Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,171)

Search Parameters:
Keywords = biomass crops

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1788 KiB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

20 pages, 1788 KiB  
Article
Legume–Cereal Cover Crops Improve Soil Properties but Fall Short on Weed Suppression in Chickpea Systems
by Zelalem Mersha, Michael A. Ibarra-Bautista, Girma Birru, Julia Bucciarelli, Leonard Githinji, Andualem S. Shiferaw, Shuxin Ren and Laban Rutto
Agronomy 2025, 15(8), 1893; https://doi.org/10.3390/agronomy15081893 - 6 Aug 2025
Abstract
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of [...] Read more.
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of fall-planted winter rye (WR) alone in 2021 and mixed with hairy vetch (HV) in 2022 and 2023 at Randolph farm in Petersburg, Virginia. The objectives were two-fold: (a) to examine the effect of CCs on soil properties using monthly growth dynamics and biomass harvested from fifteen 0.25 m2-quadrants and (b) to evaluate the efficiency of five termination methods: (1) green manure (GM); (2) GM plus pre-emergence herbicide (GMH); (3) burn (BOH); (4) crimp mulch (CRM); and (5) mow-mulch (MW) in suppressing weeds in chickpea fields. Weed distribution, particularly nutsedge, was patchy and dominant on the eastern side. Growth dynamics followed an exponential growth rate in fall 2022 (R2 ≥ 0.994, p < 0.0002) and a three-parameter sigmoidal curve in 2023 (R2 ≥ 0.972, p < 0.0047). Biomass averaged 55.8 and 96.9 t/ha for 2022 and 2023, respectively. GMH consistently outperformed GM in weed suppression, though GM was not significantly different from no-till systems by the season’s end. Kabuli-type chickpeas under GMH had significantly higher yields than desi types. Pooled data fitted well to a three-parametric logistic curve, predicting half-time to 50% weed coverage at 35 (MM), 38 (CRM), 40 (BOH), 46 (GM), and 53 (GMH) days. Relapses of CCs were consistent in no-till systems, especially BOH and MW. Although soil properties improved, CCs alone did not significantly suppress weed. Full article
(This article belongs to the Section Weed Science and Weed Management)
18 pages, 4216 KiB  
Article
Screening and Application of Highly Efficient Rhizobia for Leguminous Green Manure Astragalus sinicus in Lyophilized Inoculants and Seed Coating
by Ding-Yuan Xue, Wen-Feng Chen, Guo-Ping Yang, You-Guo Li and Jun-Jie Zhang
Plants 2025, 14(15), 2431; https://doi.org/10.3390/plants14152431 - 6 Aug 2025
Abstract
Astragalus sinicus, a key leguminous green manure widely cultivated in Southern China’s rice-based cropping systems, plays a pivotal role in sustainable agriculture by enhancing soil organic matter sequestration, improving rice yield, and elevating grain quality. The symbiotic nitrogen-fixing association between A. sinicus [...] Read more.
Astragalus sinicus, a key leguminous green manure widely cultivated in Southern China’s rice-based cropping systems, plays a pivotal role in sustainable agriculture by enhancing soil organic matter sequestration, improving rice yield, and elevating grain quality. The symbiotic nitrogen-fixing association between A. sinicus and its matching rhizobia is fundamental to its agronomic value; however, suboptimal inoculant efficiency and field application methodologies constrain its full potential. To address these limitations, we conducted a multi-phase study involving (1) rhizobial strain screening under controlled greenhouse conditions, (2) an optimized lyophilization protocol evaluating cryoprotectant (trehalose, skimmed milk powder and others), and (3) seed pelleting trails with rhizobial viability and nodulation assessments over different storage periods. Our results demonstrate that Mesorhizobium huakuii CCBAU 33470 exhibits a superior nitrogen-fixing efficacy, significantly enhancing key traits in A. sinicus, including leaf chlorophyll content, tiller number, and aboveground biomass. Lyophilized inoculants prepared with cryoprotectants (20% trehalose or 20% skimmed milk powder) maintained >90% bacterial viability for 60 days and markedly improved nodulation capacity relative to unprotected formulations. The optimized seed pellets sustained high rhizobial loads (5.5 × 103 cells/seed) with an undiminished viability after 15 days of storage and nodulation ability after 40 days of storage. This integrated approach of rhizobial selection, inoculant formulation, and seed coating overcomes cultivation bottlenecks, boosting symbiotic nitrogen fixation for A. sinicus cultivation. Full article
(This article belongs to the Topic New Challenges on Plant–Microbe Interactions)
Show Figures

Figure 1

18 pages, 2376 KiB  
Article
Selection and Characterisation of Elite Mesorhizobium spp. Strains That Mitigate the Impact of Drought Stress on Chickpea
by María Camacho, Francesca Vaccaro, Pilar Brun, Francisco Javier Ollero, Francisco Pérez-Montaño, Miriam Negussu, Federico Martinelli, Alessio Mengoni, Dulce Nombre Rodriguez-Navarro and Camilla Fagorzi
Agriculture 2025, 15(15), 1694; https://doi.org/10.3390/agriculture15151694 - 5 Aug 2025
Abstract
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains [...] Read more.
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains from chickpea nodules collected in southern Spain and evaluated their cultivar-specific symbiotic performance. Two commercial cultivars (Pedrosillano and Blanco Lechoso) and twenty chickpea germplasms were tested under growth chamber and greenhouse conditions, both with and without drought stress. Initial screening in a sterile substrate using nodulation assays, shoot/root dry weight measurements, and acetylene reduction assays identified three elite strains (ISC11, ISC15, and ISC25) with superior symbiotic performance and nitrogenase activity. Greenhouse trials under reduced irrigation demonstrated that several strain–cultivar combinations significantly mitigated drought effects on plant biomass, with specific interactions (e.g., ISC25 with RR-98 or BT6-19) preserving over 70% of shoot biomass relative to controls. Whole-genome sequencing of the elite strains revealed diverse taxonomic affiliations—ISC11 as Mesorhizobium ciceri, ISC15 as Mesorhizobium mediterraneum, and ISC25 likely representing a novel species. Genome mining identified plant growth-promoting traits including ACC deaminase genes (in ISC11 and ISC25) and genes coding for auxin biosynthesis-related enzymes. Our findings highlight the potential of targeted rhizobial inoculants tailored to chickpea cultivars to improve crop performance under water-limiting conditions. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

18 pages, 1471 KiB  
Article
Microclimate Modification, Evapotranspiration, Growth and Essential Oil Yield of Six Medicinal Plants Cultivated Beneath a Dynamic Agrivoltaic System in Southern Italy
by Grazia Disciglio, Antonio Stasi, Annalisa Tarantino and Laura Frabboni
Plants 2025, 14(15), 2428; https://doi.org/10.3390/plants14152428 - 5 Aug 2025
Abstract
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus [...] Read more.
This study, conducted in Southern Italy in 2023, investigated the effects of a dynamic agrivoltaics (AV) system on microclimate, water consumption, plant growth, and essential oil yield in six medicinal species: lavender (Lavandula angustifolia L. ‘Royal purple’), lemmon thyme (Thymus citriodorus (Pers.) Schreb. ar. ‘Aureus’), common thyme (Thymus vulgaris L.), rosemary (Salvia rosmarinus Spenn. ‘Severn seas’), mint (Mentha spicata L. ‘Moroccan’), and sage (Salvia officinalis L. subsp. Officinalis). Due to the rotating solar panels, two distinct ground zones were identified: a consistently shaded area under the panels (UP), and a partially shaded area between the panels (BP). These were compared to an adjacent full-sun control area (T). Microclimate parameters, including solar radiation, air and leaf infrared temperature, and soil temperature, were recorded throughout the cultivation season. Reference evapotranspiration (ETO) was calculated using Turc’s method, and crop evapotranspiration (ETC) was estimated with species-specific crop coefficients (KC). Results showed significantly lower microclimatic values in the UP plot compared to both BP and especially T, resulting in ETC reductions of 81.1% in UP and 13.1% in BP relative to T, an advantage in water-scarce environments. Growth and yield responses varied among species and treatment plots. Except for mint, all species showed a significant reduction in fresh biomass (40.1% to 48.8%) under the high shading of UP compared to T. However, no biomass reductions were observed in BP. Notably, essential oil yields were higher in both UP and BP plots (0.60–2.63%) compared to the T plot (0.51–1.90%). These findings demonstrate that dynamic AV systems can enhance water use efficiency and essential oil yield, offering promising opportunities for sustainable, high-quality medicinal crop production in arid and semi-arid regions. Full article
Show Figures

Figure 1

31 pages, 13266 KiB  
Article
Emission of Total Volatile Organic Compounds from the Torrefaction Process: Meadow Hay, Rye, and Oat Straw as Renewable Fuels
by Justyna Czerwinska, Szymon Szufa, Hilal Unyay and Grzegorz Wielgosinski
Energies 2025, 18(15), 4154; https://doi.org/10.3390/en18154154 - 5 Aug 2025
Abstract
This study aims to quantify total VOC emissions and evaluate how torrefaction alters the heat of combustion of three agricultural residues. The work examines the amount of VOC emissions during the torrefaction process at various temperatures and investigates the changes in the heat [...] Read more.
This study aims to quantify total VOC emissions and evaluate how torrefaction alters the heat of combustion of three agricultural residues. The work examines the amount of VOC emissions during the torrefaction process at various temperatures and investigates the changes in the heat of combustion of agri-biomass resulting from the torrefaction process. The process was carried out at the following temperatures: 225, 250, 275, and 300 °C. Total VOC emission factors were determined. The reaction kinetics analysis revealed that meadow hay exhibited the most stable thermal behavior with the lowest activation energy. At the same time, rye straw demonstrated higher thermal resistance and complex multi-step degradation characteristics. The authors analyze three types of agricultural biomass: meadow hay, rye straw, and oat straw. The research was divided into five stages: determination of moisture content in the sample, determination of ash content, thermogravimetric analysis, measurement of total VOC emissions from the biomass torrefaction process, and determination of the heat of combustion of the obtained torrefied biomass. Based on the research, it was found that torrefaction of biomass causes the emission of torgas containing VOC in the amount of 2–10 mg/g of torrefied biomass, which can be used energetically, e.g., to support the torrefaction process, and the torrefied biomass shows a higher value of the heat of combustion. Unlike prior studies focused on single feedstocks or limited temperature ranges, this work systematically compares three major crop residues across four torrefaction temperatures and directly couples VOC quantifications. Full article
Show Figures

Figure 1

22 pages, 2542 KiB  
Article
Wheat Under Warmer Nights: Shifting of Sowing Dates for Managing Impacts of Thermal Stress
by Roshan Subedi, Mani Naiker, Yash Chauhan, S. V. Krishna Jagadish and Surya P. Bhattarai
Agriculture 2025, 15(15), 1687; https://doi.org/10.3390/agriculture15151687 - 5 Aug 2025
Abstract
High nighttime temperature (HNT) due to asymmetric diurnal warming threatens wheat productivity. This study evaluated the effect of HNT on wheat phenology, physiology, and yield through field and controlled environment experiments in Central Queensland, Australia. Two wheat genotypes, Faraday and AVT#6, were assessed [...] Read more.
High nighttime temperature (HNT) due to asymmetric diurnal warming threatens wheat productivity. This study evaluated the effect of HNT on wheat phenology, physiology, and yield through field and controlled environment experiments in Central Queensland, Australia. Two wheat genotypes, Faraday and AVT#6, were assessed under three sowing dates—1 May (Early), 15 June (Mid), and 1 August (Late)—within the recommended sowing window for the region. In a parallel growth chamber study, the plants were exposed to two nighttime temperature regimes, of 15 °C (normal) and 20 °C (high), with consistent daytime conditions from booting to maturity. Late sowing resulted in shortened vegetative growth and grain filling periods and increased exposure to HNT during the reproductive phase. This resulted in elevated floret sterility, lower grain weight, and up to 40% yield loss. AVT#6 exhibited greater sensitivity to HNT despite maturing earlier. Leaf gas exchange analysis revealed increased nighttime respiration (Rn) and reduced assimilation (A), resulting in higher Rn/A ratio for late-sown crops. The results from controlled environment chambers resembled trends of the field experiment, producing lower grain yield and biomass under HNT. Cumulative nighttime hours above 20 °C correlated more strongly with yield losses than daytime heat. These findings highlight the need for HNT-tolerant genotypes and optimized sowing schedules under future climate scenarios. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

23 pages, 3121 KiB  
Article
Seasonal Changes in the Soil Microbiome on Chernozem Soil in Response to Tillage, Fertilization, and Cropping System
by Andrea Balla Kovács, Evelin Kármen Juhász, Áron Béni, Costa Gumisiriya, Magdolna Tállai, Anita Szabó, Ida Kincses, Tibor Novák, András Tamás and Rita Kremper
Agronomy 2025, 15(8), 1887; https://doi.org/10.3390/agronomy15081887 - 5 Aug 2025
Abstract
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem [...] Read more.
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem soil under corn cultivation. The polyfactorial field experiment included three tillage treatments ((moldboard (MT), ripped (RT), strip (ST)), two fertilization regimes (NPK (N: 160; P: 26; K: 74 kg/ha), and unfertilized control) and two cropping systems (corn monoculture and corn–wheat biculture). The soil samples (0–30 cm) were collected in June and September 2023. Microbial biomass and community structure were quantified using phospholipid fatty acid (PLFA) analysis, which allowed the estimation of total microbial biomass and community composition (arbuscular mycorrhizal (AM) fungi, fungi, Gram-negative (GN) and Gram-positive (GP) bacteria, actinomycetes). Our results showed that microbial biomass increased from June to September, rising by 270% in unfertilized plots and by 135% in NPK-fertilized plots, due to higher soil moisture. Reduced tillage, especially ST, promoted significantly higher microbial biomass, with biomass reaching 290% and 182% of that in MT plots in June and September, respectively. MT had a higher ratio of bacteria-to-fungi compared to RT and ST, indicating a greater sensitivity of fungi to disturbance. NPK fertilization lowered soil pH by about one unit (to 4.1–4.8) and reduced microbial biomass—by 2% in June and 48% in September—compared to the control, with the particular suppression of AM fungi. The cropping system had a smaller overall effect on microbial biomass. Full article
Show Figures

Figure 1

34 pages, 9516 KiB  
Article
Proteus sp. Strain JHY1 Synergizes with Exogenous Dopamine to Enhance Rice Growth Performance Under Salt Stress
by Jing Ji, Baoying Ma, Runzhong Wang and Tiange Li
Microorganisms 2025, 13(8), 1820; https://doi.org/10.3390/microorganisms13081820 - 4 Aug 2025
Abstract
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous [...] Read more.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous dopamine (DA) significantly enhanced the production of indole-3-acetic acid and ammonia by strain JHY1. Pot experiments revealed that both DA and JHY1 treatments effectively alleviated the adverse effects of 225 mM NaCl on rice, promoting biomass, plant height, and root length. More importantly, the combined application of DA-JHY1 showed a significant synergistic effect in mitigating salt stress. The treatment increased the chlorophyll content, net photosynthetic rate, osmotic regulators (proline, soluble sugars, and protein), and reduced lipid peroxidation. The treatment also increased soil nutrients (ammoniacal nitrogen and available phosphorus), enhanced soil enzyme activities (sucrase and alkaline phosphatase), stabilized the ion balance (K+/Na+), and modulated the soil rhizosphere microbial community by increasing beneficial bacteria, such as Actinobacteria and Firmicutes. This study provides the first evidence that the synergistic effect of DA and PGPR contributes to enhanced salt tolerance in rice, offering a novel strategy for alleviating the adverse effects of salt stress on plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

27 pages, 1757 KiB  
Article
Salt Stress Mitigation and Field-Relevant Biostimulant Activity of Prosystemin Protein Fragments: Novel Tools for Cutting-Edge Solutions in Agriculture
by Martina Chiara Criscuolo, Raffaele Magliulo, Valeria Castaldi, Valerio Cirillo, Claudio Cristiani, Andrea Negroni, Anna Maria Aprile, Donata Molisso, Martina Buonanno, Davide Esposito, Emma Langella, Simona Maria Monti and Rosa Rao
Plants 2025, 14(15), 2411; https://doi.org/10.3390/plants14152411 - 4 Aug 2025
Viewed by 30
Abstract
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt [...] Read more.
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt stress and as biostimulants modulating tomato yield and quality traits. The treatments of tomato plants with femtomolar amounts of the peptides alleviated salt stress symptoms, likely due to an increase in root biomass up to 18% and the upregulation of key antioxidant genes such as APX2 and HSP90. In addition, the peptides exhibited biostimulant activity, significantly improving root area (up to 10%) and shoot growth (up to 9%). We validated such activities through two-year field trials carried out on industrial tomato crops. Peptide treatments confirmed their biostimulant effects, leading to a nearly 50% increase in marketable production compared to a commonly used commercial product and consistently enhancing fruit °Brix values. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 3085 KiB  
Article
Poultry Manure-Derived Biochar Synthesis, Characterization, and Valorization in Agriculture: Effect of Pyrolysis Temperature and Metal-Salt Modification
by Samar Hadroug, Leila El-Bassi, Salah Jellali, Ahmed Amine Azzaz, Mejdi Jeguirim, Helmi Hamdi, James J. Leahy, Amine Aymen Assadi and Witold Kwapinski
Soil Syst. 2025, 9(3), 85; https://doi.org/10.3390/soilsystems9030085 (registering DOI) - 4 Aug 2025
Viewed by 134
Abstract
In the present work, six biochars were produced from the pyrolysis of poultry manure at 400 °C and 600 °C (PM-B-400 and PM-B-600), and their post-modification with, respectively, iron chloride (PM-B-400-Fe and PM-B-600-Fe) and potassium permanganate (PM-B-400-Mn and PM-B-600-Mn). First, these biochars were [...] Read more.
In the present work, six biochars were produced from the pyrolysis of poultry manure at 400 °C and 600 °C (PM-B-400 and PM-B-600), and their post-modification with, respectively, iron chloride (PM-B-400-Fe and PM-B-600-Fe) and potassium permanganate (PM-B-400-Mn and PM-B-600-Mn). First, these biochars were deeply characterized through the assessment of their particle size distribution, pH, electrical conductivity, pH at point-zero charge, mineral composition, morphological structure, and surface functionality and crystallinity, and then valorized as biofertilizer to grow spring barley at pot-scale for 40 days. Characterization results showed that Fe- and Mn-based nanoparticles were successfully loaded onto the surface of the post-modified biochars, which significantly enhanced their structural and surface chemical properties. Moreover, compared to the control treatment, both raw and post-modified biochars significantly improved the growth parameters of spring barley plants (shoot and root length, biomass weight, and nutrient content). The highest biomass production was obtained for the treatment with PM-B-400-Fe, owing to its enhanced physico-chemical properties and its higher ability in releasing nutrients and immobilizing heavy metals. These results highlight the potential use of Fe-modified poultry manure-derived biochar produced at low temperatures as a sustainable biofertilizer for soil enhancement and crop yield improvement, while addressing manure management issues. Full article
Show Figures

Figure 1

24 pages, 913 KiB  
Article
Fermentation Efficiency and Profile of Volatile Compounds in Rye Grain Mashes from Crops Fertilised with Agrifood Waste Ashes
by Łukasz Ściubak, Andrzej Baryga, Maria Balcerek, Katarzyna Pielech-Przybylska, Urszula Dziekońska-Kubczak and Stanisław Brzeziński
Molecules 2025, 30(15), 3251; https://doi.org/10.3390/molecules30153251 - 2 Aug 2025
Viewed by 195
Abstract
The utilisation of agrifood waste ashes has the potential to enhance the nutrient content of cereal crops, thereby optimising both yield and grain quality. This study investigated rye grain composition, the fermentation efficiency, and volatile compounds in mashes made from crops fertilised with [...] Read more.
The utilisation of agrifood waste ashes has the potential to enhance the nutrient content of cereal crops, thereby optimising both yield and grain quality. This study investigated rye grain composition, the fermentation efficiency, and volatile compounds in mashes made from crops fertilised with agrifood waste ashes derived from the combustion of corn cob, wood chips, and biomass with defecation lime. The ashes were applied at 2, 4, and 8 t/ha, separately and as mixtures of corn cob (25%) with wood chips (75%) and corn cob (50%) with biomass and defecation lime (50%). Rye mashes were prepared using the pressureless starch liberation method. The starch content in the majority of the rye grains was comparable to the control sample (57.12 g/100 g). The range of ethanol concentrations observed in the fermented mashes was from 55.55 to 68.12 g/L, which corresponded to fermentation yields of 67.25–76.59% of theoretical. The lowest fermentation yield was exhibited by the mash derived from rye cultivated on soil fertilised with a 50:50 mixture of ashes from corn cob and biomass with defecation lime at 8 t/ha. This mash contained more than double the acetaldehyde concentration and total aldehyde content compared to the other samples. These findings demonstrate the potential of using waste biomass ash as a source of macro- and microelements for rye cultivation, enabling the production of agricultural distillates. To ensure high fermentation efficiency and low aldehyde levels, ash dosage and composition need to be established based on experimental optimisation. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

24 pages, 3631 KiB  
Article
Mineral–Soil–Plant–Nutrient Synergism: Carbonate Rock Leachate Irrigation Enhances Soil Nutrient Availability, Improving Crop Yield and Quality
by Yifei Du, Xiao Ge, Yimei Du, Hongrui Ding and Anhuai Lu
Minerals 2025, 15(8), 825; https://doi.org/10.3390/min15080825 - 2 Aug 2025
Viewed by 244
Abstract
In the rock–soil–biology–water ecosystem, rock weathering provides essential plant nutrients. However, its supply is insufficient for rising crop demands under population growth and climate change, while excessive fertilizer causes soil degradation and pollution. This study innovatively irrigated with carbonate rock leachates to enhance [...] Read more.
In the rock–soil–biology–water ecosystem, rock weathering provides essential plant nutrients. However, its supply is insufficient for rising crop demands under population growth and climate change, while excessive fertilizer causes soil degradation and pollution. This study innovatively irrigated with carbonate rock leachates to enhance soil nutrient availability. A pot experiment with lettuce showed that irrigation significantly increased soil NO3-N (+102.20%), available K (+16.45%), available P (+17.95%), Ca (+6.04%), Mg (+11.65%), and Fe (+11.60%), and elevated the relative abundance of Firmicutes. Lettuce biomass per plant rose by 23.78%, with higher leaf minerals (P, K, Ca, and Mg) and antioxidants (carotenoids and ascorbic acid). A field experiment further confirmed improvement of soil nutrient availability and peanut yield. This carbonate rock leachate irrigation technique effectively enhances soil quality and crop productivity/quality, offering a sustainable approach for green agriculture. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

17 pages, 587 KiB  
Review
Exploring the Potential of Biochar in Enhancing U.S. Agriculture
by Saman Janaranjana Herath Bandara
Reg. Sci. Environ. Econ. 2025, 2(3), 23; https://doi.org/10.3390/rsee2030023 - 1 Aug 2025
Viewed by 170
Abstract
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and [...] Read more.
Biochar, a carbon-rich material derived from biomass, presents a sustainable solution to several pressing challenges in U.S. agriculture, including soil degradation, carbon emissions, and waste management. Despite global advancements, the U.S. biochar market remains underexplored in terms of economic viability, adoption potential, and sector-specific applications. This narrative review synthesizes two decades of literature to examine biochar’s applications, production methods, and market dynamics, with a focus on its economic and environmental role within the United States. The review identifies biochar’s multifunctional benefits: enhancing soil fertility and crop productivity, sequestering carbon, reducing greenhouse gas emissions, and improving water quality. Recent empirical studies also highlight biochar’s economic feasibility across global contexts, with yield increases of up to 294% and net returns exceeding USD 5000 per hectare in optimized systems. Economically, the global biochar market grew from USD 156.4 million in 2021 to USD 610.3 million in 2023, with U.S. production reaching ~50,000 metric tons annually and a market value of USD 203.4 million in 2022. Forecasts project U.S. market growth at a CAGR of 11.3%, reaching USD 478.5 million by 2030. California leads domestic adoption due to favorable policy and biomass availability. However, barriers such as inconsistent quality standards, limited awareness, high costs, and policy gaps constrain growth. This study goes beyond the existing literature by integrating market analysis, SWOT assessment, cost–benefit findings, and production technologies to highlight strategies for scaling biochar adoption. It concludes that with supportive legislation, investment in research, and enhanced supply chain transparency, biochar could become a pivotal tool for sustainable development in the U.S. agricultural and environmental sectors. Full article
Show Figures

Figure 1

28 pages, 4026 KiB  
Article
Multi-Trait Phenotypic Analysis and Biomass Estimation of Lettuce Cultivars Based on SFM-MVS
by Tiezhu Li, Yixue Zhang, Lian Hu, Yiqiu Zhao, Zongyao Cai, Tingting Yu and Xiaodong Zhang
Agriculture 2025, 15(15), 1662; https://doi.org/10.3390/agriculture15151662 - 1 Aug 2025
Viewed by 233
Abstract
To address the problems of traditional methods that rely on destructive sampling, the poor adaptability of fixed equipment, and the susceptibility of single-view angle measurements to occlusions, a non-destructive and portable device for three-dimensional phenotyping and biomass detection in lettuce was developed. Based [...] Read more.
To address the problems of traditional methods that rely on destructive sampling, the poor adaptability of fixed equipment, and the susceptibility of single-view angle measurements to occlusions, a non-destructive and portable device for three-dimensional phenotyping and biomass detection in lettuce was developed. Based on the Structure-from-Motion Multi-View Stereo (SFM-MVS) algorithms, a high-precision three-dimensional point cloud model was reconstructed from multi-view RGB image sequences, and 12 phenotypic parameters, such as plant height, crown width, were accurately extracted. Through regression analyses of plant height, crown width, and crown height, and the R2 values were 0.98, 0.99, and 0.99, respectively, the RMSE values were 2.26 mm, 1.74 mm, and 1.69 mm, respectively. On this basis, four biomass prediction models were developed using Adaptive Boosting (AdaBoost), Support Vector Regression (SVR), Gradient Boosting Decision Tree (GBDT), and Random Forest Regression (RFR). The results indicated that the RFR model based on the projected convex hull area, point cloud convex hull surface area, and projected convex hull perimeter performed the best, with an R2 of 0.90, an RMSE of 2.63 g, and an RMSEn of 9.53%, indicating that the RFR was able to accurately simulate lettuce biomass. This research achieves three-dimensional reconstruction and accurate biomass prediction of facility lettuce, and provides a portable and lightweight solution for facility crop growth detection. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

Back to TopTop