Exploring the Potential of Biochar in Enhancing U.S. Agriculture
Abstract
1. Introduction
- To identify and describe the use and applications of biochar both globally and within the United States;
- To examine the structure and drivers of the U.S. biochar market;
- To assess the future potential for biochar adoption in the United States and highlight enabling factors and barriers.
2. Biochar Applications
3. Biochar Production and Market Implications
3.1. Production of Biochar
3.2. Biochar Production and Sales
3.3. Distribution of Biochar Companies
4. Biochar Demand and Market Implications
4.1. Industry Landscape: Growth Drivers and Market Barriers
4.2. Biochar Pricing Dynamics
4.3. Revenue Trends and Economic Performance
5. Economics of Biochar in the U.S.
5.1. U.S. Biochar Market Trends and Growth Outlook
5.2. U.S. Biochar Market: Key Factors and Insights
6. Conclusions
- *
- Biochar shows strong potential for U.S. agriculture and climate goals: The review confirms that biochar can improve soil health, enhance crop productivity, sequester carbon, and contribute to circular economy strategies.
- *
- The U.S. biochar market remains underdeveloped: Despite global momentum, the domestic market faces challenges including inconsistent quality standards, limited awareness, regulatory gaps, and high production costs.
- *
- Supply chain development is critical for scaling adoption: The conceptual framework developed in this study highlights the need for coordinated investment in production, refinement, marketing, and stakeholder engagement.
- *
- California leads U.S. adoption due to supportive policy and biomass availability: Regional efforts provide a model for scaling adoption in other agricultural states.
- *
- Economic and environmental benefits are interlinked: Biochar can reduce emissions, utilize low-value biomass, and generate carbon credits, but its commercial viability depends on cost competitiveness and supply chain transparency.
- *
- Critical gaps remain in empirical data: There is a lack of standardized field data on biochar’s long-term agronomic and ecological impacts, especially across varying feedstocks and climates.
Future Research Directions
Funding
Conflicts of Interest
References
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strat. Glob. Change 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Oni, B.A.; Oziegbe, O.; Olawole, O.O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 2019, 64, 222–236. [Google Scholar] [CrossRef]
- Chen, W.; Meng, J.; Han, X.; Lan, Y.; Zhang, W. Past, present, and future of biochar. Biochar 2019, 1, 75–87. [Google Scholar] [CrossRef]
- Quicker, P.; Weber, K. Biokohle: Herstellung, Eigenschaften und Verwendung von Biomassekarbonisaten, 1st ed.; Springer Vieweg: Wiesbaden, Germany, 2016. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015; pp. 1–928. [Google Scholar]
- Chen, B.L.; Chen, Z.M.; Lv, S.F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef]
- Sun, K.; Jin, M.; Keiluweit, M.; Kleber, Z.; Wang, Z.; Pan, B.; Xing, B. Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochar. Bioresour. Technol. 2012, 118, 120–127. [Google Scholar] [CrossRef]
- Sohi, S.; Wade, S.C.; Kern, J. Consistency of biochar properties over time and production scales: A characterisation of standard materials. J. Anal. Appl. Pyrolysis 2017, 132, 200–210. [Google Scholar]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperature. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; O’Connor, D.; Zhang, J.L.; Peng, T.Y.; Shen, Z.T.; Tsang, D.C.W.; Hou, D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. J. Clean. Prod. 2018, 174, 977–987. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Sadaka, S.; Boateng, A.A. Pyrolysis and Bio-Oil; Cooperative Extension Service, University of Arkansas, U.S. Department of Agriculture and County Governments Cooperating; University of Arkansas: Fayetteville, AR, USA, 2009; pp. 1–6. [Google Scholar]
- Silber, A.; Levkovitch, I.; Graber, E.R. pH-dependent mineral release and surface properties of cornstraw biochar: Agronomic implications. Environ. Sci. Technol. 2010, 44, 9318–9323. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Jośko, I.; Kuśmierz, H. Biochar properties regarding to contaminants content and ecotoxicological assessment. J. Hazard. Mater. 2013, 260, 375–382. [Google Scholar] [CrossRef]
- Wang, H.; Gao, B.; Fang, J.; Ok, Y.; Xue, Y.; Yang, K.; Cao, X. Engineered biochar derived from eggshell-treated biomass for removal of aqueous lead. Ecol. Eng. 2018, 121, 124–129. [Google Scholar] [CrossRef]
- Abbruzzini, T.F.; Moreira, M.Z.; De Camargo, P.B.; Conz, R.F.; Cerri, C.E.P. Increasing rates of biochar application to soil induce stronger negative priming effect on soil organic carbon decomposition. Agric. Res. 2017, 6, 389–398. [Google Scholar] [CrossRef]
- Brewer, C.E.; Chuang, V.J.; Masiello, C.A.; Gonnermann, H.; Gao, X.; Dugan, B. New approaches to measuring biochar density and porosity. Biomass Bioenergy 2014, 66, 176–185. [Google Scholar] [CrossRef]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8, 044049. [Google Scholar] [CrossRef]
- Jirka, S.; Tomlinson, T. State of the Biochar Industry 2014: A Survey of Commercial Activity in the Biochar Sector; International Biochar Initiative: Norfolk, VA, USA, 2015; Available online: https://biochar-international.org/wp-content/uploads/2018/11/ibi_state_of_the_industry_2014_final.pdf (accessed on 27 June 2019).
- Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar production and applications in agro and forestry systems: A review. Sci. Total Environ. 2020, 723, 137775. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.; Alves, O.; Rijo, B.; Lourinho, G.; Nobre, C. Biochar: Production, Applications, and Market Prospects in Portugal. Environments 2022, 9, 95. [Google Scholar] [CrossRef]
- Acharya, B.S.; Dodla, S.; Wang, J.J.; Pavuluri, K.; Darapuneni, M.; Dattamudi, S.; Kharel, G. Biochar impacts on soil water dynamics: Knowns, unknowns, and research directions. Biochar 2024, 6, 34. [Google Scholar] [CrossRef]
- Bohara, H.; Dodla, S.; Wang, J.J.; Darapuneni, M.; Acharya, B.S.; Magdi, S.; Pavuluri, K. Influence of poultry litter and biochar on soil water dynamics and nutrient leaching from a very fine sandy loam soil. Soil Tillage Res. 2019, 189, 44–51. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. SSSAJ 2017, 81, 687–711. [Google Scholar] [CrossRef]
- González-Pernas, F.M.; Grajera-Antolín, C.; García-Cámara, O.; González-Lucas, M.; Martín, M.T.; González-Egido, S.; Aguirre, J.L. Effects of biochar on biointensive horticultural crops and its economic viability in the Mediterranean climate. Energies 2022, 15, 3407. [Google Scholar] [CrossRef]
- Losacco, D.; Tumolo, M.; Cotugno, P.; Leone, N.; Massarelli, C.; Convertini, S.; Ancona, V. Use of biochar to improve the sustainable crop production of cauliflower (Brassica oleracea L.). Plants 2022, 11, 1182. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.; Pathak, P.; Chaudhary, N.; Vyas, D. Production of biochar using top-lit updraft and its application in horticulture. In Sustainable Agriculture: Technical Progressions and Transitions; Springer International Publishing: Cham, Switzerland, 2022; pp. 159–172. [Google Scholar]
- Nair, P.S.; Sivani, M.P.; Suresh, S.; Sreekanth, A.J.; Sivasabari, K.; Adithya, K.S.; Dhama, K. Beneficial impacts of biochar as a potential feed additive in animal husbandry. Biochar 2023, 6, 479–499. [Google Scholar] [CrossRef]
- Dadhich, A. Engineered biochar as feed supplement and other husbandry applications. In Engineered Biochar: Fundamentals, Preparation, Characterization and Applications; Springer Nature: Singapore, 2022; pp. 319–329. [Google Scholar]
- Osman, A.I.; Fawzy, S.; Farghali, M.; El-Azazy, M.; Elgarahy, A.M.; Fahim, R.A.; Rooney, D.W. Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2385–2485. [Google Scholar] [CrossRef] [PubMed]
- Jeyasubramanian, K.; Thangagiri, B.; Sakthivel, A.; Dhaveethu Raja, J.; Seenivasan, S.; Vallinayagam, P.; Madhavan, D.; Malathi Devi, S.; Rathika, B. A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel 2021, 292, 120243. [Google Scholar] [CrossRef]
- United States Biochar Initiative. U.S.-Focused Biochar Report–Assessment of Biochar’s Benefits for the United States of America; Center for Energy and Environmental Security; United States Biochar Initiative: Morgantown, WV, USA, 2010. [Google Scholar]
- Li, S.; Wang, X.; Wang, S.; Zhang, Y.; Wang, S.; Shangguan, Z. Effects of application patterns and amount of biochar on water infiltration and evaporation. Trans. Chin. Soc. Agric. Eng. 2016, 32, 135–144. [Google Scholar]
- Li, S.; Skelly, S. Physicochemical properties and applications of biochars derived from municipal solid waste: A review. Environ. Adv. 2023, 13, 100395. [Google Scholar] [CrossRef]
- Rosik, J.; Łyczko, J.; Marzec, Ł.; Stegenta-Dąbrowska, S. Application of composts’ biochar as potential sorbent to reduce VOCs emission during kitchen waste storage. Materials 2023, 16, 6413. [Google Scholar] [CrossRef]
- Mandal, S.; Ishak, S.; Adnin, R.J.; Lee, D.E.; Park, T. An approach to utilize date seeds biochar as waste material for thermal energy storage applications. J. Energy Storage 2023, 68, 107739. [Google Scholar] [CrossRef]
- Chang, Y.; Yang, X. Research progress of biochar in energy storage. Highl. Sci. Eng. Technol. 2023, 69, 395–401. [Google Scholar] [CrossRef]
- Anitha, A.; Devi, N.R. Prospects of biochar as a renewable resource for electricity. In Biochar—Productive Technologies, Properties and Applications; IntechOpen: London, UK, 2022. [Google Scholar]
- Yadav, R.; Kumar, J. Application of biochar in wood-based industry as low-cost sustainable green technology. In Integrative Strategies for Bioremediation of Environmental Contaminants, Volume Two; Academic Press: San Diego, CA, USA, 2023; pp. 49–55. [Google Scholar]
- Kirova, N.; Markopoulou, A.; Burry, J.; Latifi, M. A Study on Carbon-Neutral Biochar-Cementitious Composites. In Proceedings of the World Congress of Architects, Copenhagen, Denmark, 2–6 July 2023; Springer International Publishing: Cham, Switzerland, 2023; pp. 513–526. [Google Scholar]
- Suarez-Riera, D.; Falliano, D.; Carvajal, J.F.; Celi, A.C.B.; Ferro, G.A.; Tulliani, J.M.; Restuccia, L. The effect of different biochar on the mechanical properties of cement-pastes and mortars. Buildings 2023, 13, 2900. [Google Scholar] [CrossRef]
- Ravindiran, G.; Rajamanickam, S.; Janardhan, G.; Hayder, G.; Alagumalai, A.; Mahian, O.; Sonne, C. Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review. Biochar 2024, 6, 62. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, Z.; Cai, M.; Zhang, J.; Liu, X.; Xin, H.; Ma, J. Microstructure regulation of super activated carbon from biomass source corncob with enhanced hydrogen uptake. Int. J. Hydrogen Energy 2013, 38, 9243–9250. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; West, A.H.; Ellis, N. Biochar based solid acid catalyst for biodiesel production. Appl. Catal. A Gen. 2010, 382, 197–204. [Google Scholar] [CrossRef]
- Mani, S.; Kastner, J.R.; Juneja, A. Catalytic decomposition of toluene using a biomass derived catalyst. Fuel Process. Technol. 2013, 114, 118–125. [Google Scholar] [CrossRef]
- Kastner, J.R.; Miller, J.; Geller, D.P.; Locklin, J.; Keith, L.H.; Johnson, T. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 2012, 190, 122–132. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. In Advances in Agronomy; Donald, L.S., Ed.; Academic Press: San Diego, CA, USA, 2010; Volume 105, pp. 47–82. [Google Scholar]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; Yu, X. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Ahn, S.Y.; Eom, S.Y.; Rhie, Y.H.; Sung, Y.M.; Moon, C.E.; Choi, G.M.; Kim, D.J. Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Appl. Energy 2013, 105, 207–216. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Houben, D.; Evrard, L.; Sonnet, P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 2013, 92, 1450–1457. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Hale, S.E.; Lehmann, J.; Cornelissen, G. Activated carbon and biochar amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. Bioresour. Technol. 2012, 111, 84–91. [Google Scholar] [CrossRef]
- Hao, W.; Björkman, E.; Lilliestråle, M.; Hedin, N. Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl. Energy 2013, 112, 526–532. [Google Scholar] [CrossRef]
- Zhao, X.B.; Xiao, B.; Fletcher, A.J.; Thomas, K.M. Hydrogen adsorption on functionalized nanoporous activated carbons. J. Phys. Chem. B 2005, 109, 8880–8888. [Google Scholar] [CrossRef]
- Zhang, S.; Asadullah, M.; Dong, L.; Tay, H.-L.; Li, C.-Z. An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: Tar reforming using char as a catalyst or as a catalyst support. Fuel 2013, 112, 646–653. [Google Scholar] [CrossRef]
- Gil, M.V.; Martínez, M.; García, S.; Rubiera, F.; Pis, J.J.; Pevida, C. Response surface methodology as an efficient tool for optimizing carbon adsorbents for CO2 capture. Fuel Process. Technol. 2013, 106, 55–61. [Google Scholar] [CrossRef]
- Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production—A review. Renew. Sustain. Energy Rev. 2007, 11, 1966–2005. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Qin, C.; Wang, H.; Yuan, X.; Xiong, T.; Zhang, J.; Zhang, J. Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chem. Eng. J. 2020, 382, 122977. [Google Scholar] [CrossRef]
- Abu El-Rub, Z.; Bramer, E.A.; Brem, G. Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 2008, 87, 2243–2252. [Google Scholar] [CrossRef]
- Bhandari, P.N.; Kumar, A.; Huhnke, R.L. Simultaneous removal of toluene (model tar), NH3, and H2S, from biomass-generated producer gas using biochar-based and mixed-metal oxide catalysts. Energy Fuels 2013, 28, 1918–1925. [Google Scholar] [CrossRef]
- Bhandari, P.N.; Kumar, A.; Bellmer, D.D.; Huhnke, R.L. Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas. Renew. Energy 2014, 66, 346–353. [Google Scholar] [CrossRef]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jones, D.; Hanna, M. Thermochemical biomass gasification: A review of the current status of the technology. Energies 2009, 2, 556–581. [Google Scholar] [CrossRef]
- Hu, B.; Wang, K.; Wu, L.; Yu, S.-H.; Antonietti, M.; Titirici, M.-M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 2010, 22, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Cha, J.S.; Park, S.H.; Jung, S.C.; Ryu, C.; Jeon, J.K.; Shin, M.C.; Park, Y.K. Production and utilization of biochar: A review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- International Biochar Initiative (IBI). Global Biochar Market Report. 2023. Available online: https://www.biochar-international.org (accessed on 4 July 2025).
- Global Biochar Market Forecast 2020–2028. 2020. Available online: https://www.asdreports.com/market-research-report-499098/global-biochar-market-forecast (accessed on 12 January 2021).
- Hoffman-Krull, K. Biochar Market Analysis for San Juan County and the Pacific Northwest. 2019. Available online: https://www.nnrg.org/wp-content/uploads/2018/12/Biochar-Market-Research-Paper-FINAL.pdf (accessed on 4 July 2025).
- Thengane, S.K.; Kung, K.; Hunt, J.; Gilani, H.R.; Lim, C.J.; Sokhansanj, S.; Sanchez, D.L. Market prospects for biochar production and application in California. Biofuels Bioprod. Biorefin. 2021, 15, 1802–1819. [Google Scholar] [CrossRef]
- Hunt, J.; McIntosh, C. The Big California Biochar Model: Forest Biomass Management, Carbon Drawdown, Drought Resiliency, and Nitrogen Conservation on a Statewide Scale. 2019. Pacific Biochar. Available online: https://pacificbiochar.com (accessed on 21 February 2025).
- Dokoohaki, H.; Miguez, F.E.; Laird, D.; Dumortier, J. Where should we apply biochar? Environ. Res. Lett. 2019, 14, 044005. [Google Scholar] [CrossRef]
- Matuštík, J.; Hnátková, T.; Kočí, V. Life cycle assessment of biochar-to-soil systems: A review. J. Clean. Prod. 2020, 259, 120998. [Google Scholar] [CrossRef]
- Dickinson, D.; Balduccio, L.; Buysse, J.; Ronsse, F.; Van Huylenbroeck, G.; Prins, W. Cost-benefit analysis of using biochar to improve cereals agriculture. Biomass Bioenergy 2015, 81, 444–454. [Google Scholar] [CrossRef]
- Zhang, Q.; Niu, W.; Du, Y.; Li, G.; Ma, L.; Cui, B.; Sun, J.; Niu, X.; Siddique, K.H.M. Sustainable effects of nitrogen reduction combined with biochar on enhancing maize productivity and nitrogen utilization. J. Clean. Prod. 2023, 426, 139613. [Google Scholar] [CrossRef]
- Fentie, D.; Mihretie, F.A.; Kohira, Y.; Legesse, S.A.; Lewoyehu, M.; Wutisirirattanachai, T.; Sato, S. Optimizing cropping systems using biochar for wheat production across contrasting seasons in Ethiopian highland agroecology. Agronomy 2024, 14, 1227. [Google Scholar] [CrossRef]
- Kenea, S.A.; Goshu, T.A.; Chimdessa, K. Evaluating the economic feasibility of combined biochar, lime, and inorganic fertilizer rates for garlic (Allium sativum L.) production in Gimbi District, Western Ethiopia. Int. J. Agron. 2024, 2024, 4551507. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, M.; Lu, J.; Zhang, Y.; Lu, R.; Li, Y.; Cai, Y.; Xiang, H.; Zhuang, Z.; Qiu, Z.; et al. Optimizing fabrication of coated fertilizers integrated with biochar for enhanced slow-release properties: Mechanisms and cost-effectiveness analysis. Ind. Crops Prod. 2024, 144, 120123. [Google Scholar] [CrossRef]
- Dar, A.; Hafeez, M.; Sarwar, F.; Ain Nul Yaseen, G. Iron-doped biochar, an agricultural and environmentally beneficial fertilizer. Environ. Monit. Assess. 2024, 196, 524. [Google Scholar] [CrossRef]
- Lin, H.; Guo, S.; Han, Z.; Liu, S.; Wang, J.; Zou, J. Can biochar application improve the net economic benefits of tea plantations? Sci. Total Environ. 2023, 856, 159029, Advance online publication. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Ogunbode, T.O.; Esan, V.I.; Adedokun, O.; Olatubi, I.V.; Ayegboyin, M.H. Short-term effects of biochar on soil chemical properties, growth, yield, quality, and shelf life of tomato. Sci. Rep. 2025, 15, 24965. [Google Scholar] [CrossRef]
- Aguirre, J.L.; González-Egido, S.; González-Lucas, M.; González-Pernas, F.M. Medium-term effects and economic analysis of biochar application in three Mediterranean crops. Energies 2023, 16, 4131. [Google Scholar] [CrossRef]
- Schmidt, H.-P.; Kammann, C.; Hagemann, N.; Leifeld, J.; Bucheli, T.D.; Sánchez Monedero, M.A.; Cayuela, M.L. Biochar in agriculture—A systematic review of 26 global meta-analyses. GCB Bioenergy 2021, 13, 1708–1730. [Google Scholar] [CrossRef]
- Groot, H. Survey and Analysis of the US Biochar Industry; Dovetail Partners, Inc.: Minneapolis, MN, USA, 2018; Available online: https://www.dovetailinc.org/upload/tmp/1579550188.pdf (accessed on 4 July 2025).
- United States Department of Agriculture. Unlock the Secrets in the Soil: Soil Health Key Points; USDA: Washington, DC, USA, 2015.
- Franco, C.R.; Page-Dumroese, D.S. Decreasing the urban carbon footprint with woody biomass biochar in the United States of America. Carbon Footpr. 2023, 2, 18. [Google Scholar] [CrossRef]
- Elias, M.; Sanchez, D.L.; Saksa, P.; Hunt, J.; Remucal, J. Market analysis of coupled biochar and carbon credit production from wildfire fuel reduction projects in the western USA. Biofuels Bioprod. Biorefin. 2024, 18, 1226–1237. [Google Scholar] [CrossRef]
- Kochanek, J.; Soo, R.M.; Martinez, C.; Dakuidreketi, A.; Mudge, A.M. Biochar for intensification of plant-related industries to meet productivity, sustainability and economic goals: A review. Resour. Conserv. Recycl. 2022, 179, 106109. [Google Scholar] [CrossRef]
- Rockwood, D.L.; Ellis, M.F.; Fabbro, K.W. Economic potential for carbon sequestration by short rotation eucalypts using biochar in Florida, USA. Trees For. People 2022, 7, 100187. [Google Scholar] [CrossRef]
- Sahoo, K.; Upadhyay, A.; Runge, T.; Bergman, R.; Puettmann, M.; Bilek, E. Life-cycle assessment and techno-economic analysis of biochar produced from forest residues using portable systems. Int. J. Life Cycle Assess. 2021, 26, 189–213. [Google Scholar] [CrossRef]
- Young, P.; Lawrence, J. Biochar Market Profile Report; Worcester Polytechnic Institute: Worcester, MA, USA, 2019. [Google Scholar]
- Müller, A.; Schmidhuber, J.; Hoogeveen, J.; Steduto, P. Some insights in the effect of growing bio-energy demand on global food security and natural resources. Water Policy 2008, 10, 83. [Google Scholar] [CrossRef]
- Cowie, A.L.; Downie, A.E.; George, B.H.; Singh, B.P.; Van Zwieten, L.; O'Connell, D. Is sustainability certification for biochar the answer to environmental risks? Pesqui. Agropecu. Bras. 2012, 47, 637–648. [Google Scholar] [CrossRef]
- Borden, T.R. The Financial Viability and Sustainability Benefits of Converting Slash into Biochar Instead of Open-Burning Following Fuel Treatments in the White River National Forest. Master’s Thesis, Harvard University, Cambridge, MA, USA, 2020. Available online: https://dash.harvard.edu/entities/publication/f4a8ae4b-46a3-463c-bc75-ab4ff0a6e76d (accessed on 4 July 2025).
- Steiner, C. Conference Report: Biochar prospects and challenges: Summary of the recent US Biochar Initiative Conference. Carbon Manag. 2010, 1, 23–25. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Biochar Applications for Sustainable Agriculture and Environmental Management. In Agroecological Approaches for Sustainable Soil Management; Academic Press: London, UK, 2023; pp. 165–199. [Google Scholar]
Application | Purpose | Advantage | Disadvantage | Reference |
---|---|---|---|---|
Catalyst | Syngas cleaning, biodiesel production, Fischer–Tropsch synthesis | Easy to recycle supported metal, co-catalyst, low cost | Relative low efficiency and low abrasive resistance compared with commercial catalyst | [45,46,47,48] |
Soil amendment | Carbon sequestration, soil quality improvement | Low cost, sustainable resource, retains water and nutrients, reduces fertilizer consumption, reduces greenhouse gas emissions, and nutrient losses | Possible heavy metal and PAHs contaminant | [49,50,51] |
Fuel cell | Fuel for fuel cell | Renewable fuel compared with coal | High ash content, relatively low voltage, and power output | [52] |
Sorbent of contaminant | Adsorption of organic contaminants and heavy metals present in soil and water | Low-cost, abundant, and sustainable resource, and oxygenated groups on biochar surface facilitate adsorption | Effectiveness of organic/inorganic contaminants remediation is still uncertain, and persistence of heavy metals | [53,54,55] |
Storage material | CO2 sequestration, H2 storage | Low-cost, abundant, and sustainable resource, high recyclability | Require surface treatment | [56,57,58,59] |
Activated carbon | Precursor for making activated carbon | Low-cost, abundant, and sustainable resource | Properties vary with different precursors, and may not produce desired granular or spherical activated carbon | [59,60] |
Process | Temperature (°C) | Residence Time | Carbon Content of Biochar (w%) | Yield (w%) |
---|---|---|---|---|
Biochar | ||||
Slow Pyrolysis | 300–700 | min–hour | 95 | 20–35 |
Fast Pyrolysis | 300–1000 | 0.5–20 s | 74 | 10–25 |
Hydrothermal carbonization | 160–800 | 1–16 h | 39 | 50–80 |
Gasification | ∼750–900 | 10–20 s | 60.4 | 10 |
Market | Current Biochar Production |
---|---|
China | >300,000 (up to 500,000) t/y and rapidly growing |
USA | ~50,000 t/y and growing |
Europe | >20,000 t/y and growing |
Australia | ~5000 t/y and growing |
Industry Members | 2021 | 2023 |
---|---|---|
Biochar producers | 54.75 | 330.13 |
Distribution and value-added producers | 7.25 | 38.88 |
Equipment manufactures | 94.38 | 241.25 |
Total revenue | 156.38 | 610.26 |
Biochar Producers, City | Year Started | Biochar Product(s) | Commercial Product Name | Primary Application Sector | Main Feedstock |
---|---|---|---|---|---|
Genesis Industries (Redondo Beach | 2011 | Biochar | Biochar and biostimulants | Farming and gardening | Nutshells, urban green waste |
Pacific Biochar (Santa Rosa) | 2014 | Biochar | BlackLite | Agriculture | Woody residues |
Bioforcetech (Redwood City) | 2012 | Biochar | Soil mix pro | Organic waste management | Biosolids, manure, green waste |
Carbo culture (Woodside) | 2017 | Biochar | Carbon services | Climate and soil, landscaping | Forestry waste |
Full Circle Biochar/bio365 LLC (San Francisco) | 2007 | Biochar | BioCore and BioCharge | Agriculture | Wood waste from the timber industry |
Blue Sky Biochar (Thousand Oaks | 2010 | Biochar | SEEK fertilizer | Agriculture | Pine, bamboo |
Cool planet energy systems (Camarillo) | 2009 | Biochar | CoolTerra | Agriculture | Farm residues |
Energy Anew IMC (San Rafael) | 2005 | Biochar (solar-powered) | Biocharm | Vegetables, flowers, fruit trees | Wood chips |
Interra energy, INC. (San Diego) | 2009 | Biochar, biofuels | Interra Preta | Agriculture, biofuels | Trimmings, wood, green waste |
All power labs (Berkeley) | 2007 | Biochar blends | Chartainer, Power Pallet | Local carbon network | Woody residues |
Phoenix energy (San Francisco) | 2006 | Biochar | - | Agriculture | Forest and woody residues |
Tolero Energy, LLC (Sacramento | 2009 | Biochar, activated carbon | Tolero fuel | Transportation, water treatment | Urban biomass residues |
Country | Pure Wholesale | Pure Retail | No of Pure | Blend Wholesale | Blend Retail | No of Blends |
---|---|---|---|---|---|---|
Australia | USD 2.22 | USD 6.72 | 10 | USD 2.27 | USD 12.83 | 5 |
Cambodia | USD 1.50 | USD 4.00 | 2 | - | - | 0 |
Canada | USD 2.15 | USD 6.49 | 3 | USD 1.50 | - | 1 |
China | USD 0.49 | - | 1 | USD 0.39 | - | 1 |
Germany | USD 0.56 | USD 1.28 | 3 | - | - | 0 |
Ireland | USD 3.00 | - | 1 | - | USD 4.00 | 1 |
Japan | USD 0.60 | USD 1.00 | 2 | USD 0.20 | - | 1 |
Kenya | - | - | 0 | USD 1.00 | - | 1 |
Mexico | USD 4.50 | - | 1 | USD 4.50 | - | 1 |
Nigeria | USD 8.00 | - | 1 | - | - | 0 |
Pakistan | - | USD 1.00 | 1 | - | USD 2.00 | 1 |
Philippines | USD 0.40 | - | 1 | - | - | 0 |
Russian Federation | USD 0.38 | - | 1 | - | - | 0 |
Sweden | - | - | 0 | USD 2.00 | - | 1 |
Switzerland | - | USD 0.78 | 1 | - | USD 0.52 | 1 |
United Kingdom | USD 1.39 | USD 2.20 | 3 | USD 0.77 | USD 2.60 | 3 |
United States | USD 1.50 | USD 4.26 | 28 | USD 1.29 | USD 9.41 | 16 |
Global | USD 2.06 | USD 3.08 | 56 | USD 1.55 | USD 5.23 | 33 |
Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|
Large potential market exceeding 3 billion tons of biochar [1,2,3]. | Absence of standardized quality protocols and prevalence of unverified product claims [4,5]. | Abundant woody biomass available from U.S. National Forests [6,81]. | Competing demands for biomass may undermine ecosystem services and other societal needs [7,87]. |
Increasing demand for organic and regenerative agriculture [8,9]. | Limited public awareness and underdeveloped consumer demand [5,74]. | Opportunities to utilize low-value forest biomass for carbon credit generation [6,10,81]. | Potential trade-offs between biomass use for energy and food production [87,89]. |
Advancements in technology enabling scalable, mid-sized production [12]. | High production costs, elevated market prices, and lack of enabling policy or legislation [13,74]. | Expansion of the organic agriculture sector, bolstering biochar adoption [8,74]. | Market volatility due to price fluctuations and inconsistent consumer demand [14,81]. |
Broad applicability in soil enhancement, carbon sequestration, and yield improvement [1,15,16]. | Variability in feedstock inputs leading to inconsistent product characteristics [4,5]. | Growth of decentralized and portable biochar systems supported by federal/state incentives [12,85]. | Environmental and sustainability concerns that may hinder public and regulatory acceptance [5,18,88]. |
Positive market trends in key agricultural states such as California and Texas [19,74]. | Substantial gaps in empirical data on long-term carbon stability and ecosystem effects [20]. | Supportive climate policies may strengthen market position and encourage innovation [10,74,81]. | Uncertain biomass supply chains and susceptibility to input price fluctuations [7,14]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herath Bandara, S.J. Exploring the Potential of Biochar in Enhancing U.S. Agriculture. Reg. Sci. Environ. Econ. 2025, 2, 23. https://doi.org/10.3390/rsee2030023
Herath Bandara SJ. Exploring the Potential of Biochar in Enhancing U.S. Agriculture. Regional Science and Environmental Economics. 2025; 2(3):23. https://doi.org/10.3390/rsee2030023
Chicago/Turabian StyleHerath Bandara, Saman Janaranjana. 2025. "Exploring the Potential of Biochar in Enhancing U.S. Agriculture" Regional Science and Environmental Economics 2, no. 3: 23. https://doi.org/10.3390/rsee2030023
APA StyleHerath Bandara, S. J. (2025). Exploring the Potential of Biochar in Enhancing U.S. Agriculture. Regional Science and Environmental Economics, 2(3), 23. https://doi.org/10.3390/rsee2030023