Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Nylon Affinity Networks
2.2. Quantitation of Dye Incorporation into Affinity Networks
2.3. Optimization of pH and Alcian Blue Concentration for Preparation of Nylon Affinity Networks
2.4. Evaluation of Bacterial Bapture in a Single Step
2.5. Evaluation of Bacterial Removal in Three Serial Capture Steps
2.6. Plasma Protein Captured by Nylon Affinity Network Analysis
2.6.1. SDS-PAGE and Coomassie Staining
2.6.2. Mass Spectrometry Analysis
3. Results
3.1. Alcian Blue Is the Best Binder of E. coli Among All Dyes Tested
3.2. Optimization of Alcian Blue Incorporation into Nylon
3.3. Scanning Electron Microscopy Reveals That Alcian Blue Enhances Bacterial Binding to Nylon
3.4. Alcian Blue Nylon Networks Captured Bacteria Spiked in 1 mL of PBS or Human Plasma
3.5. Alcian Blue Affinity Networks Captured Bacteria in 50 mL of PBS Using Sequential Batch Incubations
3.6. Alcian Blue Affinity Networks Captured Bacteria in 10 mL Volumes Using Sequential Flow Through Incubations
3.7. Alcian Blue Affinity Networks Capture Low Amounts of Human Plasma Proteins
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Free, R.J.; Sapiano, M.R.P.; Chavez Ortiz, J.L.; Stewart, P.; Berger, J.; Basavaraju, S.V. Continued Stabilization of Blood Collections and Transfusions in the United States: Findings from the 2021 National Blood Collection and Utilization Survey. Transfusion 2023, 63, S8–S18. [Google Scholar] [CrossRef]
- Jacobs, M.R.; Zhou, B.; Tayal, A.; Maitta, R.W. Bacterial Contamination of Platelet Products. Microorganisms 2024, 12, 258. [Google Scholar] [CrossRef]
- Hillyer, C.D.; Josephson, C.D.; Blajchman, M.A.; Vostal, J.G.; Epstein, J.S.; Goodman, J.L. Bacterial Contamination of Blood Components: Risks, Strategies, and Regulation: Joint ASH and AABB Educational Session in Transfusion Medicine. ASH Educ. Program Book 2003, 2003, 575–589. [Google Scholar] [CrossRef]
- Kracalik, I.; Kent, A.G.; Villa, C.H.; Gable, P.; Annambhotla, P.; McAllister, G.; Yokoe, D.; Langelier, C.R.; Oakeson, K.; Noble-Wang, J.; et al. Posttransfusion Sepsis Attributable to Bacterial Contamination in Platelet Collection Set Manufacturing Facility, United States. Emerg. Infect. Dis. 2023, 29, 1979–1989. [Google Scholar] [CrossRef] [PubMed]
- Guidance for Industry: Bacterial Risk Control Strategies for Blood Collection Establishments and Transfusion Services to Enhance the Safety and Availability of Platelets for Transfusion; Food and Drug Administration: Silver Spring, MD, USA, 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bacterial-risk-control-strategies-blood-collection-establishments-and-transfusion-services-enhance (accessed on 30 July 2025).
- Szczepiorkowski, Z.M.; Pagano, M.B. Platelet Components and Bacterial Contamination: Hospital Perspective 2022. Hematology 2022, 2022, 430–436. [Google Scholar] [CrossRef]
- Gravemann, U.; Handke, W.; Müller, T.H.; Seltsam, A. Bacterial Inactivation of Platelet Concentrates with the THERAFLEX UV-Platelets Pathogen Inactivation System. Transfusion 2019, 59, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Solheim, B.G. Pathogen Reduction of Blood Components. Transfus. Apher. Sci. 2008, 39, 75–82. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X. Pathogen Reduction Technology for Blood Component: A Promising Solution for Prevention of Emerging Infectious Disease and Bacterial Contamination in Blood Transfusion Services. J. Photochem. Photobiol. 2021, 8, 100079. [Google Scholar] [CrossRef]
- Lu, W.; Fung, M. Platelets Treated with Pathogen Reduction Technology: Current Status and Future Direction. F1000Res 2020, 9, 40. [Google Scholar] [CrossRef]
- Taha, M.; Culibrk, B.; Kalab, M.; Schubert, P.; Yi, Q.-L.; Goodrich, R.; Ramirez-Arcos, S. Efficiency of Riboflavin and Ultraviolet Light Treatment against High Levels of Biofilm-derived Staphylococcus Epidermidis in Buffy Coat Platelet Concentrates. Vox Sang. 2017, 112, 408–416. [Google Scholar] [CrossRef]
- Godbey, E.A.; Thibodeaux, S.R. Ensuring Safety of the Blood Supply in the United States: Donor Screening, Testing, Emerging Pathogens, and Pathogen Inactivation. Semin. Hematol. 2019, 56, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Winnacker, M. Polyamides and Their Functionalization: Recent Concepts for Their Applications as Biomaterials. Biomater. Sci. 2017, 5, 1230–1235. [Google Scholar] [CrossRef]
- Abdal-Hay, A.; Abdelrazek Khalil, K.; Al-Jassir, F.F.; Gamal-Eldeen, A.M. Biocompatibility Properties of Polyamide 6/PCL Blends Composite Textile Scaffold Using EA.Hy926 Human Endothelial Cells. Biomed. Mater. 2017, 12, 035002. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Araujo, R.; Howard, M.; Magni, R.; Liotta, L.A.; Luchini, A. Affinity Enrichment for Mass Spectrometry: Improving the Yield of Low Abundance Biomarkers. Expert Rev. Proteom. 2018, 15, 353–366. [Google Scholar] [CrossRef]
- Cornero, R.; Irfan, S.S.; Cachaco, S.; Zhou, W.; Byne, A.; Howard, M.; McIntyre, H.; Birkaya, B.; Liotta, L.; Luchini, A. Identification of Unambiguous Borrelia Peptides in Human Urine Using Affinity Capture and Mass Spectrometry. In Borrelia Burgdorferi; Gilbert, L., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2024; Volume 2742, pp. 105–122. ISBN 978-1-07-163560-5. [Google Scholar]
- Fredolini, C.; Tamburro, D.; Gambara, G.; Lepene, B.S.; Espina, V.; Petricoin, E.F.; Liotta, L.A.; Luchini, A. Nanoparticle Technology: Amplifying the Effective Sensitivity of Biomarker Detection to Create a Urine Test for hGH. Drug Test. Anal. 2009, 1, 447–454. [Google Scholar] [CrossRef]
- Tamburro, D.; Fredolini, C.; Espina, V.; Douglas, T.A.; Ranganathan, A.; Ilag, L.; Zhou, W.; Russo, P.; Espina, B.H.; Muto, G.; et al. Multifunctional Core-Shell Nanoparticles: Discovery of Previously Invisible Biomarkers. J. Am. Chem. Soc. 2011, 133, 19178–19188. [Google Scholar] [CrossRef]
- Conti, A.; Fredolini, C.; Tamburro, D.; Magagnoli, G.; Zhou, W.; Liotta, L.A.; Picci, P.; Luchini, A.; Benassi, M.S. Identification of Novel Candidate Circulating Biomarkers for Malignant Soft Tissue Sarcomas: Correlation with Metastatic Progression. Proteomics 2016, 16, 689–697. [Google Scholar] [CrossRef]
- Douglas, T.A.; Tamburro, D.; Fredolini, C.; Espina, B.H.; Lepene, B.S.; Ilag, L.; Espina, V.; Petricoin, E.F.; Liotta, L.A.; Luchini, A. The Use of Hydrogel Microparticles to Sequester and Concentrate Bacterial Antigens in a Urine Test for Lyme Disease. Biomaterials 2011, 32, 1157–1166. [Google Scholar] [CrossRef]
- Magni, R.; Rruga, F.; Alsaab, F.M.; Sharif, S.; Howard, M.; Espina, V.; Kim, B.; Lepene, B.; Lee, G.; Alayouni, M.A.; et al. Lipoarabinomannan Antigenic Epitope Differences in Tuberculosis Disease Subtypes. Sci. Rep. 2020, 10, 13944. [Google Scholar] [CrossRef]
- Paris, L.; Magni, R.; Zaidi, F.; Araujo, R.; Saini, N.; Harpole, M.; Coronel, J.; Kirwan, D.E.; Steinberg, H.; Gilman, R.H.; et al. Urine Lipoarabinomannan Glycan in HIV-Negative Patients with Pulmonary Tuberculosis Correlates with Disease Severity. Sci. Transl. Med. 2017, 9, eaal2807. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, J.N. Fundamentals and Practices in Colouration of Textiles; Woodhead Publishing: Delhi, India, 2014; ISBN 9789380308463. [Google Scholar]
- Dzik, W.H.; Anderson, J.K.; O’Neill, E.M.; Assmann, S.F.; Kalish, L.A.; Stowell, C.P. A Prospective, Randomized Clinical Trial of Universal WBC Reduction. Transfusion 2002, 42, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Shakiba, M.; Rezvani Ghomi, E.; Khosravi, F.; Jouybar, S.; Bigham, A.; Zare, M.; Abdouss, M.; Moaref, R.; Ramakrishna, S. Nylon—A Material Introduction and Overview for Biomedical Applications. Polym. Adv. Technol. 2021, 32, 3368–3383. [Google Scholar] [CrossRef]
- Khadka, S.; Ring, B.E.; Pariseau, D.A.; Mike, L.A. Characterization of Klebsiella Pneumoniae Extracellular Polysaccharides. Curr. Protoc. 2023, 3, e937. [Google Scholar] [CrossRef] [PubMed]
- Khoury, T.; Malik, D.; Fan, C.; Tan, D.; Kulkarni, S. Modified Alcian Blue Enhances the Intraoperative Diagnosis of Sentinel Lymph Node Metastasis in Invasive Lobular Carcinoma: A Prospective Study. Arch. Pathol. Lab. Med. 2010, 134, 1513–1519. [Google Scholar] [CrossRef]
- Montgomery, N.L.; Banerjee, P. Inactivation of Escherichia coli O157:H7 and Listeria Monocytogenes in Biofilms by Pulsed Ultraviolet Light. BMC Res. Notes 2015, 8, 235. [Google Scholar] [CrossRef]
- Hussain, M.; Collins, C.; Hastings, J.G.; White, P.J. Radiochemical Assay to Measure the Biofilm Produced by Coagulase-Negative Staphylococci on Solid Surfaces and Its Use to Quantitate the Effects of Various Antibacterial Compounds on the Formation of the Biofilm. J. Med. Microbiol. 1992, 37, 62–69. [Google Scholar] [CrossRef]
- Wang, J.; Ma, W.; Wang, X. Insights into the Structure of Escherichia coli Outer Membrane as the Target for Engineering Microbial Cell Factories. Microb. Cell Fact. 2021, 20, 73. [Google Scholar] [CrossRef]
- Jacobs, M.R.; Good, C.E.; Lazarus, H.M.; Yomtovian, R.A. Relationship between Bacterial Load, Species Virulence, and Transfusion Reaction with Transfusion of Bacterially Contaminated Platelets. Clin. Infect. Dis. 2008, 46, 1214–1220. [Google Scholar] [CrossRef]
Dye | CAS Number | Molecular Weight | Amount of Dye (g/mL) | pH | Dispersing Agent | Sodium Chloride (g/mL) | λmax (nm) |
---|---|---|---|---|---|---|---|
Reactive Blue 21, C40H25CuN9O14S5 | 12236-86-1 | 1079.55 | 0.12 | 8 | none | 0.02 | 660 |
Pynacyanol Chloride C25H25ClN2 | 2768-90-3 | 388.93 | 0.09 | 5.5 | none | 0.02 | 600 |
Methylene Blue C16H18ClN3S · xH2O | 122965-43-9 | 319.85 (anhydrous basis) | 0.09 | 10 | none | 0.02 | 667 |
Alcian Blue C56H40Cl4CuN12 | 123439-83-8 | 1086.36 | 0.07 | 2.5–3 | Sodium 1-naphthalenesulfonate CAS: 130-14-3 | 0.02 | 610 |
Sudan IV C24H20N4O | 85-83-6 | 380.44 | 0.09 | 5.5 | none | none | 520 |
Nylon with Various Dyes | E. coli | S. epidermidis | ||
---|---|---|---|---|
10 cfu/mL | 100 cfu/mL | 10 cfu/mL | 100 cfu/mL | |
Alcian Blue | 95 (±0.7) * | 80 (±0.7) | 75 (±1.4) | 78 (±1.4) |
Reactive Blue 21 | 88 (±1.4) | 66 (±0.7) | 69 (±0) | 68 (±1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi, F.; Cachaco, S.; Prisby, R.; Zhou, W.; Petruncio, G.; Ronzier, E.; Veneziano, R.; Birkaya, B.; Luchini, A.; Gregori, L. Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma. Pathogens 2025, 14, 778. https://doi.org/10.3390/pathogens14080778
Hashemi F, Cachaco S, Prisby R, Zhou W, Petruncio G, Ronzier E, Veneziano R, Birkaya B, Luchini A, Gregori L. Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma. Pathogens. 2025; 14(8):778. https://doi.org/10.3390/pathogens14080778
Chicago/Turabian StyleHashemi, Fatema, Silvia Cachaco, Rocio Prisby, Weidong Zhou, Gregory Petruncio, Elsa Ronzier, Remi Veneziano, Barbara Birkaya, Alessandra Luchini, and Luisa Gregori. 2025. "Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma" Pathogens 14, no. 8: 778. https://doi.org/10.3390/pathogens14080778
APA StyleHashemi, F., Cachaco, S., Prisby, R., Zhou, W., Petruncio, G., Ronzier, E., Veneziano, R., Birkaya, B., Luchini, A., & Gregori, L. (2025). Nylon Affinity Networks Capture and Sequester Two Model Bacteria Spiked in Human Plasma. Pathogens, 14(8), 778. https://doi.org/10.3390/pathogens14080778