to prolonged antibiotic therapy and supportive care. Discussion and Conclusion: This case highlights the importance of considering renal malacoplakia in patients with atypical urinary tract infections and nephromegaly, particularly in obstetric settings. Histopathological confirmation is essential, and timely treatment with intracellularly active antibiotics can lead to favorable outcomes. Early diagnosis is critical to prevent irreversible renal damage. Full article
Show Figures

Figure 1

14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 - 2 Aug 2025
Viewed by 216
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
22 pages, 13067 KiB  
Article
Engineering Marrow-Mimetic Hydrogel Platforms Enhance Erythropoiesis: A Mechanobiology-Driven Approach for Transfusion Red Blood Cell Production
by Qinqin Yang, Runjin Liu and Xiang Wang
Gels 2025, 11(8), 594; https://doi.org/10.3390/gels11080594 - 31 Jul 2025
Viewed by 151
Abstract
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural [...] Read more.
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural bone marrow microenvironment, differences in mechanical microenvironments provide a reference for the regulation of HSC differentiation. This study seek to reveal the role of mechanobiology cues in erythropoiesis and provide a new perspective for the design of in vitro erythropoiesis platforms. The hydrogel platforms we designed simulate the stiffness gradient of the bone marrow niche to culture HSCs and induce their differentiation into the erythroid system. Cells on the low-stiffness scaffold have higher potential for erythrocyte differentiation and faster differentiation efficiency and promote erythrocyte differentiation after erythropoietin (EPO) restriction. In vivo transplantation experiments demonstrated that these cells have the ability for continuous proliferation and differentiation into mature erythrocytes. By combining mechanical cues with in vitro erythrocyte production, this method is expected to provide insights for in vitro hematopoietic design and offer a scalable cell manufacturing platform for transfusion medicine. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

11 pages, 1118 KiB  
Case Report
Infective Endocarditis with Gerbode Defect and DRESS Syndrome: A Rare Case Report
by Corina Ureche, Diana Lavinia Moldovan, Ionel Vița, Valeria Guila and Teodora Nicola-Varo
Reports 2025, 8(3), 127; https://doi.org/10.3390/reports8030127 - 31 Jul 2025
Viewed by 235
Abstract
Background and Clinical Significance: Infective endocarditis (IE) is a serious condition with rising incidence, frequently caused by Staphylococcus aureus. However, cases involving rare congenital anomalies such as Gerbode’s defect are uncommon. Case Presentation: This report presents the first documented case of IE [...] Read more.
Background and Clinical Significance: Infective endocarditis (IE) is a serious condition with rising incidence, frequently caused by Staphylococcus aureus. However, cases involving rare congenital anomalies such as Gerbode’s defect are uncommon. Case Presentation: This report presents the first documented case of IE in a patient with a congenital Gerbode defect complicated by DRESS syndrome—a severe, drug-induced hypersensitivity reaction typically triggered by antibiotics like oxacillin. A 65-year-old woman developed infective endocarditis involving vegetations on the cardiac device lead, the tricuspid valve, and adjacent to a Gerbode defect. The diagnosis was confirmed by positive blood cultures and echocardiographic findings. She received treatment with oxacillin. Subsequently, she exhibited clinical features consistent with DRESS syndrome, including rash, eosinophilia, and multi-organ involvement. Rapid recognition and management, including corticosteroid therapy and antibiotic modification, led to clinical improvement. Conclusions: This case highlights the importance of vigilance for DRESS syndrome in prolonged antibiotic therapy for IE, especially in the context of rare congenital cardiac anomalies. In addition, guidelines are needed to optimize the diagnosis and treatment of this potentially lethal complication. Full article
(This article belongs to the Section Cardiology/Cardiovascular Medicine)
Show Figures

Figure 1

10 pages, 1975 KiB  
Communication
Measuring Asymmetric Ionic Current Waveform Through Micropores for Detecting Reduced Red Blood Cell Deformability Due to Plasmodium falciparum Infection
by Kazumichi Yokota, Ken Hirano, Kazuaki Kajimoto and Muneaki Hashimoto
Sensors 2025, 25(15), 4722; https://doi.org/10.3390/s25154722 - 31 Jul 2025
Viewed by 184
Abstract
The mechanisms underlying reduced deformability of red blood cells (RBCs) in Plasmodium falciparum remain unclear. The decrease in RBC deformability associated with malarial infection was measured using ektacytometry, and only mean values were evaluated. In this study, we report the development of a [...] Read more.
The mechanisms underlying reduced deformability of red blood cells (RBCs) in Plasmodium falciparum remain unclear. The decrease in RBC deformability associated with malarial infection was measured using ektacytometry, and only mean values were evaluated. In this study, we report the development of a microfluidic sensing device that can evaluate decreased RBC deformability at the single-cell level by measuring ionic current waveforms through micropores. Using an in vitro culture system, we found that when RBC deformability was reduced by P. falciparum infection, ionic current waveforms changed. As RBC deformability decreased, waveforms became asymmetric. Computer simulations suggested that these waveform parameters are largely independent of RBC size and may represent a reliable indicator of diminished deformability. This novel microfluidic RBC deformability sensor allows for detailed single-cell analysis of malaria-associated deformability reduction, potentially aiding in elucidating its pathology. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidic Sensing Devices)
Show Figures

Graphical abstract

11 pages, 415 KiB  
Article
A Nosocomial Outbreak of Burkholderia cepacia complex Linked to Contaminated Intravenous Medications in a Tertiary Care Hospital
by Hanife Nur Karakoc Parlayan, Firdevs Aksoy, Masite Nur Ozdemir, Esra Ozkaya and Gurdal Yilmaz
Antibiotics 2025, 14(8), 774; https://doi.org/10.3390/antibiotics14080774 - 31 Jul 2025
Viewed by 260
Abstract
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with [...] Read more.
Objectives: Burkholderia cepacia complex (Bcc), a Gram-negative organism, is a well-recognized cause of hospital outbreaks, often linked to a contaminated shared source, such as multidose medications. In this study, we report an outbreak of Bcc infections in a tertiary care hospital, associated with the intrinsic contamination of a prepared solution used in interventional radiology (IR) procedures. Additionally, we provide a detailed explanation of the interventions implemented to control and interrupt the outbreak. Methods: Records from the infection control committee from 1 January 2023 to 31 October 2024 were screened to identify cases with Bcc growth in cultured blood, urine, or respiratory samples. Clinical and laboratory data were collected in March 2025. Bacterial identification was performed using conventional methods and MALDI-TOF (Bruker Daltonics, Bremen, Germany). Controls were matched to cases by ward, date of initial growth, and duration of hospitalization. Demographic and clinical data of these patients were systematically collected and analyzed. Microbiological cultures were obtained from environmental objects of concern and certain medications. Results: A total of 82 Burkholderia species were identified. We enrolled 77 cases and 77 matched controls. The source of contamination was identified in ready-to-use intravenous medications (remifentanil and magnesium preparations) in the IR department. These preparations were compounded in advance by the team and were used repeatedly. Although the outbreak originated from contaminated IV medications used in IR, secondary transmission likely affected 28 non-IR patients via fomites, shared environments, and possible lapses in isolation precautions. The mortality rate among the cases was 16.9%. Infection with Bcc was associated with prolonged intensive care unit stays (p = 0.018) and an extended overall hospitalization duration (p < 0.001); however, it was not associated with increased mortality. The enforcement of contact precautions and comprehensive environmental decontamination successfully reduced the incidence of the Bcc outbreak. No pathogens were detected in cultures obtained after the disinfection. Conclusions: The hospital transmission of Bcc is likely driven by cross-contamination, invasive medical procedures, and the administration of contaminated medications. Implementing stringent infection control measures such as staff retraining, updated policies on medication use, enhanced environmental decontamination, and strict adherence to isolation precautions has proven effective in curbing the spread of virulent and transmissible Bcc. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 478
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

18 pages, 823 KiB  
Article
Influence of a Th17-Inducing Cytokine Milieu on Phenotypical and Functional Properties of Regulatory T Cells in Chronic Inflammatory Arthritis
by Tobias Schwarz, Giovanni Almanzar, Marie Wulfheide, Robert Woidich, Marie-Therese Holzer, Timotheos Christoforou, Leonie Karle, David Radtke, Franziska Brauneiser, Thomas Haaf, Ramya Potabattula, Gabriela Ortega, Klaus-Peter Lesch, Arne Schäfer, Sandrine Benoit, Astrid Schmieder, Matthias Goebeler, Marc Schmalzing, Martin Feuchtenberger and Martina Prelog
Int. J. Mol. Sci. 2025, 26(15), 7339; https://doi.org/10.3390/ijms26157339 - 29 Jul 2025
Viewed by 279
Abstract
Considering the high plasticity of FoxP3+ regulatory T (Treg) cells and Interleukin (IL)-17-producing Th17 cells, we hypothesized that a Th17 inflammatory milieu may impair the functional properties of Treg cells in chronic inflammatory arthritides. Therefore, a cross-sectional explorative analysis was set up [...] Read more.
Considering the high plasticity of FoxP3+ regulatory T (Treg) cells and Interleukin (IL)-17-producing Th17 cells, we hypothesized that a Th17 inflammatory milieu may impair the functional properties of Treg cells in chronic inflammatory arthritides. Therefore, a cross-sectional explorative analysis was set up in patients with psoriatic arthritis (PsoA), rheumatoid arthritis, or spondyloarthritis to investigate the features of Th17 and Treg cells. T cell subpopulation counts, FOXP3 mRNA expression, CpG methylation of the FOXP3 gene, and the suppressive capacity of isolated Treg cells were determined. Ex vivo analysis of PsoA-derived peripheral blood lymphocytes showed a Th17-mediated inflammation. It was accompanied by demethylation of the FOXP3 promotor and Treg-specific demethylated region (TSDR) in Treg cells which, however, resulted neither in elevated FOXP3 mRNA expression nor in increased suppressive Treg cell capacity. To clarify this conundrum, in vitro stimulation of isolated Treg cells with Th17-inducing cytokines (IL-1β, IL-6, IL-23, TGFβ), recombinant IL-17, or the anti-IL-17A antibody secukinumab was performed, demonstrating that cell culture conditions polarizing towards Th17, but not IL-17 itself, impair the suppressive function of Treg cells, accompanied by diminished FOXP3 mRNA expression due to hypermethylation of the FOXP3 promotor and TSDR. This potential causal relationship between Th17 inflammation and impaired Treg cell function requires attention regarding the development of immunomodulatory therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapy in Autoimmune Disease)
Show Figures

Figure 1

13 pages, 1017 KiB  
Article
Elevated Serum TNF-α/IL-1β Levels and Under-Nutrition Predict Early Mortality and Hospital Stay Burden in Pulmonary Tuberculosis
by Ionut-Valentin Stanciu, Ariadna-Petronela Fildan, Adrian Cosmin Ilie, Cristian Oancea, Livia Stanga, Emanuela Tudorache, Felix Bratosin, Ovidiu Rosca, Iulia Bogdan, Doina-Ecaterina Tofolean, Ionela Preotesoiu, Viorica Zamfir and Elena Dantes
J. Clin. Med. 2025, 14(15), 5327; https://doi.org/10.3390/jcm14155327 - 28 Jul 2025
Viewed by 294
Abstract
Background/Objectives: Romania remains a tuberculosis (TB) hotspot in the European Union, yet host-derived factors of poor outcomes are poorly characterised. We quantified circulating pro-inflammatory cytokines and examined their interplay with behavioural risk factors, the nutritional status, and the clinical course in adults hospitalised [...] Read more.
Background/Objectives: Romania remains a tuberculosis (TB) hotspot in the European Union, yet host-derived factors of poor outcomes are poorly characterised. We quantified circulating pro-inflammatory cytokines and examined their interplay with behavioural risk factors, the nutritional status, and the clinical course in adults hospitalised with pulmonary TB. We analysed 80 adults with microbiologically confirmed pulmonary TB and 40 respiratory symptom controls; four TB patients (5%) died during hospitalisation, all within 10 days of admission. Methods: A retrospective analytical case–control study was conducted at the Constanța regional TB referral centre (October 2020—October 2023). Patients with smear- or culture-confirmed TB were frequency-matched by sex, 10-year age band, and BMI class to culture-negative respiratory controls at a 2:1 ratio. The patients’ serum interferon-γ (IFN-γ), interleukin-1α (IL-1α), interleukin-1β (IL-1β), and tumour-necrosis-factor-α (TNF-α) were quantified within 24 h of admission; the neutrophil/lymphocyte ratio (NLR) was extracted from full blood counts. Independent predictors of in-hospital mortality were identified by multivariable logistic regression; factors associated with the length of stay (LOS) were modelled with quasi-Poisson regression. Results: The median TNF-α (24.1 pg mL−1 vs. 16.2 pg mL−1; p = 0.009) and IL-1β (5.34 pg mL−1 vs. 3.67 pg mL−1; p = 0.008) were significantly higher in the TB cases than in controls. TNF-α was strongly correlated with IL-1β (ρ = 0.80; p < 0.001), while NLR showed weak concordance with multiplex cytokine patterns. Among the patients with TB, four early deaths (5%) exhibited a tripling of TNF-α (71.4 pg mL−1) and a doubling of NLR (7.8) compared with the survivors. Each 10 pg mL−1 rise in TNF-α independently increased the odds of in-hospital death by 1.8-fold (95% CI 1.1–3.0; p = 0.02). The LOS (median 29 days) was unrelated to the smoking, alcohol, or comorbidity load, but varied across BMI strata: underweight, 27 days; normal weight, 30 days; overweight, 23 days (Kruskal–Wallis p = 0.03). In a multivariable analysis, under-nutrition (BMI < 18.5 kg m−2) prolonged the LOS by 19% (IRR 1.19; 95% CI 1.05–1.34; p = 0.004) independently of the disease severity. Conclusions: A hyper-TNF-α/IL-1β systemic signature correlates with early mortality in Romanian pulmonary TB, while under-nutrition is the dominant modifiable determinant of prolonged hospitalisation. Admission algorithms that pair rapid TNF-α testing with systematic nutritional assessment could enable targeted host-directed therapy trials and optimise bed utilisation in high-burden settings. Full article
(This article belongs to the Section Infectious Diseases)
Show Figures

Figure 1

Back to TopTop