Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (595)

Search Parameters:
Keywords = beam tracking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2826 KB  
Article
Characterization of the Extraction System of Supersonic Gas Curtain-Based Ionization Profile Monitor for FLASH Proton Therapy
by Farhana Thesni Mada Parambil, Milaan Patel, Narender Kumar, Bharat Singh Rawat, William Butcher, Tony Price and Carsten P. Welsch
Instruments 2026, 10(1), 4; https://doi.org/10.3390/instruments10010004 - 25 Jan 2026
Viewed by 75
Abstract
FLASH radiotherapy requires real-time, non-invasive beam monitoring systems capable of operating under ultra-high dose rate (UHDR) conditions without perturbing the therapeutic beam. In this work, we characterized the extraction system of Supersonic Gas Curtain-based Ionization Profile Monitor (SGC-IPM) for its capabilities as a [...] Read more.
FLASH radiotherapy requires real-time, non-invasive beam monitoring systems capable of operating under ultra-high dose rate (UHDR) conditions without perturbing the therapeutic beam. In this work, we characterized the extraction system of Supersonic Gas Curtain-based Ionization Profile Monitor (SGC-IPM) for its capabilities as a transverse beam profile and position monitor for FLASH protons. The monitor utilizes a tilted gas curtain intersected by the incident beam, leading to the generation of ions that are extracted through a tailored electrostatic field, and detected using a two stage microchannel plate (MCP) coupled to a phosphor screen and CMOS camera. CST Studio Suite was employed to conduct electrostatic and particle tracking simulations evaluating the ability of the extraction system to measure both beam profile and position. The ion interface, at the interaction region of proton beam and gas curtain, was modeled with realistic proton beam parameters and uniform gas curtain density distributions. The ion trajectory was tracked to evaluate the performance across multiple beam sizes. The simulations suggest that the extraction system can reconstruct transverse beam profiles for different proton beam sizes. Simulations also supported the system’s capability as a beam position monitor within the boundary defined by the beam size, the dimensions of the extraction system, and the height of the gas curtain. Some simulation results were benchmarked against experimental data of 28 MeV proton beam with 70 nA average beam current. This study will further help to optimize the design of the extraction system to facilitate the integration of SGC-IPM in medical accelerators. Full article
(This article belongs to the Special Issue Plasma Accelerator Technologies)
Show Figures

Figure 1

17 pages, 4116 KB  
Article
Degradation Mechanism, Performance Impact, and Maintenance Strategies for Expansion Devices of Large-Span Railway Bridges
by Yunchao Ye, Aiguo Yan, Pengcheng Yin, Jinbao Liang and Zhiqiang Zhu
Infrastructures 2026, 11(1), 30; https://doi.org/10.3390/infrastructures11010030 - 19 Jan 2026
Viewed by 166
Abstract
To ensure the coordinated interaction between the beam and track of large-span bridges and achieve smooth rail transition at beam joints, rail expansion regulators and beam-end expansion devices are essential at bridge ends. However, these devices are structurally fragile, making them a weak [...] Read more.
To ensure the coordinated interaction between the beam and track of large-span bridges and achieve smooth rail transition at beam joints, rail expansion regulators and beam-end expansion devices are essential at bridge ends. However, these devices are structurally fragile, making them a weak link in the seamless track system. This study selected a long-span railway bridge and its expansion devices as research objects, summarized typical in-service diseases of beam-end expansion devices (e.g., adjustable sleeper offset, sleeper skewing, and expansion device jamming), and constructed a train–track–bridge coupled model incorporating these devices. The model was used to analyze the structural performance and train operation safety under defective conditions. Based on the analysis findings, a maintenance evaluation method for the beam-end region was proposed. Criteria include adjustable sleeper offset, lateral displacement difference between adjacent beam-ends, horizontal rotation angle of adjacent beams, vertical rotation angle of beam-ends, and longitudinal expansion amount of beam-end expansion devices in order to address the corresponding issues and achieve sustainable maintenance and operation of bridge structures. Full article
(This article belongs to the Special Issue Sustainable Bridge Engineering)
Show Figures

Figure 1

22 pages, 26643 KB  
Article
Critical Aspects in the Modeling of Sub-GeV Calorimetric Particle Detectors: The Case Study of the High-Energy Particle Detector (HEPD-02) on Board the CSES-02 Satellite
by Simona Bartocci, Roberto Battiston, Stefania Beolè, Franco Benotto, Piero Cipollone, Silvia Coli, Andrea Contin, Marco Cristoforetti, Cinzia De Donato, Cristian De Santis, Andrea Di Luca, Floarea Dumitrache, Francesco Maria Follega, Simone Garrafa Botta, Giuseppe Gebbia, Roberto Iuppa, Alessandro Lega, Mauro Lolli, Giuseppe Masciantonio, Matteo Mergè, Marco Mese, Riccardo Nicolaidis, Francesco Nozzoli, Alberto Oliva, Giuseppe Osteria, Francesco Palma, Federico Palmonari, Beatrice Panico, Stefania Perciballi, Francesco Perfetto, Piergiorgio Picozza, Michele Pozzato, Marco Ricci, Ester Ricci, Sergio Bruno Ricciarini, Zouleikha Sahnoun, Umberto Savino, Valentina Scotti, Enrico Serra, Alessandro Sotgiu, Roberta Sparvoli, Pietro Ubertini, Veronica Vilona, Simona Zoffoli and Paolo Zucconadd Show full author list remove Hide full author list
Particles 2026, 9(1), 6; https://doi.org/10.3390/particles9010006 - 15 Jan 2026
Viewed by 118
Abstract
The accurate simulation of sub-GeV particle detectors is essential for interpreting experimental data and optimizing detector design. This work identifies and addresses several critical aspects in modeling such detectors, taking as a case study the High-Energy Particle Detector (HEPD-02), a space-borne instrument developed [...] Read more.
The accurate simulation of sub-GeV particle detectors is essential for interpreting experimental data and optimizing detector design. This work identifies and addresses several critical aspects in modeling such detectors, taking as a case study the High-Energy Particle Detector (HEPD-02), a space-borne instrument developed within the CSES-02 mission to measure electrons in the ∼3–100 MeV range, protons and light nuclei in the ∼30–200 MeV/n. The HEPD-02 instrument consists of a silicon tracker, plastic and LYSO scintillator calorimeters, and anticoincidence systems, making it a representative example of a complex low-energy particle detector operating in Low Earth Orbit. Key challenges arise from replicating intricate detector geometries derived from CAD models, selecting appropriate hadronic physics lists for low-energy interactions, and accurately describing the detector response—particularly quenching effects in scintillators and digitization in solid-state tracking planes. Particular attention is given to three critical aspects: the precise CAD-level geometry implementation, the impact of hadronic physics models on the detector response, and the parameterization of scintillation quenching. In this study, we present original solutions to these challenges and provide data–MC comparisons using data from HEPD-02 beam tests. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

24 pages, 4100 KB  
Article
Design and Error Calibration of a Machine Vision-Based Laser 2D Tracking System
by Dabao Lao, Xiaojian Wang and Tianqi Chen
Sensors 2026, 26(2), 570; https://doi.org/10.3390/s26020570 - 14 Jan 2026
Viewed by 288
Abstract
A laser tracker is an essential tool in the field of precise geometric measurement. Its fundamental operating idea is a dual-axis rotating device that propels the laser beam to continuously align and measure the attitude of a collaborating target. Such systems provide numerous [...] Read more.
A laser tracker is an essential tool in the field of precise geometric measurement. Its fundamental operating idea is a dual-axis rotating device that propels the laser beam to continuously align and measure the attitude of a collaborating target. Such systems provide numerous benefits, including a broad measuring range, high precision, outstanding real-time performance, and ease of use. To solve the issue of low beam recovery efficiency in typical laser trackers, this research offers a two-dimensional laser tracking system that incorporates a machine vision module. The system uses a unique off-axis optical design in which the distance measuring and laser tracking paths are independent, decreasing the system’s dependency on optical coaxiality and mechanical processing precision. A tracking head error calibration method based on singular value decomposition (SVD) is introduced, using optical axis point cloud data obtained from experiments on various components for geometric fitting. A complete prototype system was constructed and subjected to accuracy testing. Experimental results show that the proposed system achieves a relative positioning accuracy of less than 0.2 mm (spatial root mean square error (RMSE) = 0.189 mm) at the maximum working distance of 1.5 m, providing an effective solution for the design of high-precision laser tracking systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 5515 KB  
Article
Design, Simulation and High Precision Tracking Control of a Piezoelectric Optical Stabilization Platform
by Yonggang Yan, Can Cui, Jianjun Cui, Fuming Zhang, Kai Chen, Junjie Huang, Hang Xie and Dengpan Zhang
Micromachines 2026, 17(1), 87; https://doi.org/10.3390/mi17010087 - 8 Jan 2026
Viewed by 236
Abstract
Optical image stabilization (OIS) is crucial for improving airborne opto-electronic imaging performance under dynamic conditions. This study presents a two-dimensional piezoelectric-driven OIS platform capable of compensating linear image shift errors. A motion platform integrating a bridge amplification mechanism and right-angle guiding beams was [...] Read more.
Optical image stabilization (OIS) is crucial for improving airborne opto-electronic imaging performance under dynamic conditions. This study presents a two-dimensional piezoelectric-driven OIS platform capable of compensating linear image shift errors. A motion platform integrating a bridge amplification mechanism and right-angle guiding beams was developed, and its theoretical model was validated through finite element analysis (FEA). To enhance the platform’s repeatability, the hysteresis of the piezoelectric actuator was described using the Bouc-Wen model, and was optimized using a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO). Experimental results demonstrated that the platform achieves a workspace of 53.92 μm × 53.76 μm, a motion resolution of 30 nm, a maximum coupling error of 2.28%, and a first-order resonant frequency of 356.69 Hz. A composite controller incorporating HGAPSO attained submicron tracking accuracy, with errors of 0.43 μm and 0.47 μm along the X and Y axes, respectively. Strong agreement among theoretical analysis, FEA, and experimental results confirms the platform’s precision and effectiveness meeting the requirements of the OIS. This work provides valuable guidance for the development of high-frequency OIS systems in highly dynamic operational environments. Full article
(This article belongs to the Section A1: Optical MEMS and Photonic Microsystems)
Show Figures

Figure 1

14 pages, 2516 KB  
Article
Temperature and Fluence Dependence Investigation of the Defect Evolution Characteristics of GaN Single Crystals Under Radiation with Ion Beam-Induced Luminescence
by Xue Peng, Wenli Jiang, Ruotong Chang, Hongtao Hu, Shasha Lv, Xiao Ouyang and Menglin Qiu
Quantum Beam Sci. 2026, 10(1), 2; https://doi.org/10.3390/qubs10010002 - 4 Jan 2026
Viewed by 173
Abstract
To investigate the in situ irradiation effects of gallium nitride at varying temperatures, we combined ion beam-induced luminescence spectroscopy with variable-temperature irradiation using a home-built IBIL system and a GIC4117 2 × 1.7 MV tandem accelerator. Unlike previous static studies—limited to post-irradiation or [...] Read more.
To investigate the in situ irradiation effects of gallium nitride at varying temperatures, we combined ion beam-induced luminescence spectroscopy with variable-temperature irradiation using a home-built IBIL system and a GIC4117 2 × 1.7 MV tandem accelerator. Unlike previous static studies—limited to post-irradiation or single-temperature luminescence—we in situ tracked dynamic luminescence changes throughout irradiation, directly capturing the real-time responses of luminescent centers to coupled temperature-dose variations—a rare capability in prior work. To clarify how irradiation and temperature affect the luminescent centers of GaN, we integrated density functional theory (DFT) calculations with literature analysis, then resolved the yellow luminescence band into three emission centers via Gaussian deconvolution: 1.78 eV associated with C/O impurities, 1.94 eV linked to VGa, and 2.2 eV corresponding to CN defects. Using a single-exponential decay model, we further quantified the temperature- and dose-dependent decay rates of these centers under dual-variable temperature and dose conditions. Experimental results show that low-temperature irradiation such as at 100 K suppresses the migration and recombination of VGa/CN point defects, significantly enhancing the radiation tolerance of the 1.94 eV and 2.2 eV emission centers; meanwhile, it reduces non-radiative recombination center density, stabilizing free excitons and donor-bound excitons, thereby improving near-band-edge emission center resistance. Notably, the 1.94 eV emission center linked to gallium vacancies exhibits superior cryogenic radiation tolerance due to slower defect migration and more stable free exciton/donor-bound exciton states. Collectively, these findings reveal a synergistic regulation mechanism of temperature and radiation fluence on defect stability, addressing a key gap in static studies, providing a basis for understanding degradation mechanisms of gallium nitride-based devices under actual operating conditions (coexisting temperature fluctuations and continuous radiation), and offering theoretical/experimental support for optimizing radiation-hardened gallium nitride devices for extreme environments such as space or nuclear applications. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

23 pages, 3395 KB  
Article
Dynamic Response of a Double-Beam System Subjected to a Harmonic Moving Load
by Mingfei Lu, Xuenan Wang and Hui Li
Appl. Sci. 2026, 16(1), 514; https://doi.org/10.3390/app16010514 - 4 Jan 2026
Viewed by 291
Abstract
The dynamic behavior of a double-beam configuration subjected to a harmonic moving load was studied in this paper. The model was built to represent the wheel–track system that was composed of two infinite Timoshenko beams joined by uniformly spaced sleepers and supported by [...] Read more.
The dynamic behavior of a double-beam configuration subjected to a harmonic moving load was studied in this paper. The model was built to represent the wheel–track system that was composed of two infinite Timoshenko beams joined by uniformly spaced sleepers and supported by a continuous viscoelastic foundation. The response of the coupled beams to a moving harmonic excitation was first derived, after which the wheel–rail interaction was incorporated through a generalized Fourier series formulation. The associated Fourier coefficients were obtained from a finite system of algebraic equations imposed by the wheel–track contact conditions. The numerical simulation was carried out to compare the predictions of the Timoshenko and Euler–Bernoulli beam assumptions and to explore the influence of load speed and excitation frequency on the dynamic characteristics of the double-beam system. Comparative analysis reveals that Timoshenko beam theory predicts larger vertical displacements for rail, slab, and sleeper near the model’s cut-off frequencies (20 Hz and 30 Hz) than Euler–Bernoulli theory, with higher load velocities reducing the first cut-off frequency and amplifying peak amplitudes. The dynamic response exhibits two critical velocities at sub-cut-off frequencies, where rail displacements increase with load velocity, whereas this trend reverses when the load frequency meets or exceeds the cut-off frequencies, and no distinct peaks occur at 25 Hz and 40 Hz. The research findings are of great significance for the vibration propagation and vibration disaster prevention for shield tunnels during the train operation. Full article
Show Figures

Figure 1

19 pages, 3394 KB  
Article
Wide Beam Analysis of Phased EM Surfaces
by Jiayue He, Fan Yang, Xiaotao Xu and Shenheng Xu
Electronics 2026, 15(1), 191; https://doi.org/10.3390/electronics15010191 - 31 Dec 2025
Viewed by 293
Abstract
Phased electromagnetic (EM) surfaces offer a versatile platform for beamforming, yet their application to wide-beam radiation—essential for broadcasting and target tracking—has been hindered by the absence of a foundational analytical model. This article establishes an effective model, quantitatively linking the maximum achievable beamwidth [...] Read more.
Phased electromagnetic (EM) surfaces offer a versatile platform for beamforming, yet their application to wide-beam radiation—essential for broadcasting and target tracking—has been hindered by the absence of a foundational analytical model. This article establishes an effective model, quantitatively linking the maximum achievable beamwidth to the surface’s core physical parameters. A direct scaling equation is first derived for an idealized continuous aperture, revealing a proportionality among beamwidth, the quadratic phase coefficient, and aperture size, which demonstrates the potential for quasi-omnidirectional coverage. The model is then extended to practical scenarios, showing that the main-lobe taper is directly controlled by the aperture amplitude taper, establishing a decoupling principle for independent control of beam shape and width. Finally, by modeling the array factor of a discrete aperture, the trade-off between element spacing and maximum beamwidth is quantified, providing clear design rules to prevent grating lobe distortion. This work provides an intuitive, physics-based foundation for the systematic design and performance prediction of wide-beam phased EM surfaces. Full article
(This article belongs to the Special Issue Advanced Antennas and Propagation for Next-Gen Wireless)
Show Figures

Figure 1

28 pages, 3572 KB  
Article
Numerical Prediction for Reinforced Concrete Beams Subjected to Monotonic Fatigue Loading Using Various Concrete Damage Models
by Nagwa Ibrahim, Said Elkholy and Ahmed Godat
Buildings 2026, 16(1), 175; https://doi.org/10.3390/buildings16010175 - 30 Dec 2025
Viewed by 305
Abstract
In the literature, fatigue-loaded reinforced concrete (RC) beams have been the subject of several experimental investigations; however, few numerical studies have specifically examined this behavior. The primary goal of this study is to create and validate a comprehensive nonlinear finite element (FE) modeling [...] Read more.
In the literature, fatigue-loaded reinforced concrete (RC) beams have been the subject of several experimental investigations; however, few numerical studies have specifically examined this behavior. The primary goal of this study is to create and validate a comprehensive nonlinear finite element (FE) modeling framework that combines an existing concrete damage model with specialized modelling techniques (e.g., material modelling, structural modelling, mesh configuration) to forecast the behaviour of reinforced concrete beams under monotonic fatigue loads and track the failure progress. This was accomplished by implementing suitable constitutive and structural models pertaining to concrete and reinforcing steel using VecTor2 finite element software. The Lü concrete damage model, which accounts for the accumulated damage in the concrete at each loading cycle, was taken from the literature to enhance the numerical findings. A number of published experimental tests conducted under monotonic fatigue loading were used to assess the accuracy of the suggested numerical model. The obtained numerical results demonstrated that the FE model may be used to simulate the monotonic fatigue behaviour of various RC beam types. The monotonic fatigue results were significantly improved by applying the Lü concrete damage model. Additionally, the FE model was implemented into practice to offer valuable information on failure mechanisms, fracture patterns, and strain profiles at different loading cycles. Full article
Show Figures

Figure 1

16 pages, 5136 KB  
Article
Mechanical and Deformation Response of WJ-8B Rail Fastener Under Cyclic Lateral Loading
by Fengyu Zhang, Qidong Chen, Xiang Liu and Wei Zhang
Buildings 2026, 16(1), 100; https://doi.org/10.3390/buildings16010100 - 25 Dec 2025
Viewed by 196
Abstract
The mechanical performance of rail fasteners plays a crucial role in the track–structure interaction of high-speed railways. A reasonable lateral stiffness of the fastener system can enhance the stability and safety of train operation and prevent derailment accidents. Under seismic action, adjacent bridge [...] Read more.
The mechanical performance of rail fasteners plays a crucial role in the track–structure interaction of high-speed railways. A reasonable lateral stiffness of the fastener system can enhance the stability and safety of train operation and prevent derailment accidents. Under seismic action, adjacent bridge spans undergo reciprocating displacement, causing the rail-fastener system near the beam ends to be subjected to lateral cyclic forces. To investigate the mechanical and deformation behavior of the WJ-8B fastener system under lateral loading, low-cycle reciprocating loading tests were conducted on the rail-fastener system considering different bolt torques. The load–displacement curves and torque–rotation curves of the fastener system were obtained, and formulas for calculating the characteristic values of the mechanical properties of the WJ-8B fastener system were fitted, which show good agreement with the experimental results. The results indicate that the lateral mechanical behavior of the WJ-8B fastener exhibits significant nonlinear characteristics, marked by three distinct inflection points in the load–displacement curve that delineate five stages: initial stage, rail shearing stage, rail sliding stage, rail contact stage, and three-point contact. The bolt torque is positively correlated with the lateral stiffness of the fastener system. Increasing the torque from 115 N·m to 190 N·m enhances the lateral bearing capacity by 29.06% in the push direction and by 38.74% in the pull direction. Meanwhile, the system torque decreases by 21.45% in the push direction and increases by 21.14% in the pull direction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

35 pages, 2441 KB  
Article
Power Normalized and Fractional Power Normalized Least Mean Square Adaptive Beamforming Algorithm
by Yuyang Liu and Hua Wang
Electronics 2026, 15(1), 49; https://doi.org/10.3390/electronics15010049 - 23 Dec 2025
Viewed by 223
Abstract
With the rapid deployment of high-speed maglev transportation systems worldwide, the operational velocity, electromagnetic complexity, and channel dynamics have far exceeded those of conventional rail systems, imposing more stringent requirements on real-time capability, reliability, and interference robustness in wireless communication. In maglev environments [...] Read more.
With the rapid deployment of high-speed maglev transportation systems worldwide, the operational velocity, electromagnetic complexity, and channel dynamics have far exceeded those of conventional rail systems, imposing more stringent requirements on real-time capability, reliability, and interference robustness in wireless communication. In maglev environments exceeding 600 km/h, the channel becomes predominantly line-of-sight with sparse scatterers, exhibiting strong Doppler shifts, rapidly varying spatial characteristics, and severe interference, all of which significantly degrade the stability and convergence performance of traditional beamforming algorithms. Adaptive smart antenna technology has therefore become essential in high-mobility communication and sensing systems, as it enables real-time spatial filtering, interference suppression, and beam tracking through continuous weight updates. To address the challenges of slow convergence and high steady-state error in rapidly varying maglev channels, this work proposes a new Fractional Proportionate Normalized Least Mean Square (FPNLMS) adaptive beamforming algorithm. The contributions of this study are twofold. (1) A novel FPNLMS algorithm is developed by embedding a fractional-order gradient correction into the power-normalized and proportionate gain framework of PNLMS, forming a unified LMS-type update mechanism that enhances error tracking flexibility while maintaining O(L) computational complexity. This integrated design enables the proposed method to achieve faster convergence, improved robustness, and reduced steady-state error in highly dynamic channel conditions. (2) A unified convergence analysis framework is established for the proposed algorithm. Mean convergence conditions and practical step-size bounds are derived, explicitly incorporating the fractional-order term and generalizing classical LMS/PNLMS convergence theory, thereby providing theoretical guarantees for stable deployment in high-speed maglev beamforming. Simulation results verify that the proposed FPNLMS algorithm achieves significantly faster convergence, lower mean square error, and superior interference suppression compared with LMS, NLMS, FLMS, and PNLMS, demonstrating its strong applicability to beamforming in highly dynamic next-generation maglev communication systems. Full article
(This article belongs to the Special Issue 5G and Beyond Technologies in Smart Manufacturing, 2nd Edition)
Show Figures

Figure 1

33 pages, 4350 KB  
Review
Laser Processing Methods in Precision Silicon Carbide Wafer Exfoliation: A Review
by Tuğrul Özel and Faik Derya Ince
J. Manuf. Mater. Process. 2026, 10(1), 2; https://doi.org/10.3390/jmmp10010002 - 19 Dec 2025
Viewed by 946
Abstract
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical [...] Read more.
The rapid advancement of high-performance electronics has intensified the demand for wide-bandgap semiconductor materials capable of operating under high-power and high-temperature conditions. Among these, silicon carbide (SiC) has emerged as a leading candidate due to its superior thermal conductivity, chemical stability, and mechanical strength. However, the high cost and complexity of SiC wafer fabrication, particularly in slicing and exfoliation, remain significant barriers to its widespread adoption. Conventional methods such as wire sawing suffer from considerable kerf loss, surface damage, and residual stress, reducing material yield and compromising wafer quality. Additionally, techniques like smart-cut ion implantation, though capable of enabling thin-layer transfer, are limited by long thermal annealing durations and implantation-induced defects. To overcome these limitations, ultrafast laser-based processing methods, including laser slicing and stealth dicing (SD), have gained prominence as non-contact, high-precision alternatives for SiC wafer exfoliation. This review presents the current state of the art and recent advances in laser-based precision SiC wafer exfoliation processes. Laser slicing involves focusing femtosecond or picosecond pulses at a controlled depth parallel to the beam path, creating internal damage layers that facilitate kerf-free wafer separation. In contrast, stealth dicing employs laser-induced damage tracks perpendicular to the laser propagation direction for chip separation. These techniques significantly reduce material waste and enable precise control over wafer thickness. The review also reports that recent studies have further elucidated the mechanisms of laser–SiC interaction, revealing that femtosecond pulses offer high machining accuracy due to localized energy deposition, while picosecond lasers provide greater processing efficiency through multipoint refocusing but at the cost of increased amorphous defect formation. The review identifies multiphoton ionization, internal phase explosion, and thermal diffusion key phenomena that play critical roles in microcrack formation and structural modification during precision SiC wafer laser processing. Typical ultrafast-laser operating ranges include pulse durations from 120–450 fs (and up to 10 ps), pulse energies spanning 5–50 µJ, focal depths of 100–350 µm below the surface, scan speeds ranging from 0.05–10 mm/s, and track pitches commonly between 5–20 µm. In addition, the review provides quantitative anchors including representative wafer thicknesses (250–350 µm), typical laser-induced crack or modified-layer depths (10–40 µm and extending up to 400–488 µm for deep subsurface focusing), and slicing efficiencies derived from multi-layer scanning. The review concludes that these advancements, combined with ongoing progress in ultrafast laser technology, represent research opportunities and challenges in transformative shifts in SiC wafer fabrication, offering pathways to high-throughput, low-damage, and cost-effective production. This review highlights the comparative advantages of laser-based methods, identifies the research gaps, and outlines the challenges and opportunities for future research in laser processing for semiconductor applications. Full article
Show Figures

Figure 1

16 pages, 10882 KB  
Article
Experimental Research of Inter-Satellite Beaconless Laser Communication Tracking System Based on Direct Fiber Control
by Yue Zhao, Junfeng Han, Bo Peng and Caiwen Ma
Photonics 2025, 12(12), 1238; https://doi.org/10.3390/photonics12121238 - 18 Dec 2025
Viewed by 315
Abstract
We propose a compact, beaconless inter-satellite laser communication tracking system based on direct fiber control to address the complexity and resource demands of conventional pointing, acquisition, and tracking (PAT) architectures. Unlike traditional sensor-based or beacon-assisted schemes, the proposed method employs a piezoelectric ceramic [...] Read more.
We propose a compact, beaconless inter-satellite laser communication tracking system based on direct fiber control to address the complexity and resource demands of conventional pointing, acquisition, and tracking (PAT) architectures. Unlike traditional sensor-based or beacon-assisted schemes, the proposed method employs a piezoelectric ceramic tube (PCT) to generate high-frequency, small-amplitude nutation of the single-mode fiber (SMF) tip, enabling real-time alignment correction using only the coupled optical power of the communication signal. This fully closed-loop tracking approach operates without position sensors and eliminates the need for beam splitting, external beacon sources, or auxiliary position detectors. A theoretical model is developed to analyze the influence of algorithm parameters and optical spot jitter on dynamic tracking performance. Experimental results show that the closed-loop system reliably converges to the optical spot center, achieving a fine-tracking accuracy of 4.6 μrad and a disturbance suppression bandwidth of 200 Hz. By significantly simplifying the terminal architecture, the proposed approach provides an efficient and SWaP-optimized solution for inter-satellite and satellite-to-ground optical communication links. Full article
(This article belongs to the Special Issue Laser Communication Systems and Related Technologies)
Show Figures

Figure 1

19 pages, 2429 KB  
Article
Root Canal Detection on Endodontic Radiographs with Use of Viterbi Algorithm
by Barbara Obuchowicz, Joanna Zarzecka, Przemysław Mazurek, Marzena Jakubowska, Rafał Obuchowicz, Michał Strzelecki, Dorota Oszutowska-Mazurek, Adam Piórkowski and Julia Lasek
Appl. Sci. 2025, 15(24), 13142; https://doi.org/10.3390/app152413142 - 14 Dec 2025
Viewed by 350
Abstract
Periapical radiographs remain the first-line imaging modality in endodontics due to accessibility and low radiation dose, whereas cone-beam computed tomography (CBCT) is reserved for inconclusive cases or suspected anatomical complexity. We propose a physics- and geometry-aware preprocessing pipeline coupled with sliding-window Viterbi tracking [...] Read more.
Periapical radiographs remain the first-line imaging modality in endodontics due to accessibility and low radiation dose, whereas cone-beam computed tomography (CBCT) is reserved for inconclusive cases or suspected anatomical complexity. We propose a physics- and geometry-aware preprocessing pipeline coupled with sliding-window Viterbi tracking to enhance canal visibility and recover plausible root canal trajectories directly from routine periapical images. The pipeline standardizes row-wise brightness, compensates for the cone-like tooth density profile (Tukey window), and suppresses noise prior to dynamic-programming inference, requiring only minimal operator input (two-point orientation and region of interest). In a retrospective evaluation against micro-computed tomography (micro-CT)/CBCT reference anatomy, the approach accurately localized canals on periapicals under study conditions, suggesting potential as a rapid, chairside aid when 3D imaging is unavailable or deferred. Full article
(This article belongs to the Special Issue Computer-Vision-Based Biomedical Image Processing)
Show Figures

Figure 1

20 pages, 8380 KB  
Article
A 3-Bit Low-Profile High-Gain Transmissive Intelligent Surface for Beam Focusing and Steering Applications
by Zaed S. A. Abdulwali and Majeed A. S. Alkanhal
Micromachines 2025, 16(12), 1399; https://doi.org/10.3390/mi16121399 - 12 Dec 2025
Viewed by 388
Abstract
This paper presents a 3-bit transmissive intelligent surface (TIS) using a novel technique that employs a unit cell comprising loaded semi-loop dipole resonators. The two resonators are anti-symmetrically oriented along the H-plane, functioning as transmitter and receiver on opposite sides of the TIS. [...] Read more.
This paper presents a 3-bit transmissive intelligent surface (TIS) using a novel technique that employs a unit cell comprising loaded semi-loop dipole resonators. The two resonators are anti-symmetrically oriented along the H-plane, functioning as transmitter and receiver on opposite sides of the TIS. The unit cell, with 13.2 mm periodicity, achieves 360° phase variation in 45° steps while maintaining insertion loss below 2 dB at 10 GHz. A 17 × 17 array TIS is designed using ray tracing and phase shift compensation techniques, with phase profiles distributed across eight discrete varactor states. The implemented TIS demonstrates a 10.8 dB gain enhancement for a horn antenna source at 10 GHz while preserving antenna matching, polarization, and radiation efficiency. The design achieves beam steering capabilities up to 60° with ±2° precision across elevation, azimuth, and inclined angles, maintaining an average steering gain loss of 3 dB over a 400 MHz bandwidth. These characteristics make the proposed design particularly effective for modern wireless coverage extension and tracking applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

Back to TopTop