Numerical Investigation of Mixing Performance in Microfluidic Chip via Structural Micro-Rotors
Abstract
1. Introduction
2. Computational Setup
2.1. Governing Equations
2.2. Mixing Index
2.3. Physical Properties
2.4. Numerical Schemes
2.5. Grid Independence Study
3. Results and Discussions
3.1. Single Rotor
3.2. Multiple Cross-Shaped Rotors
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nunes, J.K.; Stone, H.A. Introduction: Microfluidics. Chem. Rev. 2022, 122, 6919–6920. [Google Scholar] [CrossRef] [PubMed]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.; Shum, H.C.; Weitz, D.A. The Fourth Decade of Microfluidics. Small 2020, 16, 2000070. [Google Scholar] [CrossRef]
- Li, W.; Tang, X.; Wang, L. Photopyroelectric Microfluidics. Sci. Adv. 2020, 6, eabc1693. [Google Scholar] [CrossRef]
- Kong, T.; Wu, J.; Yeung, K.W.K.; To, M.K.T.; Shum, H.C.; Wang, L. Microfluidic Fabrication of Polymeric Core-Shell Microspheres for Controlled Release Applications. Biomicrofluidics 2013, 7, 044128. [Google Scholar] [CrossRef]
- Han, X.; Li, W.; Zhao, H.; Li, J.; Tang, X.; Wang, L. Slippery Damper of an Overlay for Arresting and Manipulating Droplets on Nonwetting Surfaces. Nat. Commun. 2021, 12, 3154. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Kong, T.; Zhu, P.; Wang, L. Microfluidic Encapsulation of Phase-Change Materials for High Thermal Performance. Langmuir 2020, 36, 8165–8173. [Google Scholar] [CrossRef]
- Han, X.; Li, J.; Tang, X.; Li, W.; Zhao, H.; Yang, L.; Wang, L. Droplet Bouncing: Fundamentals, Regulations, and Applications. Small 2022, 18, 2200277. [Google Scholar] [CrossRef]
- Han, X.; Tang, X.; Chen, R.; Li, W.; Zhu, P.; Wang, L. Citrus-Peel-like Durable Slippery Surfaces. Chem. Eng. J. 2021, 420, 129599. [Google Scholar] [CrossRef]
- Ge, T.; Hu, W.; Zhang, Z.; He, X.; Wang, L.; Han, X.; Dai, Z. Open and Closed Microfluidics for Biosensing. Mater. Today Bio 2024, 26, 101048. [Google Scholar] [CrossRef]
- Mehta, S.K.; Mondal, P.K. AC Electrothermal Effect Promotes Enhanced Solute Mixing in a Wavy Microchannel. Langmuir 2023, 39, 16797–16806. [Google Scholar] [CrossRef]
- Antognoli, M.; Stoecklein, D.; Galletti, C.; Brunazzi, E.; Carlo, D.D. Optimized Design of Obstacle Sequences for Microfluidic Mixing in an Inertial Regime. Lab Chip 2021, 21, 3910–3923. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Jiang, B.; Jiang, F.; Drummer, D.; Zhou, M. Numerical and Experimental Investigation of Mixing Enhancement in the Passive Planar Mixer with Bent Baffles. Int. J. Heat Mass Transf. 2022, 191, 122815. [Google Scholar] [CrossRef]
- Aldemir, A.T.; Cadirci, S.; Trabzon, L. Investigation of Inertial Focusing of Micro- and Nanoparticles in Spiral Microchannels Using Computational Fluid Dynamics. Phys. Fluids 2023, 35, 112012. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, C.; Xu, Q.; Dang, X.; Li, W.; Lei, K.; Zhou, L.; Zhang, J. Geometrical Improvement of Inline High Shear Mixers to Intensify Micromixing Performance. Chem. Eng. J. 2017, 319, 307–320. [Google Scholar] [CrossRef]
- Ren, Y.; Leung, W.W.-F. Numerical and Experimental Investigation on Flow and Mixing in Batch-Mode Centrifugal Microfluidics. Int. J. Heat Mass Transf. 2013, 60, 95–104. [Google Scholar] [CrossRef]
- Chen, X.; Shen, J. Numerical Analysis of Mixing Behaviors of Two Types of E-Shape Micromixers. Int. J. Heat Mass Transf. 2017, 106, 593–600. [Google Scholar] [CrossRef]
- Enders, A.; Siller, I.G.; Urmann, K.; Hoffmann, M.R.; Bahnemann, J. 3D Printed Microfluidic Mixers—A Comparative Study on Mixing Unit Performances. Small 2019, 15, 1804326. [Google Scholar] [CrossRef]
- Luo, X.; Cheng, Y.; Zhang, W.; Li, K.; Wang, P.; Zhao, W. Mixing Performance Analysis of the Novel Passive Micromixer Designed by Applying Fuzzy Grey Relational Analysis. Int. J. Heat Mass Transf. 2021, 178, 121638. [Google Scholar] [CrossRef]
- López, R.R.; Ocampo, I.; Font de Rubinat, P.G.; Sánchez, L.-M.; Alazzam, A.; Tsering, T.; Bergeron, K.-F.; Camacho-Léon, S.; Burnier, J.V.; Mounier, C.; et al. Parametric Study of the Factors Influencing Liposome Physicochemical Characteristics in a Periodic Disturbance Mixer. Langmuir 2021, 37, 8544–8556. [Google Scholar] [CrossRef]
- Zheng, L.; Fang, M.; Chen, W.; Huo, D.; Li, H. Enhancement Mechanism of Fish-Scale Surface Texture on Flow Switching and Mixing Efficiency in Microfluidic Chips. Langmuir 2023, 39, 7396–7407. [Google Scholar] [CrossRef]
- Peng, T.; Lin, X.; Yuan, S.; Zhou, M.; Jiang, B.; Jia, Y. Mixing Enhancement in a Straight Microchannel with Ultrasonically Activated Attached Bubbles. Int. J. Heat Mass Transf. 2023, 217, 124635. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, Y.; Mhana, R.; Yang, T.; Hanson, B.L.; Yang, X.; Gong, J.; Wu, N. Synthesis and Propulsion of Magnetic Dimers under Orthogonally Applied Electric and Magnetic Fields. Langmuir 2021, 37, 9151–9161. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhao, W.; Kuang, C.; Wang, G. Rapid AC Electrokinetic Micromixer with Electrically Conductive Sidewalls. Micromachines 2021, 13, 34. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, L.; Zhao, X.; Chen, H.; Xiao, Y.; Zhang, Y.; Yang, X.; Zhang, J.; Wei, J.; Hao, N. Acoustofluidic Micromixers: From Rational Design to Lab-on-a-Chip Applications. Appl. Mater. Today 2022, 26, 101356. [Google Scholar] [CrossRef]
- Bayareh, M.; Ashani, M.N.; Usefian, A. Active and Passive Micromixers: A Comprehensive Review. Chem. Eng. Process.-Process Intensif. 2020, 147, 107771. [Google Scholar] [CrossRef]
- Liu, D.; Li, S.; Zhang, T.; Jiang, H.; Lu, Y. 3D Magnetic Field-Controlled Synthesis, Collective Motion, and Bioreaction Enhancement of Multifunctional Peasecod-like Nanochains. Rapid AC Electrokinet. Micromixer Electr. Conduct. Sidewalls 2021, 13, 36157–36170. [Google Scholar] [CrossRef]
- Nouri, D.; Zabihi-Hesari, A.; Passandideh-Fard, M. Rapid Mixing in Micromixers Using Magnetic Field. Sens. Actuators Phys. 2017, 255, 79–86. [Google Scholar] [CrossRef]
- Owen, D.; Ballard, M.; Alexeev, A.; Hesketh, P.J. Rapid Microfluidic Mixing via Rotating Magnetic Microbeads. Sens. Actuators Phys. 2016, 251, 84–91. [Google Scholar] [CrossRef]
- Wang, Y.; Zhe, J.; Chung, B.T.F.; Dutta, P. A Rapid Magnetic Particle Driven Micromixer. Microfluid. Nanofluidics 2008, 4, 375–389. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, H.; Yang, X.; Kang, S.; Cai, L.; Tian, T.; Su, R.; Yang, C.; Zhu, Z. Recent Progress in Microfluidic Biosensors with Different Driving Forces. TrAC Trends Anal. Chem. 2023, 158, 116894. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, P.; Zhao, X.; Huang, L.; Xiao, Y.; Zhang, Y.; Zhang, J.; Hao, N. Sharp-Edge Acoustic Microfluidics: Principles, Structures, and Applications. Appl. Mater. Today 2021, 25, 101239. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, C.; Wang, S.; Liu, S. Electroosmotic Pumps and Their Applications in Microfluidic Systems. Microfluid. Nanofluidics 2009, 6, 145–162. [Google Scholar] [CrossRef]
- Hu, W.; Dong, Y.; Ge, T.; Liu, S.-Y.; Guo, J.; Wang, L.; Yi, C.; Han, X.; Dai, Z. Multifunctional and Structural Magnetic Nanobranches for High-Efficiency Biological Detection. Chem. Eng. J. 2025, 514, 163297. [Google Scholar] [CrossRef]
- Haghighinia, A.; Movahedirad, S. Mass Transfer in a Novel Passive Micro-Mixer: Flow Tortuosity Effects. Anal. Chim. Acta 2020, 1098, 75–85. [Google Scholar] [CrossRef]
- Le, P.T.; An, S.H.; Jeong, H.-H. Microfluidic Tesla Mixer with 3D Obstructions to Exceptionally Improve the Curcumin Encapsulation of PLGA Nanoparticles. Chem. Eng. J. 2024, 483, 149377. [Google Scholar] [CrossRef]
- Sinha, A.; Zunaid, M.; Tokas, S.; Ahmad Ansari, M. Numerical Study of Microscale Passive Mixing in a 3-Dimensional Spiral Mixer Design. Mater. Today Proc. 2022, 56, 851–856. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Liu, M.; Tian, G.; Cheng, P.; Zhang, J.; Tang, N. Numerical Simulation and Structural Recombination of Microchannel Micromixer for Excellent Mixing Performance. Chem. Eng. Process.-Process Intensif. 2023, 191, 109476. [Google Scholar] [CrossRef]
- Shamloo, A.; Madadelahi, M.; Abdorahimzadeh, S. Three-Dimensional Numerical Simulation of a Novel Electroosmotic Micromixer. Chem. Eng. Process. Process Intensif. 2017, 119, 25–33. [Google Scholar] [CrossRef]
- Shanbhag, V.V.; Mukherjee, J.; Pandit, A.B. Analytical and Numerical Investigations of Electrokinetic Micromixing in Electroosmotic Micromixers. Ind. Eng. Chem. Res. 2023, 62, 18940–18951. [Google Scholar] [CrossRef]
- Mu, S.; Lu, Y.; Zhu, G. Numerical Simulation and Coupling Mechanism Study of Acoustic-Inertial Micromixer. Chem. Eng. J. 2024, 480, 147967. [Google Scholar] [CrossRef]
- Kouadri, A.; Douroum, E.; Lasbet, Y.; Naas, T.T.; Khelladi, S.; Makhlouf, M. Comparative Study of Mixing Behaviors Using Non-Newtonian Fluid Flows in Passive Micromixers. Int. J. Mech. Sci. 2021, 201, 106472. [Google Scholar] [CrossRef]
- Douroum, E.; Laouedj, S.; Kouadri, A.; Naas, T.T.; Khelladi, S.; Benazza, A. High Hydrodynamic and Thermal Mixing Performances of Efficient Chaotic Micromixers: A Comparative Study. Chem. Eng. Process.-Process Intensif. 2021, 164, 108394. [Google Scholar] [CrossRef]
- Amar, K.; Embarek, D.; Sofiane, K. Parametric Study of the Crossing Elongation Effect on the Mixing Performances Using Short Two-Layer Crossing Channels Micromixer (TLCCM) Geometry. Chem. Eng. Res. Des. 2020, 158, 33–43. [Google Scholar] [CrossRef]
- Khoshmanesh, K.; Kouzani, A.Z.; Nahavandi, S.; Kanwar, J.R.; Baratchi, S. Design and Numerical Analysis of Magnetic Microrotors for Micromixing. In Proceedings of the Volume 6: ASME Power Transmission and Gearing Conference; 3rd International Conference on Micro- and Nanosystems; 11th International Conference on Advanced Vehicle and Tire Technologies; ASMEDC: San Diego, CA, USA, 2009; pp. 453–457. [Google Scholar]
- Kim, H.J.; Beskok, A. Quantification of Chaotic Strength and Mixing in a Micro Fluidic System. J. Micromech. Microeng. 2007, 17, 2197–2210. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Sujatha, L.; Sudharsan, N.M. Numerical Modeling and Parametric Optimization of Micromixer for Low Diffusivity Fluids. Int. J. Chem. React. Eng. 2018, 16, 20160231. [Google Scholar] [CrossRef]
- Shamsoddini, R. Numerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method. Iran. J. Chem. Chem. Eng. 2017, 36, 173–183. [Google Scholar]
- Abdolahzadeh, M.; Tayebi, A.; Mansouri Mehryan, M. Numerical Simulation of Mixing in Active Micromixers Using SPH. Transp. Porous Media 2023, 146, 249–266. [Google Scholar] [CrossRef]
- Abdolahzadeh, M.; Tayebi, A.; Omidvar, P. Mixing Process of Two-Phase Non-Newtonian Fluids in 2D Using Smoothed Particle Hydrodynamics. Comput. Math. Appl. 2019, 78, 110–122. [Google Scholar] [CrossRef]
- Majumdar, P.; Dasgupta, D. Enhancing Micromixing Using External Electric and Magnetic Fields. Phys. Fluids 2024, 36, 082013. [Google Scholar] [CrossRef]
- Santos, R.J.; Teixeira, A.M.; Erkoç, E.; Sultan, M.; Karpinska, A.M.; Dias, M.M.; Lopes, J.C.B. Validation of a 2D CFD Model for Hydrodynamics’ Studies in CIJ Mixers. Int. J. Chem. React. Eng. 2010, 8. [Google Scholar] [CrossRef]
- Gayen, B.; Manna, N.K.; Biswas, N. Enhancing Mixing Performance in a Square Electroosmotic Micromixer through an Off-Set Inlet and Outlet Design. Phys. Fluids 2024, 36, 062008. [Google Scholar] [CrossRef]
- Parashar, C.K.; Singh, A.; Ghosh, A.; Deshmukh, O.S.; Bandyopadhyay, D. Recipes for Mixing Vortices in a Microchannel Using Electric Field. Phys. Fluids 2024, 36, 032022. [Google Scholar] [CrossRef]
- Kumar, A.; Manna, N.K.; Sarkar, S.; Biswas, N. Enhancing Mixing Efficiency of a Circular Electroosmotic Micromixer with Cross-Reciprocal Electrodes. Phys. Fluids 2024, 36, 083626. [Google Scholar] [CrossRef]
- Cetegen, B.M.; Mohamad, N. Experiments on Liquid Mixing and Reaction in a Vortex. J. Fluid Mech. 1993, 249, 391. [Google Scholar] [CrossRef]
Number | Grid Size (μm) | Number of Grids | Mixing Index (%) | Relative Error (%) |
---|---|---|---|---|
1 | 2.0 | 6204 | 64.67 | 1.08 |
2 | 1.5 | 11,252 | 64.43 | 0.70 |
3 | 1 | 23,340 | 64.25 | 0.42 |
4 | 0.8 | 35,126 | 63.98 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Wang, L.; Han, X. Numerical Investigation of Mixing Performance in Microfluidic Chip via Structural Micro-Rotors. Micromachines 2025, 16, 806. https://doi.org/10.3390/mi16070806
Dong Y, Wang L, Han X. Numerical Investigation of Mixing Performance in Microfluidic Chip via Structural Micro-Rotors. Micromachines. 2025; 16(7):806. https://doi.org/10.3390/mi16070806
Chicago/Turabian StyleDong, Yongliang, Liqiu Wang, and Xing Han. 2025. "Numerical Investigation of Mixing Performance in Microfluidic Chip via Structural Micro-Rotors" Micromachines 16, no. 7: 806. https://doi.org/10.3390/mi16070806
APA StyleDong, Y., Wang, L., & Han, X. (2025). Numerical Investigation of Mixing Performance in Microfluidic Chip via Structural Micro-Rotors. Micromachines, 16(7), 806. https://doi.org/10.3390/mi16070806