Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,050)

Search Parameters:
Keywords = biological channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1029 KiB  
Review
Inter-Organellar Ca2+ Homeostasis in Plant and Animal Systems
by Philip Steiner and Susanna Zierler
Cells 2025, 14(15), 1204; https://doi.org/10.3390/cells14151204 (registering DOI) - 6 Aug 2025
Abstract
The regulation of calcium (Ca2+) homeostasis is a critical process in both plant and animal systems, involving complex interplay between various organelles and a diverse network of channels, pumps, and transporters. This review provides a concise overview of inter-organellar Ca2+ [...] Read more.
The regulation of calcium (Ca2+) homeostasis is a critical process in both plant and animal systems, involving complex interplay between various organelles and a diverse network of channels, pumps, and transporters. This review provides a concise overview of inter-organellar Ca2+ homeostasis, highlighting key regulators and mechanisms in plant and animal cells. We discuss the roles of key Ca2+ channels and transporters, including IP3Rs, RyRs, TPCs, MCUs, TRPMLs, and P2XRs in animals, as well as their plant counterparts. Here, we explore recent innovations in structural biology and advanced microscopic techniques that have enhanced our understanding of these proteins’ structure, functions, and regulations. We examine the importance of membrane contact sites in facilitating Ca2+ transfer between organelles and the specific expression patterns of Ca2+ channels and transporters. Furthermore, we address the physiological implications of inter-organellar Ca2+ homeostasis and its relevance in various pathological conditions. For extended comparability, a brief excursus into bacterial intracellular Ca2+ homeostasis is also made. This meta-analysis aims to bridge the gap between plant and animal Ca2+ signaling research, identifying common themes and unique adaptations in these diverse biological systems. Full article
Show Figures

Figure 1

9 pages, 838 KiB  
Review
Merging Neuroscience and Engineering Through Regenerative Peripheral Nerve Interfaces
by Melanie J. Wang, Theodore A. Kung, Alison K. Snyder-Warwick and Paul S. Cederna
Prosthesis 2025, 7(4), 97; https://doi.org/10.3390/prosthesis7040097 - 6 Aug 2025
Abstract
Approximately 185,000 people in the United states experience limb loss each year. There is a need for an intuitive neural interface that can offer high-fidelity control signals to optimize the advanced functionality of prosthetic devices. Regenerative peripheral nerve interface (RPNI) is a pioneering [...] Read more.
Approximately 185,000 people in the United states experience limb loss each year. There is a need for an intuitive neural interface that can offer high-fidelity control signals to optimize the advanced functionality of prosthetic devices. Regenerative peripheral nerve interface (RPNI) is a pioneering advancement in neuroengineering that combines surgical techniques with biocompatible materials to create an interface for individuals with limb loss. RPNIs are surgically constructed from autologous muscle grafts that are neurotized by the residual peripheral nerves of an individual with limb loss. RPNIs amplify neural signals and demonstrate long term stability. In this narrative review, the terms “Regenerative Peripheral Nerve Interface (RPNI)” and “RPNI surgery” are used interchangeably to refer to the same surgical and biological construct. This narrative review specifically focuses on RPNIs as a targeted approach to enhance prosthetic control through surgically created nerve–muscle interfaces. This area of research offers a promising solution to overcome the limitations of existing prosthetic control systems and could help improve the quality of life for people suffering from limb loss. It allows for multi-channel control and bidirectional communication, while enhancing the functionality of prosthetics through improved sensory feedback. RPNI surgery holds significant promise for improving the quality of life for individuals with limb loss by providing a more intuitive and responsive prosthetic experience. Full article
Show Figures

Figure 1

12 pages, 617 KiB  
Review
Developments in the Study of Inert Gas Biological Effects and the Underlying Molecular Mechanisms
by Mei-Ning Tong, Xia Li, Jie Cheng and Zheng-Lin Jiang
Int. J. Mol. Sci. 2025, 26(15), 7551; https://doi.org/10.3390/ijms26157551 - 5 Aug 2025
Viewed by 37
Abstract
It has long been accepted that breathing gases that are physiologically inert include helium (He), neon (Ne), nitrogen (N2), argon (Ar), krypton (Kr), xenon (Xe), and hydrogen (H2). The term “inert gas” has been used to describe them due [...] Read more.
It has long been accepted that breathing gases that are physiologically inert include helium (He), neon (Ne), nitrogen (N2), argon (Ar), krypton (Kr), xenon (Xe), and hydrogen (H2). The term “inert gas” has been used to describe them due to their unusually high chemical stability. However, as investigations have advanced, many have shown that inert gas can have specific biological impacts when exposed to high pressure or atmospheric pressure. Additionally, different inert gases have different effects on intracellular signal transduction, ion channels, and cell membrane receptors, which are linked to their anesthetic and cell protection effects in normal or pathological processes. Through a selective analysis of the representative literature, this study offers a concise overview of the state of research on the biological impacts of inert gas and their molecular mechanisms. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

25 pages, 4032 KiB  
Review
Insights to Resistive Pulse Sensing of Microparticle and Biological Cells on Microfluidic Chip
by Yiming Yao, Kai Zhao, Haoxin Jia, Zhengxing Wei, Yiyang Huo, Yi Zhang and Kaihuan Zhang
Biosensors 2025, 15(8), 496; https://doi.org/10.3390/bios15080496 - 1 Aug 2025
Viewed by 158
Abstract
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through [...] Read more.
Since the initial use of biological ion channels to detect single-stranded genomic base pair differences, label-free and highly sensitive resistive pulse sensing (RPS) with nanopores has made remarkable progress in single-molecule analysis. By monitoring transient ionic current disruptions caused by molecules translocating through a nanopore, this technology offers detailed insights into the structure, charge, and dynamics of the analytes. In this work, the RPS platforms based on biological, solid-state, and other sensing pores, detailing their latest research progress and applications, are reviewed. Their core capability is the high-precision characterization of tiny particles, ions, and nucleotides, which are widely used in biomedicine, clinical diagnosis, and environmental monitoring. However, current RPS methods involve bottlenecks, including limited sensitivity (weak signals from sub-nanometer targets with low SNR), complex sample interference (high false positives from ionic strength, etc.), and field consistency (solid-state channel drift, short-lived bio-pores failing POCT needs). To overcome this, bio-solid-state fusion channels, in-well reactors, deep learning models, and transfer learning provide various options. Evolving into an intelligent sensing ecosystem, RPS is expected to become a universal platform linking basic research, precision medicine, and on-site rapid detection. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and Lab-on-Chip (Bio)sensors)
Show Figures

Figure 1

18 pages, 7509 KiB  
Article
A New Kv1.3 Channel Blocker from the Venom of the Ant Tetramorium bicarinatum
by Guillaume Boy, Laurence Jouvensal, Nathan Téné, Jean-Luc Carayon, Elsa Bonnafé, Françoise Paquet, Michel Treilhou, Karine Loth and Arnaud Billet
Toxins 2025, 17(8), 379; https://doi.org/10.3390/toxins17080379 - 30 Jul 2025
Viewed by 293
Abstract
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, [...] Read more.
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, are targeted by a diverse array of venom-derived peptides. This study focuses on MYRTXA4-Tb11a, a peptide from Tetramorium bicarinatum venom, which was previously shown to have a strong paralytic effect on dipteran species without cytotoxicity on insect cells. In the present study, we show that Tb11a exhibited no or low cytotoxicity toward mammalian cells either, even at high concentrations, while electrophysiological studies revealed a blockade of hKv1.3 activity. Additionally, Ta11a, an analog of Tb11a from the ant Tetramorium africanum, demonstrated similar Kv1.3 inhibitory properties. Structural analysis supports that the peptide acts on Kv1.3 channels through the functional dyad Y21-K25 and that the disulfide bridge is essential for biological activity, as reduction seems to disrupt the peptide conformation and impair the dyad. These findings highlight the importance of three-dimensional structure in channel modulation and establish Tb11a and Ta11a as promising Kv1.3 inhibitors. Future research should investigate their selectivity across additional ion channels and employ structure-function studies to further enhance their pharmacological potential. Full article
(This article belongs to the Special Issue Unlocking the Deep Secrets of Toxins)
Show Figures

Figure 1

16 pages, 4271 KiB  
Article
Considering Litter Effects in Preclinical Research: Evidence from E17.5 Acid-Sensing Ion Channel 2a Knockout Mice Exposed to Acute Seizures
by Junie P. Warrington, Tyranny Pryor, Maria Jones-Muhammad and Qingmei Shao
Brain Sci. 2025, 15(8), 802; https://doi.org/10.3390/brainsci15080802 - 28 Jul 2025
Viewed by 181
Abstract
Background: The reproducibility of research findings continues to be a challenge in many fields, including neurosciences. It is now required that biological variables such as sex and age be considered in preclinical and clinical research. Rodents are frequently used to model clinical conditions; [...] Read more.
Background: The reproducibility of research findings continues to be a challenge in many fields, including neurosciences. It is now required that biological variables such as sex and age be considered in preclinical and clinical research. Rodents are frequently used to model clinical conditions; however, litter information is rarely presented. Some studies utilize entire litters with each animal treated as an independent sample, while others equally assign animals from each litter to different groups/treatments, and others use averaged data. These methods can yield different results. Methods: This study used different analysis methods to evaluate embryo and placenta weights from E17.5 acid-sensing ion channel 2a (ASIC2a) mice with or without seizure exposure. Results: When each embryo was treated as an individual sample, fetal and placental weight significantly differed following seizures in the ASIC2a heterozygous (+/−) and homozygous (−/−) groups. Differences in fetal weight were driven by females in the ASIC2a+/− group and both sexes in the ASIC2a−/− group. These differences were lost when an average per sex/genotype/litter was used. There was no difference in placental weight when treated individually; however, female ASIC2a−/− placentas weighed less following seizures. This difference was lost with averaged data. ASIC2a−/− fetuses from −/− dams had reduced weights post-seizure exposure. Position on the uterine horn influenced embryo and placental weight. Conclusions: Our results indicate that using full litters analyzed as individual data points should be avoided, as it can lead to Type I errors. Furthermore, studies should account for litter effects and be transparent in their methods and results. Full article
Show Figures

Graphical abstract

14 pages, 556 KiB  
Review
Animal Venom in Modern Medicine: A Review of Therapeutic Applications
by Euikyung Kim, Du Hyeon Hwang, Ramachandran Loganathan Mohan Prakash, Ravi Deva Asirvatham, Hyunkyoung Lee, Yunwi Heo, Al Munawir, Ramin Seyedian and Changkeun Kang
Toxins 2025, 17(8), 371; https://doi.org/10.3390/toxins17080371 - 28 Jul 2025
Viewed by 395
Abstract
Animal venoms are complex biochemical secretions rich in highly potent and selective bioactive molecules, including peptides, enzymes, and small organic compounds. Once associated primarily with toxicity, these venoms are now recognized as a promising source of therapeutic agents for a wide range of [...] Read more.
Animal venoms are complex biochemical secretions rich in highly potent and selective bioactive molecules, including peptides, enzymes, and small organic compounds. Once associated primarily with toxicity, these venoms are now recognized as a promising source of therapeutic agents for a wide range of medical conditions. This review provides a comprehensive analysis of the pharmacological potential of venom-derived compounds, highlighting their mechanisms of action, such as ion channel modulation, receptor targeting, and enzyme inhibition. Successful venom-derived drugs like captopril and ziconotide exemplify the translational potential of this biological arsenal. We discuss therapeutic applications in cardiovascular diseases, chronic pain, cancer, thrombosis, and infectious diseases, as well as emerging peptide candidates in clinical development. Technological advancements in omics, structural biology, and synthetic peptide engineering have significantly enhanced the discovery and optimization of venom-based therapeutics. Despite challenges related to stability, immunogenicity, and ecological sustainability, the integration of AI-driven drug discovery and personalized medicine is expected to accelerate progress in this field. By synthesizing current findings and future directions, this review underscores the transformative potential of animal venoms in modern pharmacotherapy and drug development. We also discuss current therapeutic limitations and how venom-derived compounds may address unmet needs in specific disorders. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

11 pages, 769 KiB  
Article
Sperm Motility Is Modulated by F4-Neuroprostane via the Involvement of Ryanodine Receptors
by Cinzia Signorini, Elena Moretti, Laura Liguori, Caterina Marcucci, Thierry Durand, Jean-Marie Galano, Camille Oger and Giulia Collodel
Int. J. Mol. Sci. 2025, 26(15), 7231; https://doi.org/10.3390/ijms26157231 - 26 Jul 2025
Viewed by 232
Abstract
F4-Neuroprostanes (F4-NeuroPs), oxidative metabolites of docosahexaenoic acid, act as bioactive lipid mediators enhancing sperm motility and induce capacitation-like changes in vitro. Their biological action is proposed to involve sperm ion channels, in particular ryanodine receptors (RyRs), which regulate intracellular [...] Read more.
F4-Neuroprostanes (F4-NeuroPs), oxidative metabolites of docosahexaenoic acid, act as bioactive lipid mediators enhancing sperm motility and induce capacitation-like changes in vitro. Their biological action is proposed to involve sperm ion channels, in particular ryanodine receptors (RyRs), which regulate intracellular calcium homeostasis. We evaluated the effects of dantrolene, a RyR inhibitor, on motility and vitality of a selected spermatozoa at different concentrations (10, 30, 50, 100 μM). Then sperm motility, acrosome integrity, and RyR localization following co-incubation with dantrolene (D50 or D100 μM) and 4-/10-F4t-NeuroPs (7 ng) were investigated. Acrosomal status was assessed using Pisum sativum agglutinin (PSA) staining and RyR localization by immunofluorescence. D50 was identified as the minimum effective dose to induce significant reductions in sperm motility. F4-NeuroPs significantly increased rapid progressive motility versus controls. Co-incubation with F4-NeuroPs + D50 reduced rapid motility and increased in situ and circular movement. The acrosome staining appeared altered or absent to different percentages, and RyR localization was also seen in the midpiece. These findings suggested that F4-NeuroPs enhance sperm motility via RyR-mediated pathways, as confirmed by dantrolene inhibition. Accordingly, our results underscore the physiological relevance of RyRs in sperm function and suggest new insights into lipid-based mechanisms regulating sperm motility. Full article
Show Figures

Figure 1

19 pages, 4174 KiB  
Article
Genome-Wide Identification and Expression Analysis of the Shaker K+ Channel Gene Family in Cassava (Manihot esculenta Crantz) Under Potassium Stress
by Xianhai Xie, Chenyu Lin, Feilong Yu, Haozheng Li, Jin Xiao, Mingjuan Zheng, Wenquan Wang and Xin Guo
Plants 2025, 14(14), 2213; https://doi.org/10.3390/plants14142213 - 17 Jul 2025
Viewed by 359
Abstract
Shaker K+ channel proteins are responsible for potassium (K+) uptake and transport, playing a critical role in plant growth, development, and adaptation to K+ deficiency. Cassava, a key tropical root crop, is known for its characteristic of resilience to [...] Read more.
Shaker K+ channel proteins are responsible for potassium (K+) uptake and transport, playing a critical role in plant growth, development, and adaptation to K+ deficiency. Cassava, a key tropical root crop, is known for its characteristic of resilience to nutrient-poor soil and drought stress. However, the Shaker K+ channel gene family in cassava has not yet been characterized. In this study, 13 Shaker channel genes were identified from the near telomere-to-telomere (T2T) cassava genome using bioinformatics analysis. Phylogenetic relationships classified these genes into five distinct subfamilies, and all encoded proteins contained the conserved GYGD/GYGE motif typical of Shaker channels. Protein interaction network predictions revealed potential interactions among the Shaker family, as well as with the potassium transporter HAK5. Tissue-specific expression pattern analysis showed that MeGORK and MeAKT1.2 were expressed in all tissues. Furthermore, quantitative real-time PCR (qRT-PCR) analysis was conducted to examine the transcriptional levels of Shaker K+ channel gene family members in the roots and leaves of two cassava germplasms with different low-potassium tolerance after one month of low-potassium treatment. The results revealed that MeAKT1.2, MeAKT2.2, and MeKAT1 exhibited distinct expression patterns between the two germplasms, with higher expression levels observed in the potassium-tolerant germplasm. Therefore, these three genes may serve as important candidate genes for potassium stress tolerance in cassava. In summary, this study provides valuable insights into the characteristics and biological functions of the Shaker K+ channel gene family in cassava and identifies potential candidate genes for breeding or engineering potassium-efficient cassava cultivars. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

12 pages, 1972 KiB  
Article
Design and Biological Evaluation of hBest1-Containing Bilayer Nanostructures
by Pavel Bakardzhiev, Teodora Koleva, Kirilka Mladenova, Pavel Videv, Veselina Moskova-Doumanova, Aleksander Forys, Sławomira Pusz, Tonya Andreeva, Svetla Petrova, Stanislav Rangelov and Jordan Doumanov
Molecules 2025, 30(14), 2948; https://doi.org/10.3390/molecules30142948 - 12 Jul 2025
Viewed by 720
Abstract
Bestrophinopathies are a group of inherited retinal diseases caused by mutations in the BEST1 gene. The protein encoded by this gene, bestorphin-1 (hBest1), is a calcium-dependent transmembrane channel localized on the basolateral membrane of retinal pigment epithelial (RPE) cells. We have already demonstrated [...] Read more.
Bestrophinopathies are a group of inherited retinal diseases caused by mutations in the BEST1 gene. The protein encoded by this gene, bestorphin-1 (hBest1), is a calcium-dependent transmembrane channel localized on the basolateral membrane of retinal pigment epithelial (RPE) cells. We have already demonstrated the surface behavior and organization of recombinant hBest1 and its interactions with membrane lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM) and cholesterol (Chol) in models of biological membranes, which affect the hBest1 structure–function relationship. The main aim of our current investigation is to integrate pure hBest1 protein into lipid bilayer nanostructures. We synthesized and characterized various hBest1-containing nanostructures based on 1,2-Dipalmitoylphosphatidylcholine (DPPC), SM, glycerol monooleate (GMO) and Chol in different ratios and determined their cytotoxicity and incorporation into cell membranes and/or cells by immunofluorescence staining. Our results show that these newly designed nanoparticles are not cytotoxic and that their incorporation into MDCK II cell membranes (used as a model system) may provide a mechanism that could be applied to RPE cells expressing mutated hBest1 in order to restore their ion transport functions, affected by mutated and malfunctioning hBest1 molecules. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

15 pages, 1860 KiB  
Article
Computational Pharmacology Analysis of Lycopene to Identify Its Targets and Biological Effects in Humans
by Abhinand Rao and Arun H. S. Kumar
Appl. Sci. 2025, 15(14), 7815; https://doi.org/10.3390/app15147815 - 11 Jul 2025
Viewed by 318
Abstract
Lycopene exhibits a broad spectrum of biological activities with potential therapeutic applications. Despite its established antioxidant and anti-inflammatory properties, the molecular basis for its pharmacological actions remains incompletely defined. Here we investigated the molecular targets, pharmacodynamic feasibility, and tissue-specific expression of lycopene targets [...] Read more.
Lycopene exhibits a broad spectrum of biological activities with potential therapeutic applications. Despite its established antioxidant and anti-inflammatory properties, the molecular basis for its pharmacological actions remains incompletely defined. Here we investigated the molecular targets, pharmacodynamic feasibility, and tissue-specific expression of lycopene targets using a computational pharmacology approach combined with affinity and protein–protein interaction (PPI) analyses. Lycopene-associated human protein targets were predicted using a Swiss target screening platform. Molecular docking was used to estimate binding affinities, and concentration-affinity (CA) ratios were calculated based on physiologically relevant plasma concentrations (75–210 nM). PPI networks of lycopene targets were constructed to identify highly connected targets, and tissue expression analysis was assessed for high-affinity targets using protein-level data from the Human Protein Atlas database. Of the 94 predicted targets, 37% were nuclear receptors and 18% were Family A G Protein Coupled Receptors (GPCRs). Among the top 15 high-affinity targets, nuclear receptors and GPCRs comprised 40% and 26.7%, respectively. Twenty targets had affinities < 10 μM, with six key targets (MAP2K2, SCN2A, SLC6A5, SCN3A, TOP2A, and TRIM24) showing submicromolar binding. CA ratio analysis identified MAP2K2, SCN2A, and SLC6A5 as pharmacodynamically feasible targets (CA > 1). PPI analysis revealed 32 targets with high interaction and 9 with significant network connectivity. Seven targets (TRIM24, GRIN1, NTRK1, FGFR1, NTRK3, CHRNB4, and PIK3CD) showed both high affinity and centrality in the interaction network. The expression profiling of submicromolar targets revealed widespread tissue distribution for MAP2K2 and SCN3A, while SCN2A, TOP2A, and TRIM24 showed more restricted expression patterns. This integrative analysis identifies a subset of lycopene targets with both high affinity and pharmacological feasibility, particularly MAP2K2, SCN2A, and TRIM24. Lycopene appears to exert its biological effects through modulation of interconnected signalling networks involving nuclear receptors, GPCRs, and ion channels. These findings support the potential of lycopene as a multi-target therapeutic agent and provide a rationale for future experimental and clinical validation. Full article
Show Figures

Figure 1

14 pages, 4427 KiB  
Article
Numerical Investigation of Mixing Performance in Microfluidic Chip via Structural Micro-Rotors
by Yongliang Dong, Liqiu Wang and Xing Han
Micromachines 2025, 16(7), 806; https://doi.org/10.3390/mi16070806 - 11 Jul 2025
Viewed by 259
Abstract
Microfluidics is a powerful tool with extensive applications, including chemical synthesis and biological detection. However, the limited channel size and high viscosity of samples/reagents make it difficult to fully mix liquids and improve the reaction efficiency inside microfluidic chips. Active mixing by rotors [...] Read more.
Microfluidics is a powerful tool with extensive applications, including chemical synthesis and biological detection. However, the limited channel size and high viscosity of samples/reagents make it difficult to fully mix liquids and improve the reaction efficiency inside microfluidic chips. Active mixing by rotors has been proven to be an effective method to promote mixing efficiency via a magnetic field. Here, we numerically investigated the mixing performance of rotors with different shapes (bar-shaped, Y-shaped, and cross-shaped). We systematically studied the influence of the arrangement of multiple cross-rotors and the rotation rate on mixing performance. The results are promising for instructing the design and manipulation of rotors for in-channel mixing. Full article
Show Figures

Figure 1

20 pages, 8199 KiB  
Article
Piezo-Type Mechanosensitive Ion Channel Component 1 (PIEZO1) as a Potential Prognostic Marker in Renal Clear Cell Carcinoma
by Paulina Antosik, Martyna Szachniewicz, Michał Baran, Klaudia Bonowicz, Dominika Jerka, Ewelina Motylewska, Maciej Kwiatkowski, Maciej Gagat and Dariusz Grzanka
Int. J. Mol. Sci. 2025, 26(14), 6598; https://doi.org/10.3390/ijms26146598 - 9 Jul 2025
Viewed by 382
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of kidney cancer and is often diagnosed at advanced stages. PIEZO1, a mechanosensitive ion channel, has been implicated in cancer progression, but its prognostic relevance in ccRCC remains unclear. This study [...] Read more.
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of kidney cancer and is often diagnosed at advanced stages. PIEZO1, a mechanosensitive ion channel, has been implicated in cancer progression, but its prognostic relevance in ccRCC remains unclear. This study aimed to evaluate the expression pattern of PIEZO1 in ccRCC and its association with clinicopathological characteristics and patient survival. Immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded tumor tissues from 111 patients with ccRCC, along with 23 matched peritumoral non-cancerous tissues. Protein expression was quantified using the H-score system. Associations with tumor grade, staging, and overall survival (OS) were analyzed. mRNA expression data were retrieved from The Cancer Genome Atlas (TCGA) to validate the protein-level findings. Functional enrichment and pathway analyses were conducted to explore the biological context of PIEZO1-related gene expression. PIEZO1 showed predominantly cytoplasmic localization, with significantly lower expression in tumor tissues compared to adjacent non-malignant tissue (p < 0.0001). High PIEZO1 expression was correlated with higher tumor grade (p = 0.0147) and shorter OS (p = 0.0047). These findings were confirmed at the mRNA level in the TCGA cohort. Multivariate Cox regression analysis identified PIEZO1 as an independent prognostic factor for OS. In conclusion, PIEZO1 may serve as a clinically relevant biomarker in ccRCC. Its overexpression is associated with more aggressive tumor characteristics and poor prognosis, underscoring the need for further investigation into its functional role and potential as a therapeutic target. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 2778 KiB  
Article
Carbonized Rice Husk Canal Filters for Air Purification
by Marat Tulepov, Zhanar Kudyarova, Zhanat Myshyrova, Larissa R. Sassykova, Yessengeldi Mussatay, Kuanysh Umbetkaliev, Alibek Mutushev, Dauren Baiseitov, Ruimao Hua and Dauren Mukhanov
Processes 2025, 13(7), 2164; https://doi.org/10.3390/pr13072164 - 7 Jul 2025
Viewed by 437
Abstract
Air purification is a key process aimed at removing harmful impurities and providing a safe and comfortable environment for human life and work. This study presents the results of an investigation into the composition, textural, and sorption properties of a multichannel carbon filtering [...] Read more.
Air purification is a key process aimed at removing harmful impurities and providing a safe and comfortable environment for human life and work. This study presents the results of an investigation into the composition, textural, and sorption properties of a multichannel carbon filtering material developed for air purification from biological (infectious) contaminants. The filtering block has a cylindrical shape and is manufactured by extrusion of a plastic composition based on carbonized rice husk with the addition of binding agents, followed by staged thermal treatment (calcination, activation, and demineralization). The filter’s effectiveness is based on the inactivation of pathogenic microorganisms as the air passes through the porous surface of the sorbent, which is modified with broad-spectrum antiseptic agents (active against bacteria, bacilli, fungi, and protozoa). X-ray diffraction analysis revealed the presence of amorphous carbon in a tubostratic structure, with a predominance of sp- and sp2-hybridized carbon atoms not incorporated into regular graphene lattices. IR spectroscopy demonstrated the presence of reactive functional groups characteristic of the developed porous structure of the material, which is capable of selective sorption of antiseptic molecules. SEM surface analysis revealed an amorphous texture with a loose structure and elements in the form of spherical semi-ring formations formed by overlapping carbon plates. An experimental setup was also developed using cylindrical multichannel carbon blocks with a diameter of 48 mm, a length of 120 mm, and 100–120 longitudinal channels with a cross-section of 1 mm2. The obtained results confirm the potential of the proposed material for use in air purification and disinfection systems under conditions of elevated biological risk. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

32 pages, 3446 KiB  
Article
Finite Element Method for Time-Fractional Navier–Stokes Equations with Nonlinear Damping
by Shahid Hussain, Xinlong Feng, Arafat Hussain and Ahmed Bakhet
Fractal Fract. 2025, 9(7), 445; https://doi.org/10.3390/fractalfract9070445 - 4 Jul 2025
Viewed by 437
Abstract
We propose a hybrid numerical framework for solving time-fractional Navier–Stokes equations with nonlinear damping. The method combines the finite difference L1 scheme for time discretization of the Caputo derivative (0<α<1) with mixed finite element methods (P1b–P1 and [...] Read more.
We propose a hybrid numerical framework for solving time-fractional Navier–Stokes equations with nonlinear damping. The method combines the finite difference L1 scheme for time discretization of the Caputo derivative (0<α<1) with mixed finite element methods (P1b–P1 and P2P1) for spatial discretization of velocity and pressure. This approach addresses the key challenges of fractional models, including nonlocality and memory effects, while maintaining stability in the presence of the nonlinear damping term γ|u|r2u, for r2. We prove unconditional stability for both semi-discrete and fully discrete schemes and derive optimal error estimates for the velocity and pressure components. Numerical experiments validate the theoretical results. Convergence tests using exact solutions, along with benchmark problems such as backward-facing channel flow and lid-driven cavity flow, confirm the accuracy and reliability of the method. The computed velocity contours and streamlines show close agreement with analytical expectations. This scheme is particularly effective for capturing anomalous diffusion in Newtonian and turbulent flows, and it offers a strong foundation for future extensions to viscoelastic and biological fluid models. Full article
Show Figures

Figure 1

Back to TopTop