Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,978)

Search Parameters:
Keywords = autophagy process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1399 KiB  
Review
Lipid−lncRNA Crossroads: An Overview of Interactions Between Lipids and lncRNA
by Andrea Bayona-Hernandez, Ana Miladinović, Ludovica Antiga, Pavel Hozak, Martin Sztacho and Enrique Castano
Cells 2025, 14(15), 1193; https://doi.org/10.3390/cells14151193 (registering DOI) - 2 Aug 2025
Abstract
Long non-coding RNAs (lncRNAs) interact with a variety of biomolecules, including DNA, mRNAs, microRNA, and proteins, to regulate various cellular processes. Recently, their interactions with lipids have gained increasing attention as an emerging research area. Both lipids and lncRNAs play central roles in [...] Read more.
Long non-coding RNAs (lncRNAs) interact with a variety of biomolecules, including DNA, mRNAs, microRNA, and proteins, to regulate various cellular processes. Recently, their interactions with lipids have gained increasing attention as an emerging research area. Both lipids and lncRNAs play central roles in cellular regulation, and growing evidence reveals a complex interplay between these molecules. These interactions contribute to key biological functions, such as cancer progression, lipid droplet transport, autophagy, liquid−liquid phase separation, and the formation of organelles without membranes. Understanding the lipid−lncRNA interface opens new avenues for unraveling cellular regulation and disease mechanisms, holding great potential not only for elucidating the fundamental aspects of cellular biology but also for identifying innovative therapeutic targets for metabolic disorders and cancer. This review highlights the biological relevance of lipid–lncRNA interactions by exploring their roles in cellular organization, regulation, and diseases, including metabolic and cancer-related disorders. Full article
(This article belongs to the Section Cell Microenvironment)
12 pages, 2241 KiB  
Article
PDE Inhibitors and Autophagy Regulators Modulate CRE-Dependent Luciferase Activity in Neuronal Cells from the Mouse Suprachiasmatic Nucleus
by Erik Maronde and Abdelhaq Rami
Molecules 2025, 30(15), 3229; https://doi.org/10.3390/molecules30153229 (registering DOI) - 1 Aug 2025
Abstract
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly [...] Read more.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter. Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter. Results: In this study the different impacts of common PDE inhibitors and autophagy modulators on CRE-luciferase activity applied alone and in combination with known CRE-luciferase activating agents showed that (1) PDE3, 4 and 5 are present in SCNCRE cells, with (2) PDE3 being the most active and (3) the autophagy inhibitor 3-Methyladenin (3-MA) displaying PDE inhibitor-like behavior. Conclusions: Experiments provide evidence that, in addition to the extracellular signaling pathways components shown before to be involved in CRE-luciferase activity regulation like cAMP analogs, adenylate cyclase activators and beta-adrenoceptor agonists, cyclic nucleotide metabolism as realized by phosphodiesterase activity, or molecule/agents influencing processes like autophagy or inflammation, modulate transcriptional CRE-dependent activity in these cells. Specifically, we provide evidence that the autophagy inhibitor 3-MA, given that PDEs are expressed, may also act as a PDE inhibitor and inducer of CRE-mediated transcriptional activity. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 (registering DOI) - 1 Aug 2025
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

22 pages, 2141 KiB  
Article
Integrating Full-Length and Second-Generation Transcriptomes to Elucidate the ApNPV-Induced Transcriptional Reprogramming in Antheraea pernyi Midgut
by Xinlei Liu, Ying Li, Xinfeng Yang, Xuwei Zhu, Fangang Meng, Yaoting Zhang and Jianping Duan
Insects 2025, 16(8), 792; https://doi.org/10.3390/insects16080792 (registering DOI) - 31 Jul 2025
Abstract
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 [...] Read more.
The midgut of Antheraea pernyi plays a critical role in antiviral defense. However, its transcriptional complexity remains poorly understood. Here, a full-length (FL) transcriptome atlas of A. pernyi midgut was developed by integrating PacBio Iso-Seq and RNA-seq techniques. The transcriptome sequences included 1850 novel protein-coding genes, 17,736 novel alternative isoforms, 1664 novel long non-coding RNAs (lncRNAs), and 858 transcription factors (TFs). In addition, 2471 alternative splicing (AS) events and 3070 alternative polyadenylation (APA) sites were identified. Moreover, 3426 and 4796 differentially expressed genes (DEGs) and isoforms were identified after ApNPV infection, respectively, besides the differentially expressed lncRNAs (164), TFs (171), and novel isoforms of ApRelish (1) and ApSOCS2 (4). Enrichment analyses showed that KEGG pathways related to metabolism were suppressed, whereas GO terms related to DNA synthesis and replication were induced. Furthermore, the autophagy and apoptosis pathways were significantly enriched among the upregulated genes. Protein–protein interaction network (PPI) analysis revealed the coordinated downregulation of genes involved in mitochondrial ribosomes, V-type and F-type ATPases, and oxidative phosphorylation, indicating the disruption of host energy metabolism and organelle acidification. Moreover, coordinated upregulation of genes associated with cytoplasmic ribosomes was observed, suggesting that the infection by ApNPV interferes with host translational machinery. These results show that ApNPV infection reprograms energy metabolism, biosynthetic processes, and immune response in A. pernyi midgut. Our study provides a foundation for elucidating the mechanisms of A. pernyi–virus interactions, particularly how the viruses affect host defense strategies. Full article
(This article belongs to the Special Issue Genomics and Molecular Biology in Silkworm)
Show Figures

Graphical abstract

27 pages, 4786 KiB  
Article
Whole RNA-Seq Analysis Reveals Longitudinal Proteostasis Network Responses to Photoreceptor Outer Segment Trafficking and Degradation in RPE Cells
by Rebecca D. Miller, Isaac Mondon, Charles Ellis, Anna-Marie Muir, Stephanie Turner, Eloise Keeling, Htoo A. Wai, David S. Chatelet, David A. Johnson, David A. Tumbarello, Andrew J. Lotery, Diana Baralle and J. Arjuna Ratnayaka
Cells 2025, 14(15), 1166; https://doi.org/10.3390/cells14151166 - 29 Jul 2025
Viewed by 311
Abstract
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers [...] Read more.
RNA-seq analysis of the highly differentiated human retinal pigment epithelial (RPE) cell-line ARPE-19, cultured on transwells for ≥4 months, yielded 44,909 genes showing 83.35% alignment with the human reference genome. These included mRNA transcripts of RPE-specific genes and those involved in retinopathies. Monolayers were fed photoreceptor outer segments (POS), designed to be synchronously internalised, mimicking homeostatic RPE activity. Cells were subsequently fixed at 4, 6, 24 and 48 h when POS were previously shown to maximally co-localise with Rab5, Rab7, LAMP/lysosomes and LC3b/autophagic compartments. A comprehensive analysis of differentially expressed genes involved in proteolysis revealed a pattern of gene orchestration consistent with POS breakdown in the autophagy-lysosomal pathway. At 4 h, these included elevated upstream signalling events promoting early stages of cargo transport and endosome maturation compared to RPE without POS exposure. This transcriptional landscape altered from 6 h, transitioning to promoting cargo degradation in autolysosomes by 24–48 h. Longitudinal scrutiny of mRNA transcripts revealed nuanced differences even within linked gene networks. POS exposure also initiated transcriptional upregulation in ubiquitin proteasome and chaperone-mediated systems within 4–6 h, providing evidence of cross-talk with other proteolytic processes. These findings show detailed evidence of transcriptome-level responses to cargo trafficking and processing in RPE cells. Full article
(This article belongs to the Special Issue Retinal Pigment Epithelium in Degenerative Retinal Diseases)
Show Figures

Graphical abstract

16 pages, 694 KiB  
Review
Modulating Benign Prostatic Hyperplasia Through Physical Activity—The Emerging Role of Myokines: A Narrative Review
by Saad Alshahrani
Medicina 2025, 61(8), 1362; https://doi.org/10.3390/medicina61081362 - 28 Jul 2025
Viewed by 231
Abstract
Benign prostatic hyperplasia (BPH) is a multifactorial condition that is highly prevalent and affects aging males. It frequently results in lower urinary tract symptoms (LUTS) and a reduced quality of life. While hormonal dysregulation and chronic inflammation have long been implicated in BPH [...] Read more.
Benign prostatic hyperplasia (BPH) is a multifactorial condition that is highly prevalent and affects aging males. It frequently results in lower urinary tract symptoms (LUTS) and a reduced quality of life. While hormonal dysregulation and chronic inflammation have long been implicated in BPH pathogenesis, recent evidence highlights the role of physical activity in modulating prostate health. In this narrative review, evidence from quantitative studies examining the effect of exercise on BPH risk and symptom severity was first synthesized. Collectively, these studies suggest that regular physical activity is associated with a lower incidence and reduced progression of BPH. The potential mechanisms through which exercise may exert protective effects on the prostate were then explored. These include modulation of sympathetic nervous system activity, alterations in hormonal profiles (e.g., testosterone and insulin), suppression of chronic inflammation and oxidative stress, and the promotion of autophagy within prostatic tissue. Central to these mechanisms is the role of myokines—signaling molecules secreted by skeletal muscle during exercise. Key myokines, such as irisin, interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF), and myostatin, are reviewed in the context of prostate health. These molecules regulate inflammatory pathways, metabolic processes, and tissue remodeling. For instance, exercise-induced reductions in myostatin are linked to improved insulin sensitivity and decreased fat accumulation, while elevated irisin and BDNF levels may exert anti-inflammatory and metabolic benefits relevant to BPH pathophysiology. Although direct causal evidence linking myokines to BPH is still emerging, their biological plausibility and observed systemic effects suggest a promising avenue for non-pharmacological intervention. Future research should focus on identifying the specific myokines involved, elucidating their molecular mechanisms within the prostate, and evaluating their therapeutic potential in clinical trials. Full article
(This article belongs to the Section Urology & Nephrology)
Show Figures

Figure 1

24 pages, 2301 KiB  
Review
Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration
by Agnieszka Nowacka, Maciej Śniegocki, Martyna Śniegocka and Ewa A. Ziółkowska
Antioxidants 2025, 14(8), 911; https://doi.org/10.3390/antiox14080911 - 25 Jul 2025
Viewed by 625
Abstract
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms [...] Read more.
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms are becoming increasingly important. This review focuses on nicotinamide (vitamin B3) and pyridoxine (vitamin B6), two essential micronutrients found in functional foods, which play complementary roles in redox regulation, immune balance, and muscle repair. Nicotinamide supports nicotinamide adenine dinucleotide (NAD+) metabolism, boosts mitochondrial function, and activates sirtuin pathways involved in autophagy and stem cell maintenance. Pyridoxine, via its active form pyridoxal 5′-phosphate (PLP), is key to amino acid metabolism, antioxidant defense, and the regulation of inflammatory cytokines. We summarize how these vitamins influence major molecular pathways such as Sirtuin1 (SIRT1), protein kinase B (AKT)/mechanistic target of rapamycin (mTOR), Nuclear factor-κB (NF-κB), and Nrf2, contributing to improved myogenic differentiation and protection of the aging muscle environment. We also highlight emerging preclinical and clinical data, including studies suggesting possible synergy between B3 and B6. Finally, we discuss how biomarkers such as PLP, nicotinamide mononucleotide (NMN), and C-reactive protein (CRP) may support the development of personalized nutrition strategies using these vitamins. Safe, accessible, and mechanistically grounded, nicotinamide and pyridoxine offer promising tools for sarcopenia prevention and healthy aging. Full article
(This article belongs to the Topic Functional Food and Anti-Inflammatory Function)
Show Figures

Figure 1

20 pages, 12367 KiB  
Article
Chemosensitizer Effects of Cisplatin- and 5-Fluorouracil-Treated Hepatocellular Carcinomas by Lidocaine
by Teng-Wei Chen, Hsiu-Lung Fan, Shu-Ting Liu and Shih-Ming Huang
Int. J. Mol. Sci. 2025, 26(15), 7137; https://doi.org/10.3390/ijms26157137 - 24 Jul 2025
Viewed by 223
Abstract
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This [...] Read more.
Approximately 90% of liver cancer cases are classified as hepatocellular carcinomas (HCCs), with chemotherapy and immunotherapy being the most recommended treatment options. While conventional chemotherapy specifically targets rapidly dividing cancer cells, it can also impact on healthy cells that are proliferating quickly. This collateral damage to healthy cells, along with the potential for cancer cells to develop resistance, presents significant challenges for conventional chemotherapy in liver cancer patients. Hepatic artery infusion of chemotherapy (HAIC) generally leads to reduced toxicity and fewer side effects. The process of catheter insertion is usually performed under local anesthesia, with lidocaine being the preferred choice to combine with various chemotherapeutics in HCC treatment. In our study, we explored the effects of repurposing lidocaine in combination with cisplatin or 5-fluorouracil (5-FU) on two HCC cell lines, HepG2 and Hep3B. Our cytotoxicity analysis revealed that lidocaine functions as a chemosensitizer for cisplatin and 5-FU in both HepG2 and Hep3B cells. Specifically, we observed an increase in the subG1 population and a reduction in cytosolic reactive oxygen species in cisplatin- or 5-FU-treated HepG2 and Hep3B cells. Interestingly, lidocaine selectively decreased the reduced/oxidized glutathione ratio in cisplatin- or 5-FU-treated HepG2 cells but not in Hep3B cells. Furthermore, lidocaine induced endoplasmic reticulum stress, apoptosis, mitochondrial membrane depolarization, lipid peroxidation, and autophagy while suppressing cellular proliferation HepG2 and Hep3B cells. In conclusion, our study demonstrates the synergistic potential of combining lidocaine with cisplatin or 5-FU for the treatment of HCC, indicating that lidocaine may serve as an effective chemosensitizer. These findings highlight a new clinical advantage of using repurposing lidocaine as a chemosensitizer in the current HAIC procedure, suggesting that this combination warrants further exploration through rigorous clinical trials. In the future, we can better optimize therapeutic regimens, potentially leading to improved patient outcomes in HCCs. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: Third Edition)
Show Figures

Figure 1

21 pages, 32710 KiB  
Article
Differences in Starvation-Induced Autophagy Response and miRNA Expression Between Rat Mammary Epithelial and Cancer Cells: Uncovering the Role of miR-218-5p
by Mateusz Gotowiec, Antoni Smoliński, Katarzyna Marcinkowska, Wiktor Pascal and Paweł Krzysztof Włodarski
Cancers 2025, 17(15), 2446; https://doi.org/10.3390/cancers17152446 - 23 Jul 2025
Viewed by 293
Abstract
Background: Breast cancer (BC) is highly heterogeneous, with varying molecular characteristics, such as reliance on autophagy. Autophagy is a critical cellular degradation process that helps cells survive under stress, but its regulation can be influenced by altered microRNA (miRNA) expression. Studying miRNA [...] Read more.
Background: Breast cancer (BC) is highly heterogeneous, with varying molecular characteristics, such as reliance on autophagy. Autophagy is a critical cellular degradation process that helps cells survive under stress, but its regulation can be influenced by altered microRNA (miRNA) expression. Studying miRNA changes during starvation-induced autophagy in both mammary epithelial cells and BC cells could reveal potential molecular therapy targets. Methods: Rat mammary gland healthy epithelial and cancer cells were subjected to starvation, and differences in proliferation, migration, invasion, autophagy, and expression of autophagy-associated miRNAs were determined. Afterward, we assessed the effects of miR-218-5p modulation on the aforementioned processes. Results: Starvation-induced autophagy reduced the proliferation of all cells and increased the invasive and migratory capacity of cancer cells (p ≤ 0.05). We identified a miRNA signature related to starvation, comprising twenty-seven miRNAs. One miRNA had a significantly elevated baseline expression, while another six, including miR-218-5p, had a significantly lower basal expression in cancer cells compared to healthy cells (p ≤ 0.05). However, starvation caused significant miRNA expression changes, with miR-218-5p being upregulated specifically in cancer cells (p = 0.20–0.01). Functional studies on the role of miR-218-5p show that its inhibition decreases migration and leads to autophagosome accumulation. The study of miR-218-5p molecular targets has shown that its inhibition of sorting nexin 18 (SNX18) may act as an important regulator of the starvation-induced response in cancer cells. Conclusions: The baseline expression of miRNA related to starvation and autophagy differs between rat mammary gland cancer and healthy cells. The response to starvation also varies between cancer cells and normal cells. Starvation induces BC-specific miRNA dysregulation, affecting particularly miR-218-5p, which acts via SNX18, promoting the cancer cells’ survival. Full article
(This article belongs to the Special Issue The Role of Apoptosis and Autophagy in Cancer)
Show Figures

Figure 1

27 pages, 1146 KiB  
Review
Biological Modulation of Autophagy by Nanoplastics: A Current Overview
by Francesco Fanghella, Mirko Pesce, Sara Franceschelli, Valeria Panella, Osama Elsallabi, Tiziano Lupi, Benedetta Rizza, Maria Giulia Di Battista, Annalisa Bruno, Patrizia Ballerini, Antonia Patruno and Lorenza Speranza
Int. J. Mol. Sci. 2025, 26(15), 7035; https://doi.org/10.3390/ijms26157035 - 22 Jul 2025
Viewed by 345
Abstract
Nanoplastics (NPs), an emerging class of environmental pollutants, are increasingly recognized for their potential to interfere with critical cellular processes. Autophagy, a conserved degradative pathway essential for maintaining cellular homeostasis and adaptation to stress, has recently become a focal point of nanotoxicology research. [...] Read more.
Nanoplastics (NPs), an emerging class of environmental pollutants, are increasingly recognized for their potential to interfere with critical cellular processes. Autophagy, a conserved degradative pathway essential for maintaining cellular homeostasis and adaptation to stress, has recently become a focal point of nanotoxicology research. This review synthesizes current evidence on the interactions between NPs and autophagic pathways across diverse biological systems. Findings indicate that NPs can trigger autophagy as an early cellular response; however, prolonged exposure may lead to autophagic dysfunction, contributing to impaired cell viability and disrupted signaling. Particular attention is given to the physiochemical properties of NPs such as size, surface charge, and polymer type, which influence cellular uptake and intracellular trafficking. We also highlight key mechanistic pathways, including oxidative stress and mTOR modulation. Notably, most available studies focus almost exclusively on polystyrene (PS)-based NPs, with limited data on other types of polymers, and several reports lack comprehensive assessment of autophagic flux or downstream effects. In conclusion, a better understanding of NP–autophagy crosstalk—particularly beyond PS—is crucial to evaluate the real toxic potential of NPs and guide future research in human health and nanotechnology. Full article
(This article belongs to the Special Issue New Insights of Autophagy and Apoptosis in Cells)
Show Figures

Figure 1

33 pages, 1553 KiB  
Review
Multifaceted Human Antigen R (HuR): A Key Player in Liver Metabolism and MASLD
by Natalie Eppler, Elizabeth Jones, Forkan Ahamed and Yuxia Zhang
Livers 2025, 5(3), 33; https://doi.org/10.3390/livers5030033 - 21 Jul 2025
Viewed by 452
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease worldwide, affecting approximately 25–30% of the global adult population and highlighting the urgent need for effective therapeutics and prevention strategies. MASLD is characterized by excessive hepatic lipid accumulation [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease worldwide, affecting approximately 25–30% of the global adult population and highlighting the urgent need for effective therapeutics and prevention strategies. MASLD is characterized by excessive hepatic lipid accumulation and can progress, in a subset of patients, to metabolic dysfunction-associated steatohepatitis (MASH), a pro-inflammatory and pro-fibrotic condition associated with increased risk of liver cirrhosis and hepatocellular carcinoma. Although the molecular drivers of MASLD progression remain incompletely understood, several key metabolic pathways—such as triglyceride handling, cholesterol catabolism, bile acid metabolism, mitochondrial function, and autophagy—are consistently dysregulated in MASLD livers. This narrative review summarizes primary literature and highlights insights from recent reviews on the multifaceted role of the mRNA-binding protein Human antigen R (HuR) in the post-transcriptional regulation of critical cellular processes, including nutrient metabolism, cell survival, and stress responses. Emerging evidence underscores HuR’s essential role in maintaining liver homeostasis, particularly under metabolic stress conditions characteristic of MASLD, with hepatocyte-specific HuR depletion associated with exacerbated disease severity. Moreover, comorbid conditions such as obesity, type 2 diabetes mellitus, and cardiovascular disease not only exacerbate MASLD progression but also involve HuR dysregulation in extrahepatic tissues, further contributing to liver dysfunction. A deeper understanding of HuR-regulated post-transcriptional networks across metabolic organs may enable the development of targeted therapies aimed at halting or reversing MASLD progression. Full article
Show Figures

Figure 1

24 pages, 327 KiB  
Review
Genetic Landscape of Kawasaki Disease: An Update
by Taru Goyal, Saniya Sharma, Rakesh Kumar Pilania, Kajol Jawallia, Sanchi Chawla, Madhubala Sharma, Monica Rawat, Vaishali Thakur, Urvi Arya, Anoop Kumar, Manpreet Dhaliwal, Vignesh Pandiarajan, Amit Rawat and Surjit Singh
Lymphatics 2025, 3(3), 21; https://doi.org/10.3390/lymphatics3030021 - 20 Jul 2025
Viewed by 281
Abstract
Kawasaki disease (KD), first identified in 1967 by Dr. Tomisaku Kawasaki, is an acute, self-limited vasculitis and remains the leading cause of acquired heart disease in children worldwide, particularly affecting those under the age of five. Clinically, it presents with persistent fever, mucocutaneous [...] Read more.
Kawasaki disease (KD), first identified in 1967 by Dr. Tomisaku Kawasaki, is an acute, self-limited vasculitis and remains the leading cause of acquired heart disease in children worldwide, particularly affecting those under the age of five. Clinically, it presents with persistent fever, mucocutaneous inflammation, skin rashes, and lymphadenopathy, with a marked tendency to involve the coronary arteries, potentially leading to serious complications such as coronary artery aneurysms. Despite extensive research spanning more than five decades, the precise etiology of KD remains unclear. However, accumulating evidence supports the significant role of genetic predisposition, highlighting the contribution of inherited factors in modulating immune responses and influencing disease susceptibility and severity. Emerging evidence highlights genetic susceptibility as pivotal, with genome-wide studies identifying polymorphisms in immune-related genes, such as ITPKC, CASP3, BLK, CD40, and ORAI1, which modulate disease risk and coronary complications. Epigenetic mechanisms, including DNA methylation and non-coding RNAs, bridge the gap between genetic and environmental factors, regulating immune responses and endothelial activation. Furthermore, emerging insights into autophagy-related processes provide a deeper understanding of the molecular mechanisms underlying the disease. This review aims to explore the current knowledge on the genetic landscape of KD, examine how these findings contribute to our understanding of its pathophysiology, and investigate the potential for genetically targeted therapeutic strategies in the future. Full article
26 pages, 1698 KiB  
Review
Research Progress on the Functional Regulation Mechanisms of ZKSCAN3
by Jianxiong Xu, Xinzhe Li, Jingjing Xia, Wenfang Li and Zhengding Su
Biomolecules 2025, 15(7), 1016; https://doi.org/10.3390/biom15071016 - 14 Jul 2025
Viewed by 447
Abstract
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating [...] Read more.
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating protein–protein interaction, and a KRAB repression domain implicated in transcriptional regulation. Post-translational modifications, such as phosphorylation and ubiquitination, dynamically modulate its subcellular localization and activity, enabling context-dependent functional plasticity. Functionally, ZKSCAN3 acts as a master switch in autophagy by repressing the transcription of autophagy-related genes under nutrient-replete conditions, while its nuclear-cytoplasmic shuttling under stress conditions links metabolic reprogramming to cellular survival. Emerging evidence also underscores its paradoxical roles in cancer: it suppresses tumor initiation by maintaining genomic stability yet promotes metastasis through epithelial–mesenchymal transition induction. Furthermore, epigenetic mechanisms, including promoter methylation and non-coding RNA regulation, fine-tune ZKSCAN3 expression, contributing to tissue-specific outcomes. Despite these insights, gaps remain in understanding the structural determinants governing its interaction with chromatin-remodeling complexes and the therapeutic potential of targeting ZKSCAN3 in diseases. Future investigations should prioritize integrating multi-omics approaches to unravel context-specific regulatory networks and explore small-molecule modulators for translational applications. This comprehensive analysis provides a framework for advancing our mechanistic understanding of ZKSCAN3 and its implications in human health and disease. This review synthesizes recent advances in elucidating the regulatory networks and functional complexity of ZKSCAN3, highlighting its dual roles in physiological and pathological contexts. Full article
(This article belongs to the Special Issue Spotlight on Hot Cancer Biological Biomarkers)
Show Figures

Figure 1

29 pages, 1189 KiB  
Review
Decoding Skin Aging: A Review of Mechanisms, Markers, and Modern Therapies
by Jorge Naharro-Rodriguez, Stefano Bacci, Maria Luisa Hernandez-Bule, Alfonso Perez-Gonzalez and Montserrat Fernandez-Guarino
Cosmetics 2025, 12(4), 144; https://doi.org/10.3390/cosmetics12040144 - 10 Jul 2025
Viewed by 1596
Abstract
Skin aging is a multifactorial process driven by both intrinsic mechanisms—such as telomere shortening, oxidative stress, hormonal decline, and impaired autophagy—and extrinsic influences including ultraviolet radiation, pollution, smoking, and diet. Together, these factors lead to the structural and functional deterioration of the skin, [...] Read more.
Skin aging is a multifactorial process driven by both intrinsic mechanisms—such as telomere shortening, oxidative stress, hormonal decline, and impaired autophagy—and extrinsic influences including ultraviolet radiation, pollution, smoking, and diet. Together, these factors lead to the structural and functional deterioration of the skin, manifesting as wrinkles, pigmentation disorders, thinning, and reduced elasticity. This review provides an integrative overview of the biological, molecular, and clinical dimensions of skin aging, emphasizing the interplay between inflammation, extracellular matrix degradation, and senescence-associated signaling pathways. We examine histopathological hallmarks and molecular markers and discuss the influence of genetic and ethnic variations on aging phenotypes. Current therapeutic strategies are explored, ranging from topical agents (e.g., retinoids, antioxidants, niacinamide) to procedural interventions such as lasers, intense pulsed light, photodynamic therapy, microneedling, and injectable biostimulators. Special attention is given to emerging approaches such as microneedle delivery systems, with mention of exosome-based therapies. The review underscores the importance of personalized anti-aging regimens based on biological age, phototype, and lifestyle factors. As the field advances, integrating mechanistic insights with individualized treatment selection will be key to optimizing skin rejuvenation and preserving long-term dermal health. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

23 pages, 1882 KiB  
Review
Epigenetic Drivers of Chemoresistance in Nucleobase and Nucleoside Analog Therapies
by John Kaszycki and Minji Kim
Biology 2025, 14(7), 838; https://doi.org/10.3390/biology14070838 - 9 Jul 2025
Viewed by 543
Abstract
Nucleobase and nucleoside analogs are critical components of antimetabolite chemotherapy treatments used to disrupt DNA replication and induce apoptosis in rapidly proliferating cancer cells. However, the development of resistance to these agents remains a major clinical challenge. This review explores the epigenetic mechanisms [...] Read more.
Nucleobase and nucleoside analogs are critical components of antimetabolite chemotherapy treatments used to disrupt DNA replication and induce apoptosis in rapidly proliferating cancer cells. However, the development of resistance to these agents remains a major clinical challenge. This review explores the epigenetic mechanisms that contribute to acquired chemoresistance, focusing on DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). These epigenetic alterations regulate key processes such as DNA repair, drug metabolism, cell transport, and autophagy, enabling cancer cells to survive and resist therapeutic pressure. We highlight how dysregulation of DNA methyltransferases (DNMTs) and histone acetyltransferases (HATs) modulates expression of transporters (e.g., hENT1, ABCB1), DNA repair enzymes (e.g., Polβ, BRCA1/2), and autophagy-related genes (e.g., CSNK2A1, BNIP3). Furthermore, emerging roles for long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in regulating nucleoside export and DNA damage response pathways underscore their relevance as therapeutic targets. The interplay of these epigenetic modifications drives resistance to agents such as gemcitabine and 5-fluorouracil across multiple tumor types. We also discuss recent progress in therapeutic interventions, including DNMT and HDAC inhibitors, RNA-based therapeutics, and CRISPR-based epigenome editing. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

Back to TopTop