Genetic Landscape of Kawasaki Disease: An Update
Abstract
1. Introduction
2. Genetic Susceptibility and the Role of Host Genomic Variability
2.1. Immune System-Related Genes
2.1.1. MHC Class I and II Genes
2.1.2. FCGR2A
2.1.3. CD40/CD40L Pathway
2.1.4. IL-1β (Interleukin-1 Beta)
2.1.5. BLK
2.1.6. TNF (Tumour Necrosis Factor)
2.2. Calcium Signaling Pathway
2.2.1. ITPKC
2.2.2. ORAI1
2.2.3. CASP3
2.2.4. STIM1
2.2.5. SLC8A1
2.3. TGF-β Pathway
2.4. Autophagy Pathway
2.5. Miscellaneous Genes
2.6. Host Defense and Microbial Interactions
2.7. Impact of Genetic Variants on KD Susceptibility, CAAs, IVIg Resistance, and BCG Site Reactivation
2.8. Gene–Environment Interactions
2.9. Advances in Genetic Testing and Personalized Medicine
3. Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pilania, R.K.; Tremoulet, A.H.; Prinja, S.; Dahdah, N.; Singh, S. Kawasaki disease: The most common cause of acquired heart disease among children globally. Cardiol. Young 2025, 35, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Jone, P.-N.; Tremoulet, A.; Choueiter, N.; Dominguez, S.R.; Harahsheh, A.S.; Mitani, Y.; Zimmerman, M.; Lin, M.-T.; Friedman, K.G. Update on Diagnosis and Management of Kawasaki Disease: A Scientific Statement From the American Heart Association. Circulation 2024, 150, e481–e500. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.-C. Diagnosis, Progress, and Treatment Update of Kawasaki Disease. Int. J. Mol. Sci. 2023, 24, 13948. [Google Scholar] [CrossRef]
- Rowley, A.H.; Shulman, S.T. The Epidemiology and Pathogenesis of Kawasaki Disease. Front. Pediatr. 2018, 6, 374. [Google Scholar] [CrossRef]
- Rodó, X.; Curcoll, R.; Robinson, M.; Ballester, J.; Burns, J.C.; Cayan, D.R.; Lipkin, W.I.; Williams, B.L.; Couto-Rodriguez, M.; Nakamura, Y.; et al. Tropospheric winds from northeastern China carry the etiologic agent of Kawasaki disease from its source to Japan. Proc. Natl. Acad. Sci. USA 2014, 111, 7952–7957. [Google Scholar] [CrossRef]
- Noval Rivas, M.; Arditi, M. Kawasaki disease: Pathophysiology and insights from mouse models. Nat. Rev. Rheumatol. 2020, 16, 391–405. [Google Scholar] [CrossRef]
- Onouchi, Y. The genetics of Kawasaki disease. Int. J. Rheum. Dis. 2018, 21, 26–30. [Google Scholar] [CrossRef]
- Fujita, Y.; Nakamura, Y.; Sakata, K.; Hara, N.; Kobayashi, M.; Nagai, M.; Yanagawa, H.; Kawasaki, T. Kawasaki disease in families. Pediatrics 1989, 84, 666–669. [Google Scholar] [CrossRef]
- Xie, X.; Shi, X.; Liu, M. The Roles of Genetic Factors in Kawasaki Disease: A Systematic Review and Meta-analysis of Genetic Association Studies. Pediatr. Cardiol. 2018, 39, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.; Ae, R.; Masuda, H.; Kosami, K.; Matsumura, M.; Makino, N.; Matsubara, Y.; Sasahara, T.; Nakamura, Y.M. Clinical Characteristics of Patients With Kawasaki Disease Whose Siblings Had the Same Disease. Pediatr. Infect. Dis. J. 2021, 40, 531–536. [Google Scholar] [CrossRef]
- Amos, W.; Driscoll, E.; Hoffman, J.I. Candidate genes versus genome-wide associations: Which are better for detecting genetic susceptibility to infectious disease? Proc. R. Soc. B Biol. Sci. 2011, 278, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- González-Gay, M.Á.; Heras-Recuero, E.; Blázquez-Sánchez, T.; Caraballo-Salazar, C.; Rengifo-García, F.; Castaneda, S.; Martín, J.; Martín, J. Genetics of vasculitis. Best Pract. Res. Clin. Rheumatol. 2024, 38, 101969. [Google Scholar] [CrossRef] [PubMed]
- Onouchi, Y.; Ozaki, K.; Burns, J.C.; Shimizu, C.; Terai, M.; Hamada, H.; Honda, T.; Suzuki, H.; Suenaga, T.; Takeuchi, T.; et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat. Genet. 2012, 44, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Krensky, A.M.; Grady, S.; Shanley, K.M.; Berenberg, W.; Yunis, E.J. Epedimic and endemic HLA-B and DR associations in mucocutaneous lymph node syndrome. Hum. Immunol. 1983, 6, 75–77. [Google Scholar] [CrossRef]
- Kaslow, R.A.; Bailowitz, A.; Lin, F.Y.; Koslowe, P.; Simonis, T.; Israel, E. Association of epidemic kawasaki syndrome with the HLA-A2, B44, Cw5 antigen combination. Arthritis Rheum. 1985, 28, 938–940. [Google Scholar] [CrossRef]
- Kato, S.; Kimura, M.; Tsuji, K.; Kusakawa, S.; Asai, T.; Juji, T.; Kawasaki, T. HLA antigens in Kawasaki disease. Pediatrics 1978, 61, 252–255. [Google Scholar] [CrossRef]
- Keren, G.; Danon, Y.L.; Orcad, S.; Kalt, R.; Gazit, E. HLA Bw51 is increased in mucocutaneous lymph node syndrome in Israeli patients. Tissue Antigens 1982, 20, 144–146. [Google Scholar] [CrossRef]
- Oh, J.H.; Han, J.W.; Lee, S.J.; Lee, K.Y.; Suh, B.K.; Koh, D.K.; Lee, J.S.; Oh, C.K.; Kim, T.G.; Choi, H.B. Polymorphisms of Human Leukocyte Antigen Genes in Korean Children with Kawasaki Disease. Pediatr. Cardiol. 2008, 29, 402–408. [Google Scholar] [CrossRef]
- Huang, F.Y.; Chang, T.Y.; Chen, M.R.; Hsu, C.H.; Lee, H.C.; Lin, S.P.; Kao, H.-A.; Chiu, N.-C.; Chi, H.; Liu, T.Y.-C.; et al. Genetic Variations of HLA-DRB1 and Susceptibility to Kawasaki Disease in Taiwanese Children. Hum. Immunol. 2007, 68, 69–74. [Google Scholar] [CrossRef]
- Huang, F.-Y.; Lee, Y.-J.; Chen, M.-R.; Hsu, C.-H.; Lin, S.-P.; Sung, T.-C.; Chang, S.-C.; Chang, J.-G. Polymorphism of Transmembrane Region of MICA Gene and Kawasaki Disease. Exp. Clin. Immunogenet. 2000, 17, 130–137. [Google Scholar] [CrossRef]
- Kwon, Y.-C.; Kim, J.-J.; Yun, S.W.; Yu, J.J.; Yoon, K.L.; Lee, K.-Y.; Kil, H.-R.; Kim, G.B.; Han, M.-K.; Song, M.S.; et al. Male-specific association of the FCGR2A His167Arg polymorphism with Kawasaki disease. PLoS ONE 2017, 12, e0184248. [Google Scholar] [CrossRef]
- Lou, J.; Zhong, R.; Shen, N.; Lu, X.-Z.; Ke, J.-T.; Duan, J.-Y.; Qi, Y.-Q.; Wang, Y.-J.; Zhang, Q.; Wang, W.; et al. Systematic Confirmation Study of GWAS-Identified Genetic Variants for Kawasaki Disease in A Chinese Population. Sci. Rep. 2015, 5, 8194. [Google Scholar] [CrossRef] [PubMed]
- Chatzikyriakidou, A.; Aidinidou, L.; Giannopoulos, A.; Papadopoulou-Legbelou, K.; Kalinderi, K.; Fidani, L. Absence of association of FCGR2A gene polymorphism rs1801274 with Kawasaki disease in Greek patients. Cardiol. Young 2015, 25, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Taniuchi, S.; Masuda, M.; Teraguchi, M.; Ikemoto, Y.; Komiyama, Y.; Takahashi, H.; Kino, M.; Kobayashi, Y. Polymorphism of Fcγ RIIa May Affect the Efficacy of γ-Globulin Therapy in Kawasaki Disease. J. Clin. Immunol. 2005, 25, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Biezeveld, M.; Geissler, J.; Merkus, M.; Kuipers, I.M.; Ottenkamp, J.; Kuijpers, T. The involvement of Fc gamma receptor gene polymorphisms in Kawasaki disease. Clin. Exp. Immunol. 2006, 147, 106–111. [Google Scholar] [CrossRef]
- Wang, Z.; Geng, P.-L. CD32a polymorphism rs1801274 affects the risk of Kawasaki disease. Artif. Cells Nanomed. Biotechnol. 2020, 48, 620–626. [Google Scholar] [CrossRef]
- Wang, C.-L.; Wu, Y.-T.; Liu, C.-A.; Lin, M.-W.; Lee, C.-J.; Huang, L.-T.; Yang, K.D. Expression of CD40 Ligand on CD4+ T-Cells and Platelets Correlated to the Coronary Artery Lesion and Disease Progress in Kawasaki Disease. Pediatrics 2003, 111, e140–e147. [Google Scholar] [CrossRef]
- Onouchi, Y.; Onoue, S.; Tamari, M.; Wakui, K.; Fukushima, Y.; Yashiro, M.; Nakamura, Y.; Yanagawa, H.; Kishi, F.; Ouchi, K.; et al. CD40 ligand gene and Kawasaki disease. Eur. J. Hum. Genet. 2004, 12, 1062–1068. [Google Scholar] [CrossRef]
- Huang, F.-Y.; Chang, T.-Y.; Chen, M.-R.; Chiu, N.-C.; Chi, H.; Lee, H.-C.; Lin, S.-P.; Chen, C.-K.; Chan, H.-W.; Chen, W.-F.; et al. Genetic Polymorphisms in the CD40 Ligand Gene and Kawasaki Disease. J. Clin. Immunol. 2008, 28, 405–410. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Chao, M.-C.; Hsu, Y.-W.; Lin, Y.-C.; Huang, Y.-H.; Yu, H.-R.; Hou, M.-F.; Liang, C.-D.; Yang, K.D.; Chang, W.-C.; et al. CD40 Gene Polymorphisms Associated with Susceptibility and Coronary Artery Lesions of Kawasaki Disease in the Taiwanese Population. Sci. World J. 2012, 2012, 520865. [Google Scholar] [CrossRef]
- Patra, P.K.; Jindal, A.K.; Rikhi, R.; Kaur, A.; Srivastava, P.; Suri, D.; Rawat, A.; Pilania, R.; Singh, S. CD40 gene polymorphism and its expression in children with Kawasaki disease from North India: A preliminary case–control study and meta-analysis. Front. Pediatr. 2023, 11, 1252024. [Google Scholar] [CrossRef]
- Porritt, R.A.; Markman, J.L.; Maruyama, D.; Kocaturk, B.; Chen, S.; Lehman, T.J.A.; Lee, Y.; Fishbein, M.C.; Rivas, M.N.; Arditi, M. Interleukin-1 Beta-Mediated Sex Differences in Kawasaki Disease Vasculitis Development and Response to Treatment. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 802–818. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Ahmed Mohamed, E.; Jiang, J.; Tian, L.; Chen, J.; Li, Z.; Yang, Z. Correlation between -31 T/C polymorphisms of interleukin-1β gene and Kawasaki disease. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2017, 42, 8–12. [Google Scholar] [PubMed]
- Weng, K.-P.; Hsieh, K.-S.; Ho, T.-Y.; Lai, C.-R.; Chiu, Y.-T.; Huang, S.-C.; Lin, C.-C.; Hwang, Y.-T.; Ger, L.-P. IL-1B Polymorphism in Association With Initial Intravenous Immunoglobulin Treatment Failure in Taiwanese Children With Kawasaki Disease. Circ. J. 2010, 74, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.Y.; Qiu, X.; Deng, Q.L.; Huang, P.; Pi, L.; Xu, Y.; Che, D.; Zhou, H.; Lu, Z.; Tan, Y.; et al. The IL-1B Gene Polymorphisms rs16944 and rs1143627 Contribute to an Increased Risk of Coronary Artery Lesions in Southern Chinese Children with Kawasaki Disease. J. Immunol. Res. 2019, 2019, 4730507. [Google Scholar] [CrossRef]
- Chen, M.-R.; Chang, T.-Y.; Chiu, N.-C.; Chi, H.; Yang, K.D.; Chang, L.; Huang, D.T.-N.; Huang, F.-Y.; Lien, Y.-P.; Lin, W.-S.; et al. Validation of genome-wide associated variants for Kawasaki disease in a Taiwanese case–control sample. Sci. Rep. 2020, 10, 11756. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Kuo, H.-C.; Chang, J.-S.; Chang, L.-Y.; Huang, L.-M.; Chen, M.-R.; Liang, C.-D.; Chi, H.; Huang, F.-Y.; Lee, M.-L.; et al. Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat. Genet. 2012, 44, 522–525. [Google Scholar] [CrossRef]
- Kanda, S.; Fujii, Y.; Hori, S.-I.; Ohmachi, T.; Yoshimura, K.; Higasa, K.; Kaneko, K. Combined Single Nucleotide Variants of ORAI1 and BLK in a Child with Refractory Kawasaki Disease. Children 2021, 8, 433. [Google Scholar] [CrossRef]
- Cheung, Y.F.; Huang, G.Y.; Chen, S.B.; Liu, X.Q.; Xi, L.I.; Liang, X.C.; Huang, M.-R.; Chen, S.; Huang, L.-S.; Liu, X.-Q. Inflammatory Gene Polymorphisms and Susceptibility to Kawasaki Disease and Its Arterial Sequelae. Pediatrics 2008, 122, e608–e614. [Google Scholar] [CrossRef]
- Chien, Y.-H.; Chang, K.-W.; Yang, Y.-H.; Lu, M.-Y.; Lin, Y.-T.; Chiang, B.-L. Association between levels of TNF-alpha and TNF-alpha promoter -308 A/A polymorphism in children with Kawasaki disease. J. Formos. Med. Assoc. 2003, 102, 147–150. [Google Scholar]
- Yang, J.; Li, C.-R.; Li, Y.-B.; Li, R.-X.; Sun, L.-B.; Huang, H.-J.; Wang, G.-B. The correlation between Kawasaki disease and polymorphisms of Tumor necrosis factor alpha and interleukin-10 gene promoter. Zhonghua Er Ke Za Zhi 2003, 41, 598–602. [Google Scholar]
- Arj-Ong, S.; Thakkinstian, A.; McEvoy, M.; Attia, J. A systematic review and meta-analysis of tumor necrosis factor α-308 polymorphism and Kawasaki disease. Pediatr. Int. 2010, 52, 527–532. [Google Scholar] [CrossRef]
- Yuan, Y.; Piao, J.; Lu, N. Tumor necrosis factor-α-308 polymorphism is not associated with Kawasaki disease: A meta-analysis of case–control studies. Medicine 2019, 98, e15963. [Google Scholar] [CrossRef]
- Onouchi, Y.; Gunji, T.; Burns, J.C.; Shimizu, C.; Newburger, J.W.; Yashiro, M.; Nakamura, Y.; Yanagawa, H.; Wakui, K.; Fukushima, Y.; et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat. Genet. 2008, 40, 35–42. [Google Scholar] [CrossRef]
- Lin, M.-T.; Wang, J.-K.; Yeh, J.-I.; Sun, L.-C.; Chen, P.-L.; Wu, J.-F.; Chang, C.-C.; Lee, W.-L.; Shen, C.-T.; Wang, N.-K. Clinical Implication of the C Allele of the ITPKC Gene SNP rs28493229 in Kawasaki Disease: Association With Disease Susceptibility and BCG Scar Reactivation. Pediatr. Infect. Dis. J. 2011, 30, 148–152. [Google Scholar] [CrossRef]
- Chi, H.; Huang, F.-Y.; Chen, M.-R.; Chiu, N.-C.; Lee, H.-C.; Lin, S.-P.; Chen, W.-F.; Lin, C.-L.; Chan, H.-W.; Liu, H.-F.; et al. ITPKC gene SNP rs28493229 and Kawasaki disease in Taiwanese children. Hum. Mol. Genet. 2010, 19, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, D.; Kumrah, R.; Kaur, A.; Kaur, A.; Srivastava, P.; Rawat, A.; Singh, S. Association of ITPKC gene polymorphisms rs28493229 and rs2290692 in North Indian children with Kawasaki disease. Pediatr. Res. 2022, 92, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Bae, Y.-S.; Ji, W.; Shin, D.; Kim, H.-S.; Kim, D.S. ITPKC and SLC11A1 Gene Polymorphisms and Gene-Gene Interactions in Korean Patients with Kawasaki Disease. Yonsei Med. J. 2018, 59, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Habibi, A.; Talebi, H.; Bahrami, R.; Golshan-Tafti, M.; Shahbazi, A.; Dastgheib, S.A.; Tahooni, A.; Vafapour, M.; Rashnavadi, H.; Pourkazemi, M.; et al. A comprehensive integration of data on the association of ITPKC polymorphisms with susceptibility to Kawasaki disease: A meta-analysis. BMC Med. Genom. 2025, 18, 56. [Google Scholar] [CrossRef]
- Lou, J.; Xu, S.; Zou, L.; Zhong, R.; Zhang, T.; Sun, Y.; Lu, X.; Liu, L.; Li, C.; Wang, L.; et al. A functional polymorphism, rs28493229, in ITPKC and risk of Kawasaki disease: An integrated meta-analysis. Mol. Biol. Rep. 2012, 39, 11137–11144. [Google Scholar] [CrossRef]
- Natividad, M.F.; Torres-Villanueva, C.A.T.; Saloma, C.P. Superantigen involvement and susceptibility factors in Kawasaki disease: Profiles of TCR Vβ2+ T cells and HLA-DRB1, TNF-α and ITPKC genes among Filipino patients. Int. J. Mol. Epidemiol. Genet. 2013, 4, 70–76. [Google Scholar]
- Kuo, H.-C.; Hsu, Y.-W.; Lo, M.-H.; Huang, Y.-H.; Chien, S.-C.; Chang, W.-C.; Gaetano, C. Single-Nucleotide Polymorphism rs7251246 in ITPKC Is Associated with Susceptibility and Coronary Artery Lesions in Kawasaki Disease. PLoS ONE 2014, 9, e91118. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yuan, P.; Pang, Y.; Su, D. ITPKC polymorphism (rs7251246 T > C), coronary artery aneurysms, and thrombosis in patients with Kawasaki disease in a Southern Han Chinese population. Front. Immunol. 2023, 14, 1184162. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C.; Lin, Y.J.; Juo, S.H.H.; Hsu, Y.W.; Chen, W.C.; Yang, K.D.; Liang, C.-D.; Yang, S.; Chao, M.-C.; Yu, H.-R.; et al. Lack of association between ORAI1/CRACM1 gene polymorphisms and Kawasaki disease in the Taiwanese children. J. Clin. Immunol. 2011, 31, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Onouchi, Y.; Fukazawa, R.; Yamamura, K.; Suzuki, H.; Kakimoto, N.; Suenaga, T.; Takeuchi, T.; Hamada, H.; Honda, T.; Yasukawa, K.; et al. Variations in ORAI1 Gene Associated with Kawasaki Disease. PLoS ONE 2016, 11, e0145486. [Google Scholar] [CrossRef]
- Japan Kawasaki Disease Genome Consortium; Thiha, K.; Mashimo, Y.; Suzuki, H.; Hamada, H.; Hata, A.; Hara, T.; Tanaka, T.; Ito, K.; Onouchi, Y. Investigation of novel variations of ORAI1 gene and their association with Kawasaki disease. J. Hum. Genet. 2019, 64, 511–519. [Google Scholar] [CrossRef]
- Onouchi, Y.; Ozaki, K.; Buns, J.C.; Shimizu, C.; Hamada, H.; Honda, T.; Terai, M.; Honda, A.; Takeuchi, T.; Shibuta, S.; et al. Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum. Mol. Genet. 2010, 19, 2898–2906. [Google Scholar] [CrossRef]
- Yoon, K.L. Update of genetic susceptibility in patients with Kawasaki disease. Korean J. Pediatr. 2015, 58, 84. [Google Scholar] [CrossRef]
- Peng, Q.; Chen, C.-H.; Wu, Q.; Yang, Y. Association of new functional SNP rs72689236 of CASP3 with Kawasaki disease: A meta-analysis. Zhongguo Dang Dai Er Ke Za Zhi 2013, 15, 477–483. [Google Scholar]
- Kuo, H.-C.; Yu, H.-R.; Juo, S.-H.H.; Yang, K.D.; Wang, Y.-S.; Liang, C.-D.; Huang, C.-F.; Lee, C.-P.; Lin, L.-Y.; Liu, Y.-C.; et al. CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children. J. Hum. Genet. 2011, 56, 161–165. [Google Scholar] [CrossRef]
- Das, K.G.; Bhattarai, D.; Kaur, A.; Kaur, A.; Kumrah, R.; Srivastava, P.; Rawat, A.; Singh, S. Association of single nucleotide polymorphism rs113420705 of CASP3 in children with Kawasaki disease from North India. J. Fam. Med. Prim. Care 2022, 11, 5404–5409. [Google Scholar] [CrossRef]
- Hsu, Y.-W.; Chien, S.-C.; Liang, C.-C.; Yang, K.D.; Lee, J.-A.; Kuo, H.-C.; Chang, W.-C. Stromal Interaction Molecule 1 Polymorphisms are Associated with Coronary Artery Dilation but not with Aneurysm Formation in Patients with Kawasaki Disease. J. Exp. Clin. Med. 2013, 5, 73–76. [Google Scholar] [CrossRef]
- Frischauf, I.; Fahrner, M.; Jardín, I.; Romanin, C. The STIM1: Orai Interaction. Adv. Exp. Med. Biol. 2016, 898, 25–46. [Google Scholar] [PubMed]
- Oh-Hora, M.; Yamashita, M.; Hogan, P.G.; Sharma, S.; Lamperti, E.; Chung, W.; Prakriya, M.; Feske, S.; Rao, A. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat. Immunol. 2008, 9, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, C.; Eleftherohorinou, H.; Wright, V.J.; Kim, J.; Alphonse, M.P.; Perry, J.C.; Cimaz, R.; Burgner, D.; Dahdah, N.; Hoang, L.T.; et al. Genetic Variation in the SLC8A1 Calcium Signaling Pathway Is Associated With Susceptibility to Kawasaki Disease and Coronary Artery Abnormalities. Circ. Cardiovasc. Genet. 2016, 9, 559–568. [Google Scholar] [CrossRef]
- Duan, J.; Lou, J.; Zhang, Q.; Ke, J.; Qi, Y.; Shen, N.; Zhu, B.; Zhong, R.; Wang, Z.; Liu, L.; et al. A Genetic Variant rs1801274 in FCGR2A as a Potential Risk Marker for Kawasaki Disease: A Case-Control Study and Meta-Analysis. PLoS ONE 2014, 9, e103329. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Yang, K.D.; Juo, S.-H.H.; Liang, C.-D.; Chen, W.-C.; Wang, Y.-S.; Lee, C.-H.; Hsi, E.; Yu, H.-R.; Woon, P.-Y.; et al. ITPKC single nucleotide polymorphism associated with the Kawasaki disease in a Taiwanese population. PLoS ONE 2011, 6, e17370. [Google Scholar] [CrossRef]
- Onouchi, Y.; Suzuki, Y.; Suzuki, H.; Terai, M.; Yasukawa, K.; Hamada, H.; Suenaga, T.; Honda, T.; Honda, A.; Kobayashi, H.; et al. ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease. Pharmacogenomics J. 2013, 13, 52–59. [Google Scholar] [CrossRef]
- Shimizu, C.; Jain, S.; Davila, S.; Hibberd, M.L.; Lin, K.O.; Molkara, D.; Frazer, J.R.; Sun, S.; Baker, A.L.; Newburger, J.W.; et al. Transforming growth factor-beta signaling pathway in patients with Kawasaki disease. Circ. Cardiovasc. Genet. 2011, 4, 16–25. [Google Scholar] [CrossRef]
- Cho, J.H.; Han, M.Y.; Cha, S.H.; Jung, J.H.; Yoon, K.L. Genetic polymorphism of SMAD5 is associated with Kawasaki disease. Pediatr. Cardiol. 2014, 35, 601–607. [Google Scholar] [CrossRef]
- Peng, Q.; Deng, Y.; Yang, X.; Leng, X.; Yang, Y.; Liu, H. Genetic variants of ADAM17 are implicated in the pathological process of Kawasaki disease and secondary coronary artery lesions via the TGF-β/SMAD3 signaling pathway. Eur. J. Pediatr. 2016, 175, 705–713. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, B.; Hu, C.; Li, A.; Liao, Q. Identification and validation of autophagy-related genes in Kawasaki disease. Hereditas 2023, 160, 17. [Google Scholar] [CrossRef]
- Wessels, P.A.; Bingler, M.A. A comparison of Kawasaki Disease and multisystem inflammatory syndrome in children. Prog. Pediatr. Cardiol. 2022, 65, 101516. [Google Scholar] [CrossRef]
- Huang, F.-C.; Huang, Y.-H.; Kuo, H.-C.; Li, S.-C. Identifying Downregulation of Autophagy Markers in Kawasaki Disease. Children 2020, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, Y.; Yuan, C.; Yin, W.; Wang, B.; Ding, Y. The expression of autophagy markers in IVIG-resistant Kawasaki disease and the establishment of prediction model. BMC Pediatr. 2023, 23, 642. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Vignesh, P.; Srivastava, P.; Sharma, J.; Chaudhary, H.; Mondal, S.; Kaur, A.; Kaur, H.; Singh, S. Epigenetics in Kawasaki Disease. Front. Pediatr. 2021, 9, 673294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Meng, L.; Ye, C.; Han, H.; Zhang, T.; Feng, Y.; Li, J.; Duan, L.; Chen, Y. Whole-exome sequencing analysis identifies novel variants associated with Kawasaki disease susceptibility. Pediatr. Rheumatol. 2023, 21, 78. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, K.; Zhang, L.; Lin, Y.; Yu, H.; Xu, Y.; Fu, L.; Pi, L.; Li, J.; Mai, H.; et al. The rs7404339 AA Genotype in CDH5 Contributes to Increased Risks of Kawasaki Disease and Coronary Artery Lesions in a Southern Chinese Child Population. Front. Cardiovasc. Med. 2022, 9, 760982. [Google Scholar] [CrossRef]
- Yu, H.; Liu, F.; Chen, K.; Xu, Y.; Wang, Y.; Fu, L.; Zhou, H.; Pi, L.; Che, D.; Li, H. The EIF2AK4/rs4594236 AG/GG Genotype Is a Hazard Factor of Immunoglobulin Therapy Resistance in Southern Chinese Kawasaki Disease Patients. Front. Genet. 2022, 13, 868159. [Google Scholar] [CrossRef]
- Lu, Z.; Zheng, Z.; Xu, Y.; Wang, C.; Lin, Y.; Lin, K.; Fu, L.; Zhou, H.; Pi, L.; Che, D.; et al. The Associated of the Risk of IVIG Resistance in Kawasaki Disease with ZNF112 Gene and ZNF180 Gene in a Southern Chinese Population. J. Inflamm. Res. 2022, 15, 5053–5062. [Google Scholar] [CrossRef]
- Buda, P.; Chyb, M.; Smorczewska-Kiljan, A.; Wieteska-Klimczak, A.; Paczesna, A.; Kowalczyk-Domagała, M.; Okarska-Napierała, M.; Sobalska-Kwapis, M.; Grochowalski, Ł.; Słomka, M.; et al. Association Between rs12037447, rs146732504, rs151078858, rs55723436, and rs6094136 Polymorphisms and Kawasaki Disease in the Population of Polish Children. Front. Pediatr. 2021, 9, 624798. [Google Scholar] [CrossRef]
- Li, W.; Pi, L.; Yuan, J.; Gu, X.; Wang, Z.; Liu, Y.; Deng, Q.; Wang, Y.; Huang, P.; Zhang, L.; et al. Impact of Platelet Glycoprotein Ia/IIa C807T Gene Polymorphisms on Coronary Artery Aneurysms of KD Patients. Cardiol. Res. Pract. 2021, 2021, 4895793. [Google Scholar] [CrossRef] [PubMed]
- Hoggart, C.; Shimizu, C.; Galassini, R.; Wright, V.J.; Shailes, H.; Bellos, E.; Herberg, J.A.; Pollard, A.J.; O’cOnnor, D.; Choi, S.W.; et al. Identification of novel locus associated with coronary artery aneurysms and validation of loci for susceptibility to Kawasaki disease. Eur. J. Hum. Genet. 2021, 29, 1734–1744. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Huang, P.; Che, D.; Wang, Z.; Huang, X.; Xie, X.; Li, W.; Zhang, L.; Gu, X. Homozygous of MRP4 Gene rs1751034 C Allele Is Related to Increased Risk of Intravenous Immunoglobulin Resistance in Kawasaki Disease. Front. Genet. 2021, 12, 510350. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Zhang, L.; Wang, Y.; Li, J.; Xu, Y.; Che, D.; Mai, H.; Yu, H.; Fu, L.; Wei, B.; et al. FNDC1 Polymorphism (rs3003174 C > T) Increased the Incidence of Coronary Artery Aneurysm in Patients with Kawasaki Disease in a Southern Chinese Population. J. Inflamm. Res. 2021, 14, 2633–2640. [Google Scholar] [CrossRef]
- Kuo, K.-C.; Yang, Y.-L.; Lo, M.-H.; Cai, X.-Y.; Kuo, H.-C.; Huang, Y.-H. The Expression of Glycoprotein Genes in the Inflammatory Process of Kawasaki Disease. Front. Pediatr. 2020, 8, 592122. [Google Scholar] [CrossRef]
- Shi, R.; Luo, Y.; Li, S.; Kong, M.; Liu, X.; Yu, M.; Wu, J.; Huang, L.; Yang, Z. Single-nucleotide Polymorphism rs17860041 A/C in the Promoter of the PPIA Gene is Associated with Susceptibility to Kawasaki Disease in Chinese Children. Immunol. Investig. 2021, 50, 230–242. [Google Scholar] [CrossRef]
- Nie, H.; Wang, S.; Wu, Q.; Xue, D.; Zhou, W. Five immune-gene-signatures participate in the development and pathogenesis of Kawasaki disease. Immun. Inflamm. Dis. 2021, 9, 157–166. [Google Scholar] [CrossRef]
- Wu, J.; Yu, M.; Huang, L.; Qian, Y.; Kong, M.; Kang, Z.; Yang, Z. Association of MnSOD gene polymorphism with susceptibility to Kawasaki disease in Chinese children. Cardiol. Young 2021, 31, 179–185. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Zhou, H.; Wang, Y.; Li, W.; Lu, Z.; Jiang, Z.; Gu, X.; Zheng, H.; Zeng, L.; et al. Association between P2RY12 Gene Polymorphisms and IVIG Resistance in Kawasaki Patients. Cardiovasc. Ther. 2020, 2020, 3568608. [Google Scholar] [CrossRef]
- Amano, Y.; Akazawa, Y.; Yasuda, J.; Yoshino, K.; Kojima, K.; Kobayashi, N.; Matsuzaki, S.; Nagasaki, M.; Kawai, Y.; Minegishi, N.; et al. A low-frequency IL4R locus variant in Japanese patients with intravenous immunoglobulin therapy-unresponsive Kawasaki disease. Pediatr. Rheumatol. 2019, 17, 34. [Google Scholar] [CrossRef]
- Korean Kawasaki Disease Genetics Consortium; Kwon, Y.-C.; Kim, J.-J.; Yu, J.J.; Yun, S.W.; Yoon, K.L.; Lee, K.-Y.; Kil, H.-R.; Kim, G.B.; Han, M.-K.; et al. Identification of the TIFAB Gene as a Susceptibility Locus for Coronary Artery Aneurysm in Patients with Kawasaki Disease. Pediatr. Cardiol. 2019, 40, 483–488. [Google Scholar] [CrossRef]
- Ahn, J.G.; Bae, Y.; Shin, D.; Nam, J.; Kim, K.Y.; Kim, D.S. HMGB1 gene polymorphism is associated with coronary artery lesions and intravenous immunoglobulin resistance in Kawasaki disease. Rheumatology 2019, 58, 770–775. [Google Scholar] [CrossRef]
- Zha, L.; Li, S.; Liu, X.; Li, Z.; Jiang, J.; Huang, L.; Yang, Z. Association of miR-146a Gene Polymorphism at loci rs2910164 G/C, rs57095329 A/G, and rs6864584 T/C with Susceptibility to Kawasaki Disease in Chinese Children. Pediatr. Cardiol. 2019, 40, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-J.; Yun, S.W.; Yu, J.J.; Yoon, K.L.; Lee, K.-Y.; Kil, H.-R.; Kim, G.B.; Han, M.-K.; Song, M.S.; Lee, H.D.; et al. Identification of SAMD9L as a susceptibility locus for intravenous immunoglobulin resistance in Kawasaki disease by genome-wide association analysis. Pharmacogenomics J. 2020, 20, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Rowley, A.H.; Wylie, K.M.; Kim, K.-Y.A.; Pink, A.J.; Yang, A.; Reindel, R.; Baker, S.C.; Shulman, S.T.; Orenstein, J.M.; Lingen, M.W.; et al. The transcriptional profile of coronary arteritis in Kawasaki disease. BMC Genom. 2015, 16, 1076. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Zhang, J.; Chen, H.; Zhuge, Y.; Chen, H.; Qian, F.; Zhou, K.; Niu, C.; Wang, F.; Qiu, H.; et al. Endothelial cell pyroptosis plays an important role in Kawasaki disease via HMGB1/RAGE/cathespin B signaling pathway and NLRP3 inflammasome activation. Cell Death Dis. 2019, 10, 778. [Google Scholar] [CrossRef]
- Anzai, F.; Watanabe, S.; Kimura, H.; Kamata, R.; Karasawa, T.; Komada, T.; Nakamura, J.; Nagi-Miura, N.; Ohno, N.; Takeishi, Y.; et al. Crucial role of NLRP3 inflammasome in a murine model of Kawasaki disease. J. Mol. Cell. Cardiol. 2020, 138, 185–196. [Google Scholar] [CrossRef]
- Hoang, L.T.; Shimizu, C.; Ling, L.; Naim, A.N.M.; Khor, C.C.; Tremoulet, A.H.; Victoria, W.; Levin, M.; Hibberd, M.L.; Burns, J.C. Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Med. 2014, 6, 541. [Google Scholar] [CrossRef]
Author/Year | Gene/Gene Locus | Study Population | Association with KD | Function |
---|---|---|---|---|
Association with the occurrence of KD | ||||
Onouchi et al., 2012 [13] | Intergenic region between HLA-DQB2 and HLA-DOB (rs2857151), FAM167A-BLK (rs2254546), and CD40 (rs4813003) | Japanese KD patients (n = 428); healthy Controls (n = 3379) | Strong association with KD | HLA-DQB2/DOB: MHC class I alleles mediate antigen presentation to CD4+ T cells. BLK: Tyrosine kinase involved in B cell receptor signaling and affects B cell-mediated immune response |
Duan et al. 2014 [66] | FCGR2A (rs1801274), HLA-DQB2 and HLA-DOB (rs2857151), and BLK (rs2254546) | Han Chinese KD patients (n = 358); healthy controls (n = 815) | Significant association with KD | FCGR2A: The FCGR2A gene encodes FcγRIIA, a low-affinity receptor for the Fc portion of immunoglobulin G (IgG). It helps in the phagocytosis of immune complexes and activation of pro-inflammatory signaling pathways (via ITAM motifs) |
OH et al. 2008 [18] | HLA-B35, HLA-B75, and HLA-Cw09 alleles | Korean KD patients (n= 74); healthy controls (n = 159) | Increased susceptibility to KD | HLA-B35/B75: MHC class I alleles mediate antigen presentation to CD8+ T cells. |
Kwon et al. 2017 [21] | FCGR2A (rs1801274), SEMA6A (rs12516652), IL17REL (rs5771303) | Korean KD patients (n = 249); healthy controls (n = 1000) Replication study in 671 Japanese cases and 3553 controls | FCGR2A, SEMA6A, and IL17REL variants were significantly associated with KD in males but not in females Functional polymorphism of FCGR2A (rs1801274; p. His167Arg) of FCGR2A was significantly associated with KD in males | SEMA6A: Regulates immune cell guidance and endothelial function IL17REL: Involved in modulating immune and inflammatory responses, potentially as part of the IL-17 cytokine signaling pathway. |
Wang et al. 2020 [26] | FCGR2A (CD32a) gene polymorphism (rs1801274) | Asian (meta-analysis) | Genotype AA and allele A of CD32a polymorphism (rs1801274) may increase the KD susceptibility In Asian population | - |
Onouchi et al. 2004 [28] | IL-1β gene (–31T/C polymorphism) | Chinese 100 KD patients and 100 healthy controls | -31T/C polymorphism of IL-1β gene is associated with genetic susceptibility to KD. TT genotype in is associated with low risk of KD. | IL-1β gene: Encodes IL-1β, a key inflammatory cytokine and is involved in stimulating the production of other cytokines (e.g., IL-6 and TNF-α) and enhancing endothelial activation and coagulation pathways |
Thiha et al. 2019 [56] | ORAI1 gene novel variants | 3812 Japanese patients with KD and 2644 healthy controls | 6 novel, rare, and deleterious missense variants were detected only in KD patients, including 3 cases of refractory KD | ORAI1: Regulates calcium influx in immune cells (store-operated calcium entry). |
Onouchi et al. 2010 [57] | CASP3 gene variants | 920 Japanese KD patients 1409 Japanese healthy controls and 249 controls of European descent | Multiple variants in CASP3 gene confer susceptibility to KD | CASP3: It encodes caspase-3, a critical executioner enzyme in the apoptosis (programmed cell death) pathway. Regulates immune cell death and tissue remodeling. |
Association with the occurrence of CAAs in KD | ||||
Duan et al. 2014 [66] | FCGR2A (rs1801274), HLA-DQB2, and DOB intergenic region (rs2857151) and CASP3 (rs11340705) | Han Chinese KD patients (n = 358); healthy controls (n = 815) | High-risk genotypes (rs1801274, rs2857151, and rs11340705) associated with significantly higher risk of CAAs | FCGR2A: The FCGR2A gene encodes FcγRIIA, a low-affinity receptor for the Fc portion of immunoglobulin G (IgG). It helps in the phagocytosis of immune complexes and activation of pro-inflammatory signaling pathways (via ITAM motifs). |
OH et al. 2008 [18] | HLA-DRB1 alleles | Korean KD patients (n = 74); healthy controls (n = 159) | Significantly increased frequency of the HLA-DRB1*11 allele in KD patients with CAAs compared with healthy controls | |
Huang et al. 2000 [20] | MHC-class-I-chain-related gene A (MICA) | 70 Chinese children with KD and 154 healthy controls | Allele A4 was significantly less frequent and allele A5 was significantly more frequent in patients with CAAs. Allele A4 protects against KD CAAs | MICA: It encodes a stress-induced ligand that binds to NKG2D, an activating receptor present on natural killer (NK) cells, CD8+ T cells, and γδ T cells |
Taniuchi et al. 2005 [24] | Polymorphism of FCGR2A, FCGR3B, and FCGR3A | 56 Japanese KD patients who received IVIg therapy | 60% of patients with the HR and RR alleles of FCGR2A polymorphism developed CAAs compared to 23% with HH allele. HR and RR alleles may predict the progression of CAAs in KD before the initiation of IVIg therapy | FCGR3A/FCGR3 B: IgG receptors on NK cells and neutrophils. Variants may alter immune complex clearance and inflammation. |
Wang et al. 2020 [26] | CD40L polymorphism | 427 Japanese KD patients and 476 healthy controls | SNP in intron 4 (IVS4+121 A>G) is marginally increased in KD patients compared to controls, especially in males. CD40L may play a role in CAA development | CD40L: Ligand for CD40, expressed on activated T cells and modulates immune activation. |
Onouchi et al. 2004 [28] | CD40 polymorphisms (rs4810485 and rs1535045) | 381 Taiwanese KD patients and 569 healthy controls | CD40 polymorphism (rs1535045) was significantly associated with KD CD40 polymorphism (rs4810485) showed a significant association with CAAs in KD patients | CD40: Encodes a co-stimulatory receptor expressed primarily on B cells, dendritic cells, monocytes, and endothelial cells. The CD40–CD40L interaction is essential for B cell activation, proliferation, and antibody class switching |
Kuo et al., 2012 [30] | IL-1B Polymorphisms (rs16944 and rs1143627) | 719 Southern Chinese KD patients and 1401 healthy children | rs16944 GG and rs1143627 AA genotypes may significantly increase the risk of CAAs in children below 12 months | IL-1B: Encodes IL-1β, a key inflammatory cytokine. |
Weng et al. 2010 [34] | SNPs within introns of NUMBL, ADCK4, ITPKC, and FLJ41131 genes | 637 Japanese KD patients and 1034 healthy controls | ITPKC intron 1 functional SNP is significantly associated with KD and CAAs C-allele may be associated with immune hyper-reactivity in KD | NUMBL: Notch signaling modulator that plays a role in vascular development and inflammation. ITPKC: Inhibits T cell activation via Ca2+ signaling pathways. ADCK4: Mitochondrial function and coenzyme Q biosynthesis and involvement in immune cell energetics. |
Liu et al., 2023 [53] | ITPKC polymorphism (rs7251246 T > C) | 221 Han Chinese children with KD; 262 children as healthy controls | CC/CT genotype was significantly associated with the risk of CAA in children with KD. Those with the CC genotype had a significantly higher risk of thrombosis. ITPKC mRNA levels were lower in children with CAA that was complicated by thrombosis | ITPKC: Inhibits T cell activation via Ca2+ signaling pathways |
Kuo et al., 2011 [67] | ITPKC SNP rs28493229 | 341 Taiwanese KD patients and 1190 controls | C-allele is associated with the susceptibility to KD and coronary artery aneurysm formation in KD | ITPKC: Inhibits T cell activation via Ca2+ signaling pathways |
Kanda et al., 2021 [38] | ORAI1 (rs3741596) and BLK (rs2254546) SNPs | 8-month-old Japanese boy | ORAI1 (rs3741596) and BLK (rs2254546) SNPs were associated with refractory KD in the child along with CAAs | ORAI1: Regulates calcium influx in immune cells (store-operated calcium entry). |
CASP3 SNP (rs113420705) | 45 cases of KD and 50 healthy controls | C allele was significantly higher in frequency in patients with KD with CAAs | CASP3: Executioner caspase in apoptosis. Regulates immune cell death; variants associated with KD and IVIg resistance | |
Association with the occurrence of IVIg resistance in KD | ||||
Kuo et al., 2012 [30] | IL-1B polymorphism | 156 Taiwanese KD children treated with high-dose IVIG (136 with IVIg response and 20 without IVIG response) | IL-1B (−511 TT) and IL-1B (−31 CC) genotypes may be associated with IVIG failure at initial therapy | IL-1B: Encodes IL-1β, a key inflammatory cytokine. |
Onouchi et al., 2013 [68] | ITPKC (rs28493229) and CASP3 (rs113420705) polymorphisms | 539 Japanese patients who received IVIg | In IVIg non-responders, the susceptibility allele of both SNPs was overrepresented. Higher risk of IVIg unresponsiveness was found in patients with at least 1 susceptible allele at both loci | ITPKC: Inhibits T cell activation via Ca2+ signaling pathways |
Kuo et al., 2010 [60] | CASP3 gene SNP (rs72689236) | 341 KD patients and 751 controls | The A allele of rs72689236 was found in a higher frequency in KD patients and in patients and IVIg resistance and CAAs | CASP3: Executioner caspase in apoptosis. Regulates immune cell death; variants associated with KD and IVIg resistance |
Association with the occurrence of BCG site reactivation in KD | ||||
Chi et al., 2010 [46] | ITPKC SNP (rs28493229) | 280 Taiwanese children with KD and 492 healthy controls | The frequency of the C-allele (GC and CC genotypes) was higher in KD patients than in controls. GC or CC genotypes had a higher frequency of Bacille Calmette–Guérin (BCG) inoculation site reactivation in the acute phase than GG genotypes, especially in patients younger than 20 months old. This suggests the activation of a hyperimmune response due to this SNP. | ITPKC: Inhibits T cell activation via Ca2+ signaling pathways |
Kim et al., 2017 [48] | ITPKC and SLC11A1 gene polymorphisms | 299 Korean KD patients and 210 healthy controls | ITPKC SNP (rs28493229) was associated with KD and CAAs. SLC11A1 SNP (rs77624405) was associated with KD and BCG site erythema. Gene–gene interactions were also associated with BCG site erythema. | SLC11A1: Involved in macrophage activation and response to pathogens. |
SNo. | Author | Year | Ethnicity | Sample Size | Technique Used | Result | Gene Function |
---|---|---|---|---|---|---|---|
1. | Zhang et al. [77] | 2023 | China | KD patients (n = 93); non-KD control cases (n = 91) | WES and Sanger sequencing | Rare variants in MYH14 and RBP3 | MYH14: Encodes a myosin heavy chain involved in cytoskeletal structure and intracellular transport. Mutations may affect vascular integrity and inflammation. RBP3: Encodes interphotoreceptor retinoid-binding protein; mainly retinal, but mutations may suggest broader immune or inflammatory roles. |
2 | Zhu et al. [72] | 2023 | China | KD patients (n = 55); non-KD control cases (n = 37) | GeneCards Database and Gene Expression Omnibus (GEO) database | WIPI1 and GBA, which are autophagy-related genes, could serve as biomarkers and potential therapeutic targets. | WIPI1: Autophagy-related gene involved in autophagosome formation; dysregulation may contribute to immune response anomalies in KD. GBA: Encodes glucocerebrosidase and is important in lysosomal function. Mutations can affect immune regulation via lysosomal pathways. |
3 | Wang et al. [78] | 2022 | China | KD patients (n = 1335); healthy controls (n = 1669) | Multiplex PCR for genotype of rs7404339 polymorphism in CDH5 | Increased susceptibility in individuals with the AA genotype of rs7404339 in CDH5 | CDH5 (VE-cadherin): Critical in endothelial cell adhesion and vascular integrity. Variants may lead to increased endothelial permeability and inflammation. |
4 | Yu et al. [79] | 2022 | China | IVIg-responsive KD patients (n = 795); IVIg-resistant KD patients (n = 234) | RT-PCR | The EIF2AK4/rs4594236 AG/GG genotype has a higher risk of IVIg resistance compared to the AA genotype. | EIF2AK4 (GCN2): Regulates translation under stress. Implicated in immune modulation and possibly IVIg resistance in KD. |
5 | Lu et al. [80] | 2022 | China | KD patients (n = 996) | ZNF112/rs8113807 and ZNF180/rs2571051 genotyping by RT-PCR | C and T carriers of ZNF112/rs8113807 and ZNF180/rs2571051, respectively, had a higher risk of IVIg resistance in KD. | ZNF112/ZNF180: Zinc finger proteins likely involved in transcription regulation. Altered expression may impact immune cell gene networks and inflammation. |
6 | Buda et al. [81] | 2021 | Poland | KD patients (n = 119); controls (n = 6071) | GWAS | Increased susceptibility to KD is linked to rs12037447 in a non-coding sequence, rs146732504 in KIF25, rs151078858 in PTPRJ, rs55723436 in SPECC1L, and rs6094136 in RPN2. | KIF25: Motor protein involved in mitotic spindle organization. May indirectly influence immune cell proliferation. PTPRJ: Protein tyrosine phosphatase involved in immune signaling and cell growth regulation. Implicated in vascular and immune response modulation. SPECC1L: Plays a role in cytoskeleton organization. Could affect immune cell migration or vascular structure. RPN2: Part of the oligosaccharyltransferase complex. Involved in protein glycosylation, possibly influencing immune function. |
7 | Li et al. [82] | 2021 | China | KD patients (n = 818); healthy controls (n = 1401) | Multiplex polymerase chain reactions | The T allele carriers of the platelet glycoprotein Ia/IIa may have a reduced risk of CAAs in KD patients, particularly in females and children under 60 months. | ITGA2 (Glycoprotein Ia/IIa): Platelet receptor involved in thrombosis. Variants may modulate the risk of coronary artery abnormalities (CAA). |
8 | Hoggart et al. [83] | 2021 | UK | KD patients (n = 200); controls (n = 276) | GWAS | An intergenic region on Chr. 20 is significantly associated with the formation of CAAs. | - |
9 | Wang et al. [84] | 2021 | China | KD patients (n = 760) | 6 polymorphisms of the MRP4 gene using TaqMan methods | The c allele of the MRP4 rs1751034 is associated with increased risk of IVIg resistance in KD patients | MRP4: Encodes an ATP-binding cassette (ABC) transporter involved in the efflux of various endogenous and exogenous substances, including inflammatory mediators and drugs. Altered MRP4 function may impact immune regulation and drug responsiveness, thereby contributing to IVIg resistance |
10 | Lin et al. [85] | 2021 | China | KD patients (n = 1459); controls (n = 1611) | FNDC1 rs3003174 polymorphism | The C>T polymorphism may contribute to the development of CAAs in KD patients. | FNDC1: Encodes a protein that contains fibronectin type III domains, which are often involved in cell adhesion, growth, and signaling. It has been implicated in vascular remodeling and the regulation of the immune system. |
11 | Kuo et al. [86] | 2020 | Taiwan | KD patients (n = 49); healthy controls (n = 24); disease controls (n = 24) | Transcription levels of HP, CLEC4D, and GPR84 by RT-PCR | Increased expression of CLEC4D, GPR84, and HP genes in peripheral leukocytes may indicate acute-phase KD when compared to control patients. | HP, CLEC4D, GPR84: Acute-phase and immune signaling proteins. Upregulation is associated with involvement in innate immunity during KD. |
12 | Shi et al. [87] | 2020 | China | KD patients (n = 101); healthy controls (n = 105) | Three PPIA SNPs were genotyped by PCR | Individuals with promoter SNP (rs17860041 A/C) are more susceptible to KD in Chinese children | PPIA (Cyclophilin A): Facilitates protein folding and is involved in immune cell signaling. Promoter variants may enhance susceptibility to inflammation. |
13 | Nie et al. [88] | 2020 | China | KD patients (n = 173); healthy controls (n = 101) | Gene Expression Omnibus database | CXCL8, CCL5, CCR7, CXCR3, and CCR1 may have a significant role in the pathogenesis of KD | CXCL8, CCL5, CCR7, CXCR3, CCR1: Chemokines and receptors involved in leukocyte migration. Their dysregulation contributes to vascular inflammation in KD. |
14 | Wu et al [89] | 2020 | China | KD patients (n = 100); healthy controls (n = 102) | RT-PCR for studying the polymorphism in the MnSOD gene | Allele A in the MnSOD gene rs5746136 may be a risk factor for developing KD | MnSOD (SOD2): Antioxidant enzyme protecting cells from oxidative stress. Polymorphisms may influence inflammatory response severity. |
15 | Wang et al. [90] | 2020 | China | IVIg-resistant KD patients (n = 148); IVIg-responsive KD patients (n = 611) | 5 polymorphisms of P2RY12: rs9859538, rs1491974, rs7637803, rs6809699, and rs2046934 by PCR | The rs6809699 polymorphism in P2RY12 could predict IVIg resistance in KD patients | P2RY12: Platelet receptor for ADP. Involved in clot formation and inflammation; variants may predict IVIg resistance. |
16 | Amano et al. [91] | 2019 | Japan | Complete KD patients (n = 75); incomplete KD patients (n = 7); and allergic subjects (n = 99) | Pooled genome sequencing | SNV rs563535954, located in the IL4R locus, could serve as a predictive indicator of IVIg unresponsiveness | The IL4R gene encodes the alpha chain of the interleukin-4 receptor, which binds both IL-4 and IL-13—key cytokines involved in Th2 immune responses, B cell proliferation, and immunoglobulin class switching. IL4R is critical in regulating allergic inflammation, antibody production, and immune homeostasis. |
17 | Kwon et al. [92] | 2018 | China | KD patients (n = 713) | GWAS | The TIFAB gene SNP (rs899162) is significantly associated with CAA development (diameter ≥ 5 mm) in KD patients. | TIFAB: Encodes a regulatory protein involved in modulating innate immune signaling, particularly through interaction with TRAF6, a key adaptor in the Toll-like receptor (TLR) and IL-1 receptor pathways. TIFAB negatively regulates TRAF6-mediated NF-κB activation, a major pathway in inflammation. |
18 | Ahn et al. [93] | 2018 | Republic of Korea | KD patients (n = 265); controls (n = 203) | Whole-genome sequencing | rs 412125 in HMGB1 may contribute to CAA and IVIg resistance in KD patients. | HMGB1: A nuclear protein that acts as a damage-associated molecular pattern (DAMP), triggering inflammatory responses |
19 | Zha et al. [94] | 2018 | China | KD patient (n = 120); healthy subjects (n = 126) | RT-PCR | The rs2910164 of miR-146a G/C genotype and rs57095329 of miR-155 A/G allele were found to be risk factors for CAL. | miR-146a: A microRNA regulating NF-κB pathway. Polymorphisms may lead to exaggerated inflammation. miR-155: Regulates immune response; alterations linked to autoimmune and inflammatory diseases. |
20 | Kim et al. [95] | 2018 | Republic of Korea | IVIg-resistant KD patients (n = 148); IVIg-responsive KD patients (n = 845) | GWAS | rs28662 in the SAMD9L is significantly associated with IVIg resistance in KD | SAMD9L: Associated with cell growth suppression and immune regulation. A variant may predispose individuals to IVIG resistance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goyal, T.; Sharma, S.; Pilania, R.K.; Jawallia, K.; Chawla, S.; Sharma, M.; Rawat, M.; Thakur, V.; Arya, U.; Kumar, A.; et al. Genetic Landscape of Kawasaki Disease: An Update. Lymphatics 2025, 3, 21. https://doi.org/10.3390/lymphatics3030021
Goyal T, Sharma S, Pilania RK, Jawallia K, Chawla S, Sharma M, Rawat M, Thakur V, Arya U, Kumar A, et al. Genetic Landscape of Kawasaki Disease: An Update. Lymphatics. 2025; 3(3):21. https://doi.org/10.3390/lymphatics3030021
Chicago/Turabian StyleGoyal, Taru, Saniya Sharma, Rakesh Kumar Pilania, Kajol Jawallia, Sanchi Chawla, Madhubala Sharma, Monica Rawat, Vaishali Thakur, Urvi Arya, Anoop Kumar, and et al. 2025. "Genetic Landscape of Kawasaki Disease: An Update" Lymphatics 3, no. 3: 21. https://doi.org/10.3390/lymphatics3030021
APA StyleGoyal, T., Sharma, S., Pilania, R. K., Jawallia, K., Chawla, S., Sharma, M., Rawat, M., Thakur, V., Arya, U., Kumar, A., Dhaliwal, M., Pandiarajan, V., Rawat, A., & Singh, S. (2025). Genetic Landscape of Kawasaki Disease: An Update. Lymphatics, 3(3), 21. https://doi.org/10.3390/lymphatics3030021