Bacteremia Caused by a Putative Novel Species in the Genus Erwinia: A Case Report and Genomic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Microbial Culture and Identification
2.2. Biochemical Characterization
2.3. Whole-Genome Sequencing and Genomic Analysis
2.4. Phylogenetic and Taxonomic Analysis
2.5. Antimicrobial Susceptibility Testing
3. Results
3.1. Clinical Presentation
3.2. Conventional Phenotypic and Molecular Identification
3.3. Whole-Genome Sequencing and Genome Quality
3.4. Whole-Genome Sequencing-Based Taxonomic Assignment
3.5. Phylogenetic Analysis
3.6. Antimicrobial Susceptibility Profile of the Clinical Isolate
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef]
- Liu, B.; Luo, J.; Li, W.; Long, X.F.; Zhang, Y.Q.; Zeng, Z.G.; Tian, Y.Q. Erwinia teleogrylli sp. nov., a Bacterial Isolate Associated with a Chinese Cricket. PLoS ONE 2016, 11, e0146596. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Bahena, M.H.; Salazar, S.; Cuesta, M.J.; Tejedor, C.; Igual, J.M.; Fernández-Pascual, M.; Peix, Á. Erwinia endophytica sp. nov., isolated from potato (Solanum tuberosum L.) stems. Int. J. Syst. Evol. Microbiol. 2016, 66, 975–981. [Google Scholar] [CrossRef]
- Rezzonico, F.; Smits, T.H.M.; Born, Y.; Blom, J.; Frey, J.E.; Goesmann, A.; Cleenwerck, I.; de Vos, P.; Bonaterra, A.; Duffy, B.; et al. Erwinia gerundensis sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees. Int. J. Syst. Evol. Microbiol. 2016, 66, 1583–1592. [Google Scholar] [CrossRef]
- Tao, Y.; Ge, Y.; Yang, J.; Song, W.; Jin, D.; Lin, H.; Zheng, H.; Lu, S.; Luo, W.; Huang, Y.; et al. A novel phytopathogen Erwinia sorbitola sp. nov., isolated from the feces of ruddy shelducks. Front. Cell. Infect. Microbiol. 2023, 13, 1109634. [Google Scholar] [CrossRef] [PubMed]
- Llop, P. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids. Front. Microbiol. 2015, 6, 874. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, I.; Bozzi, B.; Fourniols, E.; Mitrovic, S.; Soulier-Escrihuela, O.; Brossier, F.; Sougakoff, W.; Robert, J.; Jauréguiberry, S.; Aubry, A. Erwinia billingiae as Unusual Cause of Septic Arthritis, France, 2017. Emerg. Infect. Dis. 2019, 25, 1587–1589. [Google Scholar] [CrossRef]
- Gavini, F.; Mergaert, J.; Beji, A.; Mielcarek, C.; Izard, D.; Kersters, K.; De Ley, J. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and Description of Pantoea dispersa sp. nov. Int. J. Syst. Evol. Microbiol. 1989, 39, 337–345. [Google Scholar] [CrossRef]
- Shin, S.Y.; Lee, M.Y.; Song, J.H.; Ko, K.S. New Erwinia-like organism causing cervical lymphadenitis. J. Clin. Microbiol. 2008, 46, 3156–3158. [Google Scholar] [CrossRef]
- Das, S.; Dash, H.R.; Mangwani, N.; Chakraborty, J.; Kumari, S. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J. Microbiol. Methods 2014, 103, 80–100. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Interpretive Criteria for Identification of Bacteria and Fungi by Targeted DNA Sequencing, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Riesco, R.; Trujillo, M.E. Update on the proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2024, 74, 006300. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, J.; Sztermen, M.; Dakos, E.K.; Budai, J.; Katona, J.; Szekeressy, Z.; Sipos, L.; Papp, Z.; Stercz, B.; Dunai, Z.A.; et al. Complex Infection-Control Measures with Disinfectant Switch Help the Successful Early Control of Carbapenem-Resistant Acinetobacter baumannii Outbreak in Intensive Care Unit. Antibiotics 2024, 13, 869. [Google Scholar] [CrossRef] [PubMed]
- Tristancho-Baró, A.; López-Calleja, A.; Milagro, A.; Ariza, M.; Viñeta, V.; Fortuño, B.; López, C.; Latorre-Millán, M.; Clusa, L.; Badenas-Alzugaray, D.; et al. Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics. Antibiotics 2025, 14, 703. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, D.; Kim, J.S.; Lee, J.H.; Kim, D.H.; Kim, S.W.; Lee, J. Reclassification of genus Izhakiella into the family Erwiniaceae based on phylogenetic and genomic analyses. Int. J. Syst. Evol. Microbiol. 2020, 70, 3541–3546. [Google Scholar] [CrossRef]
- Vandamme, P.; Peeters, C. Time to revisit polyphasic taxonomy. Antonie Van Leeuwenhoek 2014, 106, 57–65. [Google Scholar] [CrossRef]
- Brady, C.; Cleenwerck, I.; Venter, S.; Vancanneyt, M.; Swings, J.; Coutinho, T. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst. Appl. Microbiol. 2008, 31, 447–460. [Google Scholar] [CrossRef]
- Chalita, M.; Kim, Y.O.; Park, S.; Oh, H.S.; Cho, J.H.; Moon, J.; Baek, N.; Moon, C.; Lee, K.; Yang, J.; et al. EzBioCloud: A genome-driven database and platform for microbiome identification and discovery. Int. J. Syst. Evol. Microbiol. 2024, 74, 006421. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 1 April 2025).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bushnell, B. BBMap: Short Read Aligner, and Other Bioinformatic Tools. Available online: https://sourceforge.net/projects/bbmap/ (accessed on 1 April 2025).
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018, 34, i142–i150. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Ha, S.M.; Kim, C.K.; Roh, J.; Byun, J.H.; Yang, S.J.; Choi, S.B.; Chun, J.; Yong, D. Application of the Whole Genome-Based Bacterial Identification System, TrueBac ID, Using Clinical Isolates That Were Not Identified with Three Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) Systems. Ann. Lab. Med. 2019, 39, 530–536. [Google Scholar] [CrossRef]
- Larsen, M.V.; Cosentino, S.; Lukjancenko, O.; Saputra, D.; Rasmussen, S.; Hasman, H.; Sicheritz-Pontén, T.; Aarestrup, F.M.; Ussery, D.W.; Lund, O. Benchmarking of methods for genomic taxonomy. J. Clin. Microbiol. 2014, 52, 1529–1539. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez, R.L.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, e01269-20. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
- Zhou, T.; Xu, K.; Zhao, F.; Liu, W.; Li, L.; Hua, Z.; Zhou, X. itol.toolkit accelerates working with iTOL (Interactive Tree of Life) by an automated generation of annotation files. Bioinformatics 2023, 39, btad339. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 35th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025. [Google Scholar]
- EUCAST. Recommendations for MIC Determination of Colistin (Polymyxin E) as Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_March_2016.pdf (accessed on 1 April 2025).
- Soutar, C.D.; Stavrinides, J. Phylogenomic analysis of the Erwiniaceae supports reclassification of Kalamiella piersonii to Pantoea piersonii comb. nov. and Erwinia gerundensis to the new genus Duffyella gen. nov. as Duffyella gerundensis comb. nov. Mol. Genet. Genom. 2022, 297, 213–225. [Google Scholar] [CrossRef]
- Pan, M.K.; Feng, G.D.; Yao, Q.; Li, J.; Liu, C.; Zhu, H. Erwinia phyllosphaerae sp. nov., a novel bacterium isolated from phyllosphere of pomelo (Citrus maxima). Int. J. Syst. Evol. Microbiol. 2022, 72, 005316. [Google Scholar] [CrossRef]
- Palmer, M.; Steenkamp, E.T.; Coetzee, M.P.A.; Avontuur, J.R.; Chan, W.Y.; van Zyl, E.; Blom, J.; Venter, S.N. Mixta gen. nov., a new genus in the Erwiniaceae. Int. J. Syst. Evol. Microbiol. 2018, 68, 1396–1407. [Google Scholar] [CrossRef]
- Singh, N.K.; Wood, J.M.; Mhatre, S.S.; Venkateswaran, K. Metagenome to phenome approach enables isolation and genomics characterization of Kalamiella piersonii gen. nov., sp. nov. from the International Space Station. Appl. Microbiol. Biotechnol. 2019, 103, 4483–4497. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.; Kaur, S.; Crampton, B.; Maddock, D.; Arnold, D.; Denman, S. Transfer of Erwinia toletana and Erwinia iniecta to a novel genus Winslowiella gen. nov. as Winslowiella toletana comb. nov. and Winslowiella iniecta comb. nov. and description of Winslowiella arboricola sp. nov., isolated from bleeding cankers on broadleaf hosts. Front. Microbiol. 2022, 13, 1063107. [Google Scholar] [CrossRef]
- Kim, J.; Yun, H.; Tahmasebi, A.; Nam, J.; Pham, H.; Kim, Y.H.; Min, H.J.; Lee, C.W. Paramixta manurensis gen. nov., sp. nov., a novel member of the family Erwiniaceae producing indole-3-acetic acid isolated from mushroom compost. Sci. Rep. 2024, 14, 15542. [Google Scholar] [CrossRef] [PubMed]
- Walterson, A.M.; Stavrinides, J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39, 968–984. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Mackiewicz, B.; Kinga Lemieszek, M.; Golec, M.; Milanowski, J. Pantoea agglomerans: A mysterious bacterium of evil and good. Part III. Deleterious effects: Infections of humans, animals and plants. Ann. Agric. Environ. Med. 2016, 23, 197–205. [Google Scholar] [CrossRef]
- Rezzonico, F.; Duffy, B.; Smits, T.H.M.; Pothier, J.F. Erwinia species Identification Using Matrix-assisted Laser Desorption Ionization-Time of Flight Mass Spectormetry. J. Plant Pathol. 2017, 99, 121–129. [Google Scholar] [CrossRef]
- Soutar, C.D.; Stavrinides, J. Molecular validation of clinical Pantoea isolates identified by MALDI-TOF. PLoS ONE 2019, 14, e0224731. [Google Scholar] [CrossRef] [PubMed]
- Gueule, D.; Fourny, G.; Ageron, E.; Le Fleche-Mateos, A.; Vandenbogaert, M.; Grimont, P.A.; Cilas, C. Pantoea coffeiphila sp. nov., cause of the ‘potato taste’of Arabica coffee from the African Great Lakes region. Int. J. Syst. Evol. Microbiol. 2015, 65, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Ross, V.M.; Guenter, P.; Corrigan, M.L.; Kovacevich, D.; Winkler, M.F.; Resnick, H.E.; Norris, T.L.; Robinson, L.; Steiger, E. Central venous catheter infections in home parenteral nutrition patients: Outcomes from Sustain: American Society for Parenteral and Enteral Nutrition’s National Patient Registry for Nutrition Care. Am. J. Infect. Control 2016, 44, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Bond, A.; Chadwick, P.; Smith, T.R.; Nightingale, J.M.D.; Lal, S. Diagnosis and management of catheter-related bloodstream infections in patients on home parenteral nutrition. Frontline Gastroenterol. 2020, 11, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.; Sherertz, R.J.; Warren, D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef]
- de Grooth, H.-J.; Timsit, J.-F.; Mermel, L.; Mimoz, O.; Buetti, N.; du Cheyron, D.; Oudemans-van Straaten, H.M.; Parienti, J.-J. Validity of surrogate endpoints assessing central venous catheter-related infection: Evidence from individual-and study-level analyses. Clin. Microbiol. Infect. 2020, 26, 563–571. [Google Scholar] [CrossRef]
- Elangovan, S.; Lo, J.; Xie, Y.; Mitchell, B.; Graves, N.; Cai, Y. Impact of central-line-associated bloodstream infections and catheter-related bloodstream infections: A systematic review and meta-analysis. J. Hosp. Infect. 2024, 152, 126–137. [Google Scholar] [CrossRef]
- Arahal, D.; Bisgaard, M.; Christensen, H.; Clermont, D.; Dijkshoorn, L.; Duim, B.; Emler, S.; Figge, M.; Göker, M.; Moore, E.R. The best of both worlds: A proposal for further integration of Candidatus names into the International Code of Nomenclature of Prokaryotes. Int. J. Syst. Evol. Microbiol. 2024, 74, 006188. [Google Scholar] [CrossRef] [PubMed]
No. | Closest Matching Species | Whole-Genome ANI (%) | ANI Alignment Coverage (%) | 16S rRNA Identity (%) |
---|---|---|---|---|
1 | Erwinia endophytica | 84.95 | 37.2 | 98.45 |
2 | Erwinia aphidicola | 85.01 | 37.4 | 98.35 |
3 | Erwinia rhapontici | 84.53 | 30.5 | 98.35 |
4 | Erwinia persicina | 84.47 | 31.7 | 98.35 |
5 | JFGT_s | 84.11 | 18.1 | 97.11 |
6 | RHUM_s | 84.25 | 21.6 | 98.76 |
7 | KZ478080_s | 83.81 | 8.3 | 99.18 |
8 | Erwinia billingiae | 84.17 | 22.9 | 99.18 |
9 | Pantoea coffeiphila | 83.92 | 11.2 | 99.06 |
10 | ALXE_s | 83.81 | 9.3 | 98.76 |
No. | Species Name | RefSeq Accession | ANI (%) | No. of Aligned Fragments | Total Query Fragments | ANI Alignment Coverage (%) |
---|---|---|---|---|---|---|
1 | Pantoea coffeiphila | GCF_016909495.1 | 90.28 | 1566 | 1786 | 87.68 |
2 | Erwinia aphidicola | GCF_037149315.1 | 82.75 | 994 | 1786 | 55.66 |
3 | Erwinia rhapontici | GCF_020683125.1 | 81.77 | 964 | 1786 | 53.98 |
4 | Erwinia persicina | GCF_019844095.1 | 81.60 | 959 | 1786 | 53.70 |
5 | Erwinia pyrifoliae | GCF_002952315.1 | 81.06 | 691 | 1786 | 38.69 |
6 | Erwinia amylovora | GCF_043228865.1 | 80.93 | 688 | 1786 | 38.52 |
7 | Erwinia piriflorinigrans | GCF_001050515.1 | 80.86 | 686 | 1786 | 38.41 |
8 | Erwinia tasmaniensis | GCF_000026185.1 | 80.82 | 722 | 1786 | 40.43 |
9 | Erwinia billingiae | GCF_000196615.1 | 80.68 | 848 | 1786 | 47.48 |
10 | Erwinia typographi | GCF_000773975.1 | 80.63 | 803 | 1786 | 44.96 |
Antimicrobial Agent | Etest MIC (μg/mL) | Disk Diffusion Zone (mm) | DKMGN MIC (μg/mL) | Interpretation |
---|---|---|---|---|
Ampicillin | — | 10 | — | R |
Cefazolin | — | 20 | — | I |
Cefotaxime | 0.19 | 40 | ≤0.5 | S |
Ceftriaxone | 0.25 | 28 | — | S |
Ceftazidime | 0.125 | 30 | ≤0.5 | S |
Cefepime | — | 40 | — | S |
Aztreonam | — | — | ≤0.5 | S |
Imipenem | 0.19 | 40 | ≤0.5 | S |
Meropenem | 0.023 | 28 | ≤0.12 | S |
Ertapenem | 0.008 | 42 | ≤0.12 | S |
Amoxicillin/clavulanic acid | — | — | ≤4 | S |
Ampicillin/sulbactam | — | — | ≤4/2 | S |
Piperacillin/tazobactam | 2 | 30 | ≤1/4 | S |
Ceftazidime/avibactam | — | — | ≤0.5 | S |
Ceftolozane/tazobactam | — | — | ≤0.5 | S |
Amikacin | — | 45 | ≤4 | S |
Gentamicin | 0.25 | 40 | ≤0.5 | S |
Tobramycin | — | 40 | ≤2 | S |
Ciprofloxacin | 0.16 | 34 | ≤0.06 | S |
Levofloxacin | 0.094 | — | — | NA |
Colistin | — | — | ≤0.25 | S |
Tigecycline | — | — | ≤0.25 | NA |
Trimethoprim/sulfamethoxazole | 0.032 | 40 | ≤1 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, T.S.; Park, H.; Park, J.H. Bacteremia Caused by a Putative Novel Species in the Genus Erwinia: A Case Report and Genomic Analysis. Life 2025, 15, 1227. https://doi.org/10.3390/life15081227
Lee J, Kim TS, Park H, Park JH. Bacteremia Caused by a Putative Novel Species in the Genus Erwinia: A Case Report and Genomic Analysis. Life. 2025; 15(8):1227. https://doi.org/10.3390/life15081227
Chicago/Turabian StyleLee, Jiwoo, Taek Soo Kim, Hyunwoong Park, and Jae Hyeon Park. 2025. "Bacteremia Caused by a Putative Novel Species in the Genus Erwinia: A Case Report and Genomic Analysis" Life 15, no. 8: 1227. https://doi.org/10.3390/life15081227
APA StyleLee, J., Kim, T. S., Park, H., & Park, J. H. (2025). Bacteremia Caused by a Putative Novel Species in the Genus Erwinia: A Case Report and Genomic Analysis. Life, 15(8), 1227. https://doi.org/10.3390/life15081227