Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,407)

Search Parameters:
Keywords = bearing material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4551 KB  
Article
Provenance Tracing of Uranium-Bearing Sandstone of Saihan Formation in Naomugeng Sag, Erlian Basin, China
by Caili Zhang, Zhao Li, Hu Peng, Yue Wu, Ning Luo, Kang Pang, Zhiwei Qiu, Xiaolin Yu, Haiqi Quan, Miao Wang, Qi Li, Yongjiu Liu, Yinan Zhuang and Chengyuan Jin
Minerals 2026, 16(1), 76; https://doi.org/10.3390/min16010076 - 13 Jan 2026
Abstract
The northern part of the Naomugeng Sag in the Erlian Basin shows favorable sandstone-type uranium mineralization in the lower member of the Saihan Formation. The sandstone thickness ranges from 39.67 to 140.36 m, with an average sand content ratio of 76.33%, indicating broad [...] Read more.
The northern part of the Naomugeng Sag in the Erlian Basin shows favorable sandstone-type uranium mineralization in the lower member of the Saihan Formation. The sandstone thickness ranges from 39.67 to 140.36 m, with an average sand content ratio of 76.33%, indicating broad prospecting potential. This study focuses on samples from uranium ore holes and uranium-mineralized holes in the area, conducting grain-size analysis of uranium-bearing sandstones, heavy mineral assemblage analysis, and detrital zircon U-Pb dating to systematically investigate provenance characteristics. The results indicate that the uranium-bearing sandstones in the lower member of the Saihan Formation were primarily transported by rolling and suspension, characteristic of braided river channel deposits. The heavy mineral assemblage is dominated by zircon + limonite + garnet + ilmenite, suggesting that the sedimentary provenance is mainly composed of intermediate-acid magmatic rocks with minor metamorphic components. Detrital zircon U-Pb ages are mainly concentrated in the ranges of 294–217 Ma (Early Permian to Late Triassic), 146–112 Ma (Middle Jurassic to Early Cretaceous), 434–304 Ma (Late Carboniferous to Early Permian), and 495–445 Ma (Middle–Late Ordovician to Early Silurian). Combined with comparisons of the ages of surrounding rock masses, the provenance of the uranium-bearing sandstones is mainly derived from intermediate-acid granites of the Early Permian–Late Triassic and Middle Jurassic–Early Cretaceous periods in the southern part of the Sonid Uplift, with minor contributions from metamorphic and volcanic rock fragments. The average zircon uranium content is 520.53 ppm, with a Th/U ratio of 0.73, indicating that the provenance not only supplied detrital materials but also provided uranium-rich rock bodies that contributed essential metallogenic materials for uranium mineralization. This study offers critical insights for regional prospecting and exploration deployment. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

29 pages, 1021 KB  
Review
Rational Design of Mechanically Optimized Hydrogels for Bone Tissue Engineering: A Review
by Shengao Qin, Han Yuan, Zhaochen Shan, Jiaqi Wang and Wen Pan
Gels 2026, 12(1), 71; https://doi.org/10.3390/gels12010071 - 13 Jan 2026
Abstract
Bone tissue engineering, as an important branch of regenerative medicine, integrates multidisciplinary knowledge from cell biology, materials science, and biomechanics, aiming to develop novel biomaterials and technologies for functional repair and regeneration of bone tissue. Hydrogels are among the most commonly used scaffold [...] Read more.
Bone tissue engineering, as an important branch of regenerative medicine, integrates multidisciplinary knowledge from cell biology, materials science, and biomechanics, aiming to develop novel biomaterials and technologies for functional repair and regeneration of bone tissue. Hydrogels are among the most commonly used scaffold materials; however, conventional hydrogels exhibit significant limitations in physical properties such as strength, tensile strength, toughness, and fatigue resistance, which severely restrict their application in load-bearing bone defect repair. As a result, the development of high-strength hydrogels has become a research hotspot in the field of bone tissue engineering. This paper systematically reviews the latest research progress in this area: First, it delves into the physicochemical characteristics of high-strength hydrogels at the molecular level, focusing on core features such as their crosslinking network structure, dynamic bonding mechanisms, and energy dissipation principles. Next, it categorically summarizes novel high-strength hydrogel systems and different types of biomimetic hydrogels developed based on various reinforcement strategies. Furthermore, it provides a detailed evaluation of the application effects of these advanced materials in specific anatomical sites, including cranial reconstruction, femoral repair, alveolar bone regeneration, and articular cartilage repair. This review aims to provide systematic theoretical guidance and technical references for the basic research and clinical translation of high-strength hydrogels in bone tissue engineering, promoting the effective translation of this field from laboratory research to clinical application. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use (3rd Edition))
22 pages, 5176 KB  
Article
Experimental Investigation of Shear Connection in Precast Concrete Sandwich Panels with Reinforcing Ribs
by Jan Macháček, Eliška Kafková, Věra Kabíčková and Tomáš Vlach
Polymers 2026, 18(2), 200; https://doi.org/10.3390/polym18020200 - 11 Jan 2026
Viewed by 162
Abstract
This paper presents an experimental investigation of the shear connection between outer layers of lightweight precast concrete sandwich panels (PCSP) made of high-performance concrete (HPC). The shear-transfer mechanism is based on reinforcing ribs composed of rigid polymer-based thermal insulation combined with carbon-fibre-reinforced polymer [...] Read more.
This paper presents an experimental investigation of the shear connection between outer layers of lightweight precast concrete sandwich panels (PCSP) made of high-performance concrete (HPC). The shear-transfer mechanism is based on reinforcing ribs composed of rigid polymer-based thermal insulation combined with carbon-fibre-reinforced polymer (CFRP) shear reinforcement. A total of seven full-scale sandwich panels were tested in four-point bending. This study compares three types of rigid thermal insulation used in the shear ribs—Purenit, Compacfoam CF400, and Foamglass F—and investigates the influence of the amount of CFRP shear reinforcement on the structural behavior of the panels. Additional specimens were used to evaluate the effect of reinforcing ribs and of polymer-based thermal insulation placed between the ribs. The experimental results show that panels with shear ribs made of Purenit and Compacfoam CF400 achieved significantly higher load-bearing capacities compared to Foamglass F, which proved unsuitable due to its brittle behavior. Increasing the amount of CFRP shear reinforcement increased the load-bearing capacity but had a limited effect on panel stiffness. The experimentally determined composite interaction coefficient ranged around α ≈ 0.03, indicating partial shear interaction between the outer concrete layers. A simplified strut-and-tie model was applied to predict the load-bearing capacity and showed conservative agreement with experimental results. The findings demonstrate that polymer-based materials, particularly CFRP reinforcement combined with rigid polymer insulation, enable efficient shear transfer without thermal bridging, making them suitable for lightweight and thermally efficient precast concrete sandwich panels. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Graphical abstract

24 pages, 4484 KB  
Article
Durability of Structures Made of Solid Wood Based on the Technical Condition of Selected Historical Timber Churches
by Jacek Hulimka, Marta Kałuża and Magda Tunkel
Sustainability 2026, 18(2), 728; https://doi.org/10.3390/su18020728 - 10 Jan 2026
Viewed by 123
Abstract
In modern construction, natural materials with a low carbon footprint and full recyclability are becoming increasingly important. A typical group here is products made from solid wood, including glued wood, plywood, and wood-based composites. With their many advantages, however, they all burden the [...] Read more.
In modern construction, natural materials with a low carbon footprint and full recyclability are becoming increasingly important. A typical group here is products made from solid wood, including glued wood, plywood, and wood-based composites. With their many advantages, however, they all burden the environment with the costs of production processes, as well as the need to use harmful chemicals (adhesives and impregnants). Solid wood is devoid of these disadvantages; however, it is often treated as a rather archaic material. One of the arguments here is its low durability compared to, e.g., glued wood. The article discusses the durability of solid wood using the example of a group of wooden churches preserved in Poland, in Upper Silesia. Some of these buildings are over five hundred years old, making them a reliable source of information about the durability of the material from which they were built. A total of 85 churches, at least 200 years old, were analyzed, evaluating the technical state of the main load-bearing elements of their structures. In view of the number of facilities and the inability to conduct tests in most of them, the assessment was limited to a visual inspection of the technical condition, carried out by an experienced building expert. The assessment estimated the area of corrosion damage, probed its depth, and measured the depth of cracks. The relationship between their technical condition and the environmental conditions in which they were used was described and discussed. In this way, both the threats to the durability of solid wood and the ways to keep it in good condition for hundreds of years were identified, refuting the thesis that solid wood is a material with low durability. Its use in structural elements therefore supports efficient resource management and contributes to sustainable construction, especially in small and medium-sized buildings. Full article
Show Figures

Figure 1

21 pages, 34522 KB  
Article
Contribution to Taxonomy and Biogeography of Mastogloia (Diatomeae, Bacillariophyceae): A Pantropical Species and a Potential Regional Endemic
by Christopher S. Lobban, Kiaza Rose Jerao and Thomas A. Frankovich
Diversity 2026, 18(1), 37; https://doi.org/10.3390/d18010037 - 9 Jan 2026
Viewed by 111
Abstract
Benthic marine diatoms are speciose but vastly underexplored eukaryotic microbes. Diatoms are identified by their intricately ornamented silica cell walls known as frustules, following removal of all organic matter with acid or strong oxidants. When living samples of diatom communities are examined, it [...] Read more.
Benthic marine diatoms are speciose but vastly underexplored eukaryotic microbes. Diatoms are identified by their intricately ornamented silica cell walls known as frustules, following removal of all organic matter with acid or strong oxidants. When living samples of diatom communities are examined, it is impossible to detect all the species present, as rare ones are easily obscured among the other materials present, and taxonomic identification of living diatoms can be uncertain or impossible, even with isolated cells. These features of diatom taxonomy have important consequences for biogeography, which we illustrate and discuss using new observations from two species. Despite being the mainstay for diatom descriptions, species described by light microscopy (LM) alone may conflate two species or (as in the case presented) lead to spurious new species; both need ultrastructural study to ascertain taxonomic and geographical boundaries. The species studied with scanning electron microscopy (SEM) over the last 45 years by Stephens & Gibson, Pennesi et al., and Lobban under the name of Mastogloia hustedtii is shown to be synonymous with M. grunovii. The former became known in the SEM era to bear both pseudoconopea (longitudinal flaps parallel to the sternum, invisible in LM) and silica plaques on the inner margins of the partecta (chambers on the valvocopulae), with the latter supposedly bearing neither, but there is a single, pantropical/Mediterranean species encompassed in the original description of M. grunovii. A new ultrastructural feature for the genus is reported from this species: marginal chambers formed by laminae over the mantle areolae and the first 2–3 areolae on the valve face. The second species studied, M. meisteri, had been reported a few times from one region based on very rare frustules, which do not meet the first criterion for biogeography: where did they live? Although we, too, did not observe living cells, the number of specimens present is evidence for a living population epiphytic on a Virgin Islands coral reef. The ultrastructure of this species is also shown for the first time. Because absence of evidence is overwhelming in microbial biogeography, the best we can say is that this species is potentially a regional endemic. Full article
(This article belongs to the Special Issue Ecology and Biogeography of Marine Benthos—2nd Edition)
16 pages, 2976 KB  
Article
Effect of Elevated Temperature on Load-Bearing Capacity and Fatigue Life of Bolted Joints in CFRP Components
by Angelika Arkuszyńska and Marek Rośkowicz
Polymers 2026, 18(2), 182; https://doi.org/10.3390/polym18020182 - 9 Jan 2026
Viewed by 192
Abstract
The search for innovative solutions in the field of construction materials used in aircraft manufacturing has led to the development of composite materials, particularly CFRP polymer composites. Composite airframe components, which are required to have high strength, are joined using mechanical fasteners. Considering [...] Read more.
The search for innovative solutions in the field of construction materials used in aircraft manufacturing has led to the development of composite materials, particularly CFRP polymer composites. Composite airframe components, which are required to have high strength, are joined using mechanical fasteners. Considering that the composite consists of a polymer matrix, which is a material susceptible to rheological phenomena occurring rapidly at elevated temperature, there is a high probability of significant changes in the strength and performance properties. Coupled thermal and mechanical loads on composite material joints occur in everyday aircraft operation. Experimental tests were conducted using a quasi-isotropic CFRP on an epoxy resin matrix with aerospace certification. The assessment of changes in the strength parameters of the material itself showed a decrease of approx. 40% in its short-term strength at 80 °C compared to the ambient temperature and a decrease in the load-bearing capacity of single-lap bolted joints of over 25%. Even more rapid changes were observed when assessing the fatigue life of the joints assessed at ambient and elevated temperature. In addition, the actual glass transition temperature of the resin was determined using the DSC technique. Analysis of the damage mechanisms showed that at 80 °C, the main degradation mechanisms of the material are accelerated creep processes of the CFRP and softening of the matrix, increasing its susceptibility to damage in the joint area. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

34 pages, 8884 KB  
Article
Experimental Study and Mechanical Performance Analysis of Reinforcement and Strengthening of Grouted Sleeve Connection Joints
by Zihang Jiang, Changjun Wang, Sen Pang, Shengjie Ji, Dandan Xu and Yufei Chen
Buildings 2026, 16(2), 275; https://doi.org/10.3390/buildings16020275 - 8 Jan 2026
Viewed by 90
Abstract
Grouted sleeves are commonly used to connect prefabricated structural components, but construction defects can easily occur after installation, posing potential risks to the structure. This study conducts comparative uniaxial tensile tests on 39 grouted-sleeve specimens in 13 groups—including standard specimens, defective specimens, and [...] Read more.
Grouted sleeves are commonly used to connect prefabricated structural components, but construction defects can easily occur after installation, posing potential risks to the structure. This study conducts comparative uniaxial tensile tests on 39 grouted-sleeve specimens in 13 groups—including standard specimens, defective specimens, and specimens repaired with supplementary grouting. The strain distribution patterns under different grouting lengths and loading levels are analyzed to investigate the load-transfer mechanism between reinforcement bars and grouted sleeves, as well as the influence of various supplementary grouting amounts and material strengths on the mechanical performance of defective sleeves. In the uniaxial tensile test of grouted sleeves, with grout strengths of 85 MPa and 100 MPa and HRB400-grade steel bars, when the grouted anchorage length was 4 d, insufficient anchorage length resulted in low bond strength between the grout and the steel bar, leading to bond–slip failure. When the grouted anchorage length reached 6 d, steel bar fracture occurred inside the sleeve. When the total anchorage length formed by two grouting sessions reached 8 d, specimen slippage decreased, showing a trend where the strain growth rate of the sleeve gradually decreased from the grouted end to the anchored end, while the strain growth rate of the steel bar gradually increased. The longer the total anchorage length in the sleeve after grout repair, the stronger its anti-slip capability. The bearing capacity and failure mode of the specimens depend on the strength of the steel bars connected to the grouted sleeves and the strength of the threaded connection ends at the top. Experimental results show that the anchorage length and strength of high-strength grout materials have a significant reinforcing effect on defective sleeves. The ultimate bearing capacity of specimens with anchorage length of 6 d or more is basically the same as that of steel bars. Specimens with a total anchorage length of 8 d show approximately 10~20% less slippage than those with 6 d. The safe anchorage length for HRB400-grade steel bars in sleeve-grouted connections is 8 d, even though the bearing capacity of grouted sleeves with a 6 d anchorage length already meets the requirements. Bond strength analysis confirms that the critical anchorage length is 4.49 d. When the grouted anchorage length exceeds the critical length, the failure mode of the specimen is steel bar fracture. When the grouted anchorage length is less than the critical length, the failure mode is steel bar slippage. This conclusion aligns closely with experimental results. In engineering practice, the critical anchorage length can be used to predict the failure mode of grouted sleeve specimens. Based on experimental research and theoretical analysis, it is clear that using grout repair to reinforce defective grouted sleeve joints with a safe anchorage length of 8 d is a secure and straightforward strengthening method. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

28 pages, 5461 KB  
Article
Free Vibration and Static Behavior of Bio-Inspired Helicoidal Composite Spherical Caps on Elastic Foundations Applying a 3D Finite Element Method
by Amin Kalhori, Mohammad Javad Bayat, Masoud Babaei and Kamran Asemi
Buildings 2026, 16(2), 273; https://doi.org/10.3390/buildings16020273 - 8 Jan 2026
Viewed by 113
Abstract
Spherical caps exploit their intrinsic curvature to achieve efficient stress distribution, delivering exceptional strength-to-weight ratios. This advantage renders them indispensable for aerospace systems, pressurized containers, architectural domes, and structures operating in extreme environments, such as deep-sea or nuclear containment. Their superior load-bearing capacity [...] Read more.
Spherical caps exploit their intrinsic curvature to achieve efficient stress distribution, delivering exceptional strength-to-weight ratios. This advantage renders them indispensable for aerospace systems, pressurized containers, architectural domes, and structures operating in extreme environments, such as deep-sea or nuclear containment. Their superior load-bearing capacity enables diverse applications, including satellite casings and high-pressure vessels. Meticulous optimization of geometric parameters and material selection ensures robustness in demanding scenarios. Given their significance, this study examines the natural frequency and static response of bio-inspired helicoidally laminated carbon fiber–reinforced polymer matrix composite spherical panels surrounded by Winkler elastic foundation support. Utilizing a 3D elasticity approach and the finite element method (FEM), the governing equations of motion are derived via Hamilton’s Principle. The study compares five helicoidal stacking configurations—recursive, exponential, linear, semicircular, and Fibonacci—with traditional laminate designs, including cross-ply, quasi-isotropic, and unidirectional arrangements. Parametric analyses explore the influence of lamination patterns, number of plies, panel thickness, support rigidity, polar angles, and edge constraints on natural frequencies, static deflections, and stress distributions. The analysis reveals that the quasi-isotropic (QI) laminate configuration yields optimal vibrational performance, attaining the highest fundamental frequency. In contrast, the cross-ply (CP) laminate demonstrates marginally best static performance, exhibiting minimal deflection. The unidirectional (UD) laminate consistently shows the poorest performance across both static and dynamic metrics. These investigations reveal stress transfer mechanisms across layers and elucidate vibration and bending behaviors in laminated spherical shells. Crucially, the results underscore the ability of helicoidal arrangements in augmenting mechanical and structural performance in engineering applications. Full article
(This article belongs to the Special Issue Applications of Computational Methods in Structural Engineering)
Show Figures

Figure 1

16 pages, 5764 KB  
Article
Effect of Bonding Pressure and Joint Thickness on the Microstructure and Mechanical Reliability of Sintered Nano-Silver Joints
by Phuoc-Thanh Tran, Quang-Bang Tao, Lahouari Benabou and Ngoc-Anh Nguyen-Thi
J. Manuf. Mater. Process. 2026, 10(1), 22; https://doi.org/10.3390/jmmp10010022 - 8 Jan 2026
Viewed by 119
Abstract
Sintered nano-silver is widely investigated as a die-attach material for next-generation power electronic modules due to its high thermal conductivity, favorable electrical performance, and stability at elevated temperatures. However, how bonding pressure and joint thickness jointly affect densification, interfacial diffusion, and mechanical reliability [...] Read more.
Sintered nano-silver is widely investigated as a die-attach material for next-generation power electronic modules due to its high thermal conductivity, favorable electrical performance, and stability at elevated temperatures. However, how bonding pressure and joint thickness jointly affect densification, interfacial diffusion, and mechanical reliability has not been systematically clarified, especially under the low-pressure conditions required for large-area SiC and GaN devices. In this work, nano-silver lap-shear joints with three bond-line thicknesses (50, 70, and 100 μm) were fabricated under two applied pressures (1.0 and 1.5 MPa) using a controlled sintering fixture. Shear testing and cross-sectional SEM were employed to evaluate the relationships between microstructural evolution and joint integrity. When the bonding pressure was increased from 1.0 to 1.5 MPa, more effective particle rearrangement and reduced pore connectivity were observed, together with improved metallurgical bonding at the Ag–Au interface, leading to a strength increase from 15.3 to 28.2 MPa. Although thicker joints exhibited slightly higher bulk relative density due to greater heat retention and accelerated local sintering, this densification advantage did not lead to improved mechanical performance. Instead, the lower strength of thicker joints is attributed to a narrower Ag–Au interdiffusion region, which limited the formation of continuous load-bearing paths at the interface. Fractographic analyses confirmed that failure occurred predominantly by interfacial delamination rather than cohesive fracture, indicating that the reliability of the joints under low-pressure sintering is governed by the quality of interfacial bonding rather than by overall densification. The experimental results show that, under low-pressure sintering conditions (1.0–1.5 MPa), variations in bonding pressure and bond-line thickness lead to distinct effects on joint performance, with the extent of Ag–Au interfacial interaction playing a key role in determining the mechanical robustness of the joints. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

23 pages, 4007 KB  
Article
Research on Particle–Gel Composite Lost Circulation Control Technology for Deepwater High-Temperature and High-Pressure Fractured Formations
by Yiqiang Huang, Zhihua Rao, Yao You, Lei Chen, De Yan, Peng Xu, Lei Pu and Delong Xu
Processes 2026, 14(2), 217; https://doi.org/10.3390/pr14020217 - 7 Jan 2026
Viewed by 159
Abstract
During deepwater drilling operations in the Baiyun block of the eastern South China Sea, high-temperature and high-pressure formation leakage was frequently encountered. Traditional plugging materials lacked adequate stability under these conditions and failed to establish reliable plugs. As the development of the Baiyun [...] Read more.
During deepwater drilling operations in the Baiyun block of the eastern South China Sea, high-temperature and high-pressure formation leakage was frequently encountered. Traditional plugging materials lacked adequate stability under these conditions and failed to establish reliable plugs. As the development of the Baiyun Block progressed, it was found that the formation temperature at the BY5 area well reached 182.2 °C at a depth of 4527 m. At a depth of 5206 m, the bottom-hole temperature of the well increased to 223.81 °C, and the pressure rose to 10 MPa. An urgent need has emerged to develop a plugging system capable of operating stably under high-temperature and high-pressure conditions to enhance the safety and success rate of deepwater drilling. In this study, a high-temperature-resistant polymer for controlling leakage rate, an inorganic pressure-bearing particulate material with supporting capability, and a gel that gradually solidifies under high-temperature conditions were developed. Through systematic optimization, a synergistic plugging system was established. Laboratory evaluations demonstrated that the system maintained favorable fluidity and structural integrity under high-temperature and high-pressure conditions, rapidly constructed stable plugging layers across fractures of varying widths, and withstood high differential pressures while resisting backflow-induced erosion. The results indicate that the system exhibits significant plugging performance and strong potential for engineering application, providing reliable technical support for deepwater oil and gas development. Full article
Show Figures

Figure 1

16 pages, 2432 KB  
Article
Assessment of Mechanical and Recycling Properties of Selected Types of Bolted and Riveted Connections in Product Design
by Rafał Grzejda and Jacek Diakun
Appl. Sci. 2026, 16(2), 592; https://doi.org/10.3390/app16020592 - 6 Jan 2026
Viewed by 163
Abstract
In order to comply with the principle of sustainable development in product design, in addition to the mechanical properties of products, recycling properties should also be taken into account at the early stages of design. This paper explores the interplay between mechanical and [...] Read more.
In order to comply with the principle of sustainable development in product design, in addition to the mechanical properties of products, recycling properties should also be taken into account at the early stages of design. This paper explores the interplay between mechanical and recycling properties in product design in order to achieve a compromise between these design aspects. The research included typical metrics used to evaluate a product for its mechanical and recycling properties. The tests were carried out on a lap connection made in four variants: as a two-bolt, three-bolt, two-rivet and three-rivet connection. It was demonstrated that the stiffness of bolted connections is significantly lower compared to equivalent riveted connections. On the other hand, using three rivets instead of two in a connection yields better results in terms of load-bearing capacity compared to a similar increase in the number of fasteners in a bolted connection. The results demonstrate the impact of material structure of components and dismantling operations on the financial performance of the recycling process in relation to the assessment of recycling aspects in product design. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 5648 KB  
Article
A Composite Material Repair Structure: For Defect Repair of Branch Pipe Fillet Welds in Oil and Gas Pipelines
by Liangshuo Zhao, Yingjie Qiao, Zhongtian Yin, Bo Xie, Bangyu Wang, Jingxue Zhou, Siyu Chen, Zheng Wang, Xiaodong Wang, Xiaohong Zhang, Xiaotian Bian, Xin Zhang, Yan Wu and Peng Wang
Materials 2026, 19(2), 222; https://doi.org/10.3390/ma19020222 - 6 Jan 2026
Viewed by 192
Abstract
In the oil and gas pipeline industry, numerous small-diameter branch pipe fillet welds exist, which are prone to stress concentration because of diverse geometric shapes. The internal welding defects within these welds pose severe hazards to safe production. Specifically, the irregular geometry often [...] Read more.
In the oil and gas pipeline industry, numerous small-diameter branch pipe fillet welds exist, which are prone to stress concentration because of diverse geometric shapes. The internal welding defects within these welds pose severe hazards to safe production. Specifically, the irregular geometry often leads to internal root defects where the weld metal fails to fully penetrate the joint or fuse with the base material (referred to as incomplete penetration and incomplete fusion). This study developed a GF-CF-GF (CF is carbon fiber, GF is glass fiber) sandwich composite reinforcement structure for pipe fittings with these specific internal defects (main pipe: Φ323.9 × 12.5 mm; branch pipe: Φ76 × 5 mm) through a combination of finite element analysis (FEA) and burst test verification. The inherent correlation between structural factors and pressure-bearing capacity was revealed by analyzing the influence of defect sizes. Based on FEA, the repair layer coverage should be designed to be within 400 mm from the defect along the main pipe wall direction and within 100 mm from the defect along the branch pipe wall direction, with required thicknesses of 5.6 mm for incomplete penetration and 3.2 mm for incomplete fusion. Analysis of the actual burst test pressure curve showed that the elastic-plastic transition interval of the repaired pipes increased by approximately 2 MPa compared to normal undamaged pipes, and their pressure-bearing capacities rose by 1.57 MPa (incomplete penetration) and 1.76 MPa (incomplete fusion). These results demonstrate the feasibility of the proposed reinforcement design, which has potential applications in the safety and integrity of oil and gas transportation. Full article
Show Figures

Graphical abstract

16 pages, 8184 KB  
Article
Study on Influencing Factors and Mechanism of Activated MgO Carbonation Curing of Tidal Mudflat Sediments
by Hui Lu, Qiyao Zhang, Zhixiao Bai, Liwei Guo, Zeyu Shao and Erbing Li
Geotechnics 2026, 6(1), 4; https://doi.org/10.3390/geotechnics6010004 - 4 Jan 2026
Viewed by 166
Abstract
Offshore wind farm construction faces significant geotechnical challenges posed by tidal mudflat sediments, including high moisture content, low bearing capacity, and high sensitivity to disturbance. Utilizing MgO—a material characterized by abundant raw materials, low embodied energy, and environmental compatibility—for the stabilization of such [...] Read more.
Offshore wind farm construction faces significant geotechnical challenges posed by tidal mudflat sediments, including high moisture content, low bearing capacity, and high sensitivity to disturbance. Utilizing MgO—a material characterized by abundant raw materials, low embodied energy, and environmental compatibility—for the stabilization of such soft soils represents a promising and sustainable approach worthy of further investigation. This study elucidates the carbonation-induced stabilization mechanism of coastal mucky soil from Ningbo, Zhejiang Province, through systematic monitoring of reaction temperature and unconfined compressive strength (UCS) testing under varying levels of reactive MgO content, carbonation duration, and initial moisture content. Microstructural characterization was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) to reveal the evolution of mineralogical and pore structure features associated with carbonation. The results indicate that increasing MgO content leads to higher peak reaction temperatures and shorter time-to-peak values. However, the rate of reduction in time-to-peak diminishes beyond 20% MgO. A secondary temperature rise is commonly observed between 3–3.5 h of carbonation in most specimens. When the MgO content is below 30%, UCS peaks within 6–10 h, with the peak time decreasing as MgO content increases. When MgO exceeds 45%, strength deterioration occurs due to structural damage. The correlation between deformation modulus and UCS is found to be comparable to that of conventional cement-stabilized soils. Microstructural analysis reveals that, with increased MgO dosage and prolonged carbonation, carbonation products progressively fill voids and bind soil particles, resulting in reduced total porosity and a refinement of pore size distribution—evidenced by a leftward shift in the most probable pore diameter. Nevertheless, at excessively high MgO levels (e.g., 50%), crystallization pressure from rapid product formation may generate macro-pores, compromising soil fabric integrity. This study presents a low-carbon and efficient ground improvement approach for access road construction in tidal mudflat wind farm developments. Full article
Show Figures

Figure 1

20 pages, 13253 KB  
Article
A New Species of Desmoscolex (Nematoda: Desmoscolecidae) from the Northwestern Pacific and Its Implications for Lip-Region Ultrastructure in Species Delimitation
by Seungyeop Han, Hyo Jin Lee, Heegab Lee and Hyun Soo Rho
Taxonomy 2026, 6(1), 5; https://doi.org/10.3390/taxonomy6010005 - 3 Jan 2026
Viewed by 177
Abstract
We describe a new species of Desmoscolex collected from subtidal muddy sediments off Jindo Island, on the southern margin of Korea’s west coast. Desmoscolex (Desmoscolex) curuvus sp. nov. is distinguished by 17 main rings, a 9/8 somatic setal arrangement, subdorsal setae [...] Read more.
We describe a new species of Desmoscolex collected from subtidal muddy sediments off Jindo Island, on the southern margin of Korea’s west coast. Desmoscolex (Desmoscolex) curuvus sp. nov. is distinguished by 17 main rings, a 9/8 somatic setal arrangement, subdorsal setae with a slightly swollen and hollow distal end, an oval head with laterally extended foreign material, a rounded amphidial fovea confined within the head region, and broad cephalic setae bearing a fine central canal with lateral membranes. The terminal ring is strongly bent ventrally. Females exhibit pronounced sexual dimorphism, including a pair of dorsal setae on the thirteenth main ring and a thicker terminal ring (maximum width 25–26 μm in males and 24–31 μm in females). High-resolution scanning electron microscopy (SEM) observations revealed a distinctive lip-region ultrastructure composed of a tuberculate membrane and six fragment-like membranous elements, representing a rare configuration within the genus. By documenting a new species possessing membranous structures in the cephalic setae and providing detailed ultrastructural characterization of the lip region, this study offers important new evidence for refining species delimitations in Desmoscolex. These findings underscore the diagnostic value of lip-region morphology and highlight the need for targeted sampling and further ultrastructural analyses to better resolve the hidden morphological diversity of the genus, particularly in the underexplored northwestern Pacific. Full article
Show Figures

Figure 1

22 pages, 6781 KB  
Article
Magnetic Circuit Design and Optimization of Tension–Compression Giant Magnetostrictive Force Sensor
by Long Li, Hailong Sun, Yingling Wei, Boda Li, Hongwei Cui and Ruifeng Liu
Sensors 2026, 26(1), 295; https://doi.org/10.3390/s26010295 - 2 Jan 2026
Viewed by 407
Abstract
The variable-pitch connecting rod of a helicopter bears axial tensile and compressive loads during operation. The traditional load monitoring method using strain gauge is easily affected by external conditions. Therefore, a giant magnetostrictive (GM) tension and compression force sensor with permanent magnet bias [...] Read more.
The variable-pitch connecting rod of a helicopter bears axial tensile and compressive loads during operation. The traditional load monitoring method using strain gauge is easily affected by external conditions. Therefore, a giant magnetostrictive (GM) tension and compression force sensor with permanent magnet bias is proposed and optimized. Because the bias magnetic field plays a decisive role in the performance of the sensor, this paper has carried out in-depth research on this. Firstly, the mathematical model of the magnetic circuit is established, and the various magnetic circuits of the sensor are simulated and analyzed. Secondly, the magnetic flux uniformity of the GMM rod is used as the evaluation index, and the relative permeability of the magnetic material and the structure are systematically studied. The influence of parameters on the magnetic flux of the magnetic circuit, and finally the optimal parameter combination of the magnetic circuit is determined by orthogonal test. The results show that when the magnetic circuit without the magnetic side wall is used, the magnetic material can better guide the magnetic flux through the GMM rod; the magnetic flux uniformity of the optimized GMM force sensor is increased by 7.44%, the magnetic flux density is increased by 13.9 mT and the Hall output voltage increases linearly by 1.125% in the same proportion. This provides an important reference for improving the utilization rate of GMM rods and also improves the safety of flight operation and reduces maintenance costs. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop