Modulating Benign Prostatic Hyperplasia Through Physical Activity—The Emerging Role of Myokines: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Etiology and Risk Factors of BPH and Potential Role of Physical Activity
3.2. The Complex Relationship Between Physical Activity and Benign Prostatic Hyperplasia: A Review of Epidemiological Studies
3.3. Potential Biological Mechanisms Underlying the Protective Effects of Exercise Against BPH
3.3.1. Influence on Sympathetic Nervous System Activity
3.3.2. Modulation of Hormonal Factors
3.3.3. Attenuation of Inflammation and Oxidative Stress
3.3.4. Promotion of Autophagy
3.4. Myokines and Their Role in Prostate Health
4. Strengths and Limitations
5. Conclusions
6. Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
BPH | Benign prostatic hyperplasia |
LUTS | Lower urinary tract symptoms |
BDNF | Brain-derived neurotrophic factor |
IL-6 | Interleukin-6 |
References
- Lee, S.W.H.; Chan, E.M.C.; Lai, Y.K. The global burden of lower urinary tract symptoms suggestive of benign prostatic hyperplasia: A systematic review and meta-analysis. Sci. Rep. 2017, 7, 7984. [Google Scholar] [CrossRef] [PubMed]
- Awedew, A.F.; Han, H.; Abbasi, B.; Abbasi-Kangevari, M.; Ahmed, M.B.; Almidani, O.; Amini, E.; Arabloo, J.; Argaw, A.M.; Athari, S.S. The global, regional, and national burden of benign prostatic hyperplasia in 204 countries and territories from 2000 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2022, 3, e754–e776. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Wang, J.; Xiao, Y.; Luo, J.; Xu, L.; Chen, Z. Global burden of benign prostatic hyperplasia in males aged 60–90 years from 1990 to 2019: Results from the global burden of disease study 2019. BMC Urol. 2024, 24, 193. [Google Scholar] [CrossRef] [PubMed]
- Madersbacher, S.; Sampson, N.; Culig, Z. Pathophysiology of benign prostatic hyperplasia and benign prostatic enlargement: A mini-review. Gerontology 2019, 65, 458–464. [Google Scholar] [CrossRef]
- Park, S.-Y.; Hwang, B.-O.; Song, N.-Y. The role of myokines in cancer: Crosstalk between skeletal muscle and tumor. BMB Rep. 2023, 56, 365–373. [Google Scholar] [CrossRef]
- Kim, J.-S.; Taaffe, D.R.; Galvão, D.A.; Saad, F.; Newton, R.U. Exercise mediates myokine release and tumor suppression in prostate cancer independent of androgen signaling. Exerc. Sport Sci. Rev. 2023, 51, 161–168. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Anastasilakis, A.D.; Efstathiadou, Z.A.; Makras, P.; Perakakis, N.; Kountouras, J.; Mantzoros, C.S. Irisin in metabolic diseases. Endocrine 2018, 59, 260–274. [Google Scholar] [CrossRef]
- Hittel, D.S.; Axelson, M.; Sarna, N.; Shearer, J.; Huffman, K.M.; Kraus, W.E. Myostatin decreases with aerobic exercise and associates with insulin resistance. Med. Sci. Sports Exerc. 2010, 42, 2023–2029. [Google Scholar] [CrossRef]
- Schnyder, S.; Handschin, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 2015, 80, 115–125. [Google Scholar] [CrossRef]
- Petersen, A.M.W.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Yang, L.; Deng, Y.-Q.; Yan, S.-Y.; Luo, L.-S.; Chen, P.; Zeng, X.-T. Causal relationship between obesity, lifestyle factors and risk of benign prostatic hyperplasia: A univariable and multivariable Mendelian randomization study. J. Transl. Med. 2022, 20, 495. [Google Scholar] [CrossRef]
- Jia, F.; Wei, Z.; Kong, X.; Mao, Y.; Yang, Y. Causal associations between lifestyle habits and risk of benign prostatic hyperplasia: A two-sample mendelian randomization study. J. Gerontol. Ser. A 2024, 79, glad187. [Google Scholar] [CrossRef]
- Sea, J.; Poon, K.S.; McVary, K.T. Review of exercise and the risk of benign prostatic hyperplasia. Physician Sportsmed. 2009, 37, 75–83. [Google Scholar] [CrossRef]
- Parsons, J.K.; Kashefi, C. Physical activity, benign prostatic hyperplasia, and lower urinary tract symptoms. Eur. Urol. 2008, 53, 1228–1235. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Kim, D.-H.; Yoon, J.-H.; Ju, J.-S. Association of exercise with benign prostatic hyperplasia and lower urinary tract symptoms. Exerc. Sci. 2019, 28, 3–10. [Google Scholar] [CrossRef]
- Calogero, A.E.; Burgio, G.; Condorelli, R.A.; Cannarella, R.; La Vignera, S. Epidemiology and risk factors of lower urinary tract symptoms/benign prostatic hyperplasia and erectile dysfunction. Aging Male 2019, 22, 12–19. [Google Scholar] [CrossRef]
- Daniels, J.P.; Mirocha, J.; Adjei, M.; Moreira, D.; Freedland, S.J. Serum testosterone and dihydrotestosterone and incidence and progression of lower urinary tract symptoms: Results from the REDUCE study. J. Urol. 2023, 211, 101–110. [Google Scholar] [CrossRef]
- Xu, G.; Dai, G.; Huang, Z.; Guan, Q.; Du, C.; Xu, X. The etiology and pathogenesis of benign prostatic hyperplasia: The roles of sex hormones and anatomy. Res. Rep. Urol. 2024, 16, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Sayegh, N.; Gross, K. Benign prostatic hyperplasia: A global challenge of the ageing population. Lancet Healthy Longev. 2022, 3, e725–e726. [Google Scholar] [CrossRef] [PubMed]
- Russo, G.I.; Broggi, G.; Cocci, A.; Capogrosso, P.; Falcone, M.; Sokolakis, I.; Gül, M.; Caltabiano, R.; Di Mauro, M. Relationship between dietary patterns with benign prostatic hyperplasia and erectile dysfunction: A collaborative review. Nutrients 2021, 13, 4148. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Lin, H.; Wan, M.; Qiu, P.; Xia, R.; He, J.; Tao, J.; Chen, L.; Zheng, G. The effects of aerobic exercise on oxidative stress in older adults: A systematic review and meta-analysis. Front. Physiol. 2021, 12, 701151. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Wolin, K.; Pakpahan, R.; Grubb, R.; Colditz, G.; Ragard, L.; Mabie, J.; Breyer, B.; Andriole, G.; Sutcliffe, S. Body size throughout the life-course and incident benign prostatic hyperplasia-related outcomes and nocturia. BMC Urol. 2021, 21, 47. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Ceccato, T.; Botti, S.; Kranz, J.; Verze, P.; Bonkat, G.; Aversa, A.; Racanelli, V.; Johansen, T.E.B. Impact of Lifestyle and the Microbiome on Male Lower Urinary Tract Symptoms Due to Benign Prostatic Hyperplasia. Eur. Urol. Focus 2025. [Google Scholar] [CrossRef] [PubMed]
- Agu, P.C.; Tusubira, D.; Aja, P.M. Innovative approaches to benign prostatic hyperplasia management: Options beyond conventional treatment strategies. F1000Research 2024, 13, 1555. [Google Scholar] [CrossRef]
- O’Quin, C.; White, K.L.; Campbell, J.R.; Myers, S.H.; Patil, S.; Chandler, D.; Ahmadzadeh, S.; Varrassi, G.; Shekoohi, S.; Kaye, A.D. Pharmacological approaches in managing symptomatic relief of benign prostatic hyperplasia: A comprehensive review. Cureus 2023, 15, e51314. [Google Scholar] [CrossRef]
- Mantica, G.; Ambrosini, F.; Drocchi, G.; Zubko, Z.; Monaco, L.L.; Cafarelli, A.; Calarco, A.; Colombo, R.; De Cobelli, O.; De Marco, F. Non-surgical management of BPH: An updated review of current literature and state of the art on natural compounds and medical therapy. Contemp. Clin. Trials 2007, 28, 770–779. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, S.; Qi, Z.; Wu, S.; Zhu, K.; Wang, W. Non-pharmacological and nonsurgical interventions in male urinary incontinence: A scoping review. J. Clin. Nurs. 2023, 32, 6196–6211. [Google Scholar] [CrossRef]
- González, K.; Fuentes, J.; Márquez, J.L. Physical inactivity, sedentary behavior and chronic diseases. Korean J. Fam. Med. 2017, 38, 111–115. [Google Scholar] [CrossRef]
- Dempsey, P.C.; Matthews, C.E.; Dashti, S.G.; Doherty, A.R.; Bergouignan, A.; Van Roekel, E.H.; Dunstan, D.W.; Wareham, N.J.; Yates, T.E.; Wijndaele, K. Sedentary behavior and chronic disease: Mechanisms and future directions. J. Phys. Act. Health 2020, 17, 52–61. [Google Scholar] [CrossRef]
- Rus, M.; Crisan, S.; Andronie-Cioara, F.L.; Indries, M.; Marian, P.; Pobirci, O.L.; Ardelean, A.I. Prevalence and risk factors of metabolic syndrome: A prospective study on cardiovascular health. Medicina 2023, 59, 1711. [Google Scholar] [CrossRef]
- Wang, S.-s.; Li, K.; Liu, Z.; Gui, S.; Liu, N.; Liu, X. Aerobic exercise ameliorates benign prostatic hyperplasia in obese mice through downregulating the AR/androgen/PI3K/AKT signaling pathway. Exp. Gerontol. 2021, 143, 111152. [Google Scholar] [CrossRef]
- Eidelberg, A.; Cho, A.; Chughtai, B. Effects of exercise on benign prostatic hyperplasia, lower urinary tract symptoms, and erectile dysfunction. In Molecular Mechanisms of Nutritional Interventions and Supplements for the Management of Sexual Dysfunction and Benign Prostatic Hyperplasia; Elsevier: Amsterdam, The Netherlands, 2021; pp. 189–212. [Google Scholar]
- Nagakura, Y.; Hayashi, M.; Kajioka, S. Lifestyle habits to prevent the development of benign prostatic hyperplasia: Analysis of Japanese nationwide datasets. Prostate Int. 2022, 10, 200–206. [Google Scholar] [CrossRef]
- Dovey, Z.; Horowitz, A.; Waingankar, N. The influence of lifestyle changes (diet, exercise and stress reduction) on prostate cancer tumour biology and patient outcomes: A systematic review. BJUI Compass 2023, 4, 385–416. [Google Scholar] [CrossRef]
- Kristal, A.R.; Arnold, K.B.; Schenk, J.M.; Neuhouser, M.L.; Weiss, N.; Goodman, P.; Antvelink, C.M.; Penson, D.F.; Thompson, I.M. Race/ethnicity, obesity, health related behaviors and the risk of symptomatic benign prostatic hyperplasia: Results from the prostate cancer prevention trial. J. Urol. 2007, 177, 1395–1400; quiz 1591. [Google Scholar] [CrossRef]
- Dal Maso, L.; Zucchetto, A.; Tavani, A.; Montella, M.; Ramazzotti, V.; Polesel, J.; Bravi, F.; Talamini, R.; La Vecchia, C.; Franceschi, S. Lifetime occupational and recreational physical activity and risk of benign prostatic hyperplasia. Int. J. Cancer 2006, 118, 2632–2635. [Google Scholar] [CrossRef] [PubMed]
- Lacey, J.V., Jr.; Deng, J.; Dosemeci, M.; Gao, Y.-T.; Mostofi, F.; Sesterhenn, I.A.; Xie, T.; Hsing, A.W. Prostate cancer, benign prostatic hyperplasia and physical activity in Shanghai, China. Int. J. Epidemiol. 2001, 30, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Platz, E.A.; Kawachi, I.; Rimm, E.B.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Giovannucci, E. Physical activity and benign prostatic hyperplasia. Arch. Intern. Med. 1998, 158, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Meigs, J.B.; Mohr, B.; Barry, M.J.; Collins, M.M.; McKinlay, J.B. Risk factors for clinical benign prostatic hyperplasia in a community-based population of healthy aging men. J. Clin. Epidemiol. 2001, 54, 935–944. [Google Scholar] [CrossRef]
- Prezioso, D.; Catuogno, C.; Galassi, P.; D’Andrea, G.; Castello, G.; Pirritano, D. Life-style in patients with LUTS suggestive of BPH. Eur. Urol. 2001, 40, 9–12. [Google Scholar] [CrossRef]
- Joseph, M.A.; Harlow, S.D.; Wei, J.T.; Sarma, A.V.; Dunn, R.L.; Taylor, J.M.; James, S.A.; Cooney, K.A.; Doerr, K.M.; Montie, J.E.; et al. Risk factors for lower urinary tract symptoms in a population-based sample of African-American men. Am. J. Epidemiol. 2003, 157, 906–914. [Google Scholar] [CrossRef]
- Rohrmann, S.; Crespo, C.J.; Weber, J.R.; Smit, E.; Giovannucci, E.; Platz, E.A. Association of cigarette smoking, alcohol consumption and physical activity with lower urinary tract symptoms in older American men: Findings from the third National Health And Nutrition Examination Survey. BJU Int. 2005, 96, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Kwon, S.; Yoon, H.; Lee, H.; Lee, B.; Kim, H.H.; Jeong, E.K.; Park, H. Risk factors for benign prostatic hyperplasia in South Korean men. Urol. Int. 2006, 76, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.T. Effects of running distance and performance on incident benign prostatic hyperplasia. Med. Sci. Sports Exerc. 2008, 40, 1733–1739. [Google Scholar] [CrossRef] [PubMed]
- Lagiou, A.; Samoli, E.; Georgila, C.; Minaki, P.; Barbouni, A.; Tzonou, A.; Trichopoulos, D.; Lagiou, P. Occupational physical activity in relation with prostate cancer and benign prostatic hyperplasia. Eur. J. Cancer Prev. 2008, 17, 336–339. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, S.A.; Nam, J.W.; Kim, M.K.; Choi, B.Y.; Moon, H.S. The study about physical activity for subjects with prevention of benign prostate hyperplasia. Int. Neurourol. J. 2014, 18, 155–162. [Google Scholar] [CrossRef]
- Wolin, K.Y.; GRUBB III, R.L.; Pakpahan, R.; Ragard, L.; Mabie, J.; Andriole, G.L.; Sutcliffe, S. Physical activity and benign prostatic hyperplasia-related outcomes and nocturia. Med. Sci. Sports Exerc. 2015, 47, 581–592. [Google Scholar] [CrossRef]
- Yoosuf, B.T.; Panda, A.K.; Kt, M.F.; Bharti, S.K.; Devana, S.K.; Bansal, D. Comparative efficacy and safety of alpha-blockers as monotherapy for benign prostatic hyperplasia: A systematic review and network meta-analysis. Sci. Rep. 2024, 14, 11116. [Google Scholar]
- McVary, K.T.; Rademaker, A.; Lloyd, G.L.; Gann, P. Autonomic nervous system overactivity in men with lower urinary tract symptoms secondary to benign prostatic hyperplasia. J. Urol. 2005, 174, 1327–1333. [Google Scholar] [CrossRef]
- Martinez-Sanchez, N.; Sweeney, O.; Sidarta-Oliveira, D.; Caron, A.; Stanley, S.A.; Domingos, A.I. The sympathetic nervous system in the 21st century: Neuroimmune interactions in metabolic homeostasis and obesity. Neuron 2022, 110, 3597–3626. [Google Scholar] [CrossRef]
- Al-Fartosy, A.J.M.; Ati, M.H. The Relationship of Insulin Resistance With some Proinflammtory markers In Prostate Cancer and Benign Prostate Hyperplasia Patients. Ann. Rom. Soc. Cell Biol. 2021, 25, 14186–14194. [Google Scholar]
- Daniela, M.; Catalina, L.; Ilie, O.; Paula, M.; Daniel-Andrei, I.; Ioana, B. Effects of exercise training on the autonomic nervous system with a focus on anti-inflammatory and antioxidants effects. Antioxidants 2022, 11, 350. [Google Scholar] [CrossRef]
- Neeland, I.J.; Lim, S.; Tchernof, A.; Gastaldelli, A.; Rangaswami, J.; Ndumele, C.E.; Powell-Wiley, T.M.; Després, J.-P. Metabolic syndrome. Nat. Rev. Dis. Primers 2024, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, Y.; Lu, Y.; Liu, J.; Li, H. Association between metabolic syndrome and benign prostatic hyperplasia: The underlying molecular connection. Life Sci. 2024, 358, 123192. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.A.M.; AbdElaal, H.M.; Yasien, H.A.; Elgharbawy, M.S. Correlation between metabolic syndrome and benign prostatic hyperplasia. Menoufia Med. J. 2021, 34, 43–46. [Google Scholar]
- Daher, M.; Saqer, T.; Jabr, M.; Al-Mousa, S. Benign prostatic hyperplasia and metabolic syndrome; prevalence and association: A cross-sectional study in Syria. BMC Urol. 2023, 23, 187. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, Y.; Tan, J.; Qin, F.; Yuan, J. The association between metabolic syndrome and lower urinary tract symptoms suggestive of benign prostatic hyperplasia in aging males: Evidence based on propensity score matching. Transl. Androl. Urol. 2021, 10, 384–396. [Google Scholar] [CrossRef]
- Vikram, A.; Jena, G.; Ramarao, P. Increased cell proliferation and contractility of prostate in insulin resistant rats: Linking hyperinsulinemia with benign prostate hyperplasia. Prostate 2010, 70, 79–89. [Google Scholar] [CrossRef]
- Vikram, A.; Jena, G.; Ramarao, P. Insulin-resistance and benign prostatic hyperplasia: The connection. Eur. J. Pharmacol. 2010, 641, 75–81. [Google Scholar] [CrossRef]
- Wang, Z.; Olumi, A.F. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic hyperplasia. Differentiation 2011, 82, 261–271. [Google Scholar] [CrossRef]
- Vickman, R.E.; Franco, O.E.; Moline, D.C.; Vander Griend, D.J.; Thumbikat, P.; Hayward, S.W. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J. Urol. 2020, 7, 191–202. [Google Scholar] [CrossRef]
- Diokno, A.C.; Kunta, A.; Bowen, R. Testosterone and 5 Alpha Reductase Inhibitor (5ARI) in Benign Prostatic Hyperplasia (BPH): A historical perspective. Continence 2024, 12, 101711. [Google Scholar] [CrossRef]
- Oseni, S.O.; Naar, C.; Pavlović, M.; Asghar, W.; Hartmann, J.X.; Fields, G.B.; Esiobu, N.; Kumi-Diaka, J. The molecular basis and clinical consequences of chronic inflammation in prostatic diseases: Prostatitis, benign prostatic hyperplasia, and prostate cancer. Cancers 2023, 15, 3110. [Google Scholar] [CrossRef]
- St Sauver, J.L.; Jacobson, D.J.; McGree, M.E.; Lieber, M.M.; Jacobsen, S.J. Protective association between nonsteroidal antiinflammatory drug use and measures of benign prostatic hyperplasia. Am. J. Epidemiol. 2006, 164, 760–768. [Google Scholar] [CrossRef]
- St Sauver, J.L.; Jacobsen, S.J.; Jacobson, D.J.; McGree, M.E.; Girman, C.J.; Nehra, A.; Roger, V.L.; Lieber, M.M. Statin use and decreased risk of benign prostatic enlargement and lower urinary tract symptoms. BJU Int. 2011, 107, 443–450. [Google Scholar] [CrossRef]
- Kahokehr, A.; Vather, R.; Nixon, A.; Hill, A.G. Non-steroidal anti-inflammatory drugs for lower urinary tract symptoms in benign prostatic hyperplasia: Systematic review and meta-analysis of randomized controlled trials. BJU Int. 2013, 111, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.-H.; Li, M.-R.; He, M.-X.; Liu, J.; Dou, J.-H.; Wang, Y.-W.; Dong, Y.; Yan, C.; Li, Z.-H.; Chong, T. Causal association between non-steroidal anti-inflammatory drugs use and the risk of benign prostatic hyperplasia: A univariable and multivariable Mendelian randomization study. BMC Med. Genom. 2025, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.S.; Lee, W.K.; Lee, S.H.; Lee, S.K.; Cho, S.T.; Kim, D.H. Is high-sensitivity C-reactive protein associated with lower urinary tract symptoms in aging men? Results from the hallym aging study. Korean J. Urol. 2012, 53, 335–341. [Google Scholar] [CrossRef]
- Nickel, J.C.; Roehrborn, C.G.; O’Leary, M.P.; Bostwick, D.G.; Somerville, M.C.; Rittmaster, R.S. The relationship between prostate inflammation and lower urinary tract symptoms: Examination of baseline data from the REDUCE trial. Eur. Urol. 2008, 54, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ren, X.; Hait, W.N.; Yang, J.-M. Therapeutic targeting of autophagy in disease: Biology and pharmacology. Pharmacol. Rev. 2013, 65, 1162–1197. [Google Scholar] [CrossRef]
- Liu, C.; Xu, P.; Chen, D.; Fan, X.; Xu, Y.; Li, M.; Yang, X.; Wang, C. Roles of autophagy-related genes Beclin-1 and LC3 in the development and progression of prostate cancer and benign prostatic hyperplasia. Biomed. Rep. 2013, 1, 855–860. [Google Scholar] [CrossRef]
- Lesovaya, E.A.; Kirsanov, K.I.; Antoshina, E.E.; Trukhanova, L.S.; Gorkova, T.G.; Shipaeva, E.V.; Salimov, R.M.; Belitsky, G.A.; Blagosklonny, M.V.; Yakubovskaya, M.G.; et al. Rapatar, a nanoformulation of rapamycin, decreases chemically-induced benign prostate hyperplasia in rats. Oncotarget 2015, 6, 9718–9727. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.S.; Jeon, S.I.; Park, J.Y.; Lee, J.Y.; Lee, S.C.; Cho, K.J.; Jeong, J.M. Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition. J. Physiol. Sci. 2016, 66, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle–organ crosstalk: The emerging roles of myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, L.; You, W.; Shan, T. Myokines mediate the cross talk between skeletal muscle and other organs. J. Cell. Physiol. 2021, 236, 2393–2412. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhou, H.H.; Luo, Q.; Cui, S. The effect of physical exercise on circulating brain-derived neurotrophic factor in healthy subjects: A meta-analysis of randomized controlled trials. Brain Behav. 2022, 12, e2544. [Google Scholar] [CrossRef]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar] [CrossRef]
Study | Study Design | Number of Participants | Reported Conditions | Key Findings |
---|---|---|---|---|
Platz et al., 1998 [38] | Prospective Cohort | 30,634 | BPH/LUTS | A significant inverse relationship was observed between physical activity and BPH risk, with individuals in the highest quintile of exercise exposure (≥33.8 MET∙hr/week) demonstrating a 25% reduced likelihood of requiring BPH-related surgery compared to those in the lowest quintile (0.1–3 MET∙hr/week), reflected by an odds ratio of 0.75. This finding suggests that increased physical activity may confer a protective effect against clinically significant BPH. |
Meigs et al., 2001 [39] | Cohort Study | 1019 | BPH | An odds ratio of 0.5 was observed when comparing individuals in the highest quartile of physical activity to those in the lowest quartile, indicating that men with the highest exercise levels had a 50% lower risk of developing BPH. This finding supports a strong inverse association between physical activity and BPH incidence. |
Lacey et al., 2001 [37] | Case–Control Study | 677 | BPH | No statistically significant association was identified between physical activity levels and the risk of developing BPH in this study, suggesting that exercise may not uniformly influence BPH outcomes across all populations or study designs. |
Prezioso et al., 2001 [40] | Cohort Study | 1033 | LUTS | Individuals engaging in regular physical activity demonstrated a lower risk of experiencing specific LUTS, including incomplete bladder emptying, urinary intermittency, urgency, and repeated voiding, suggesting a protective association between exercise and the severity of BPH-related symptoms. |
Joseph et al., 2003 [41] | Case–Control Study | 708 | LUTS | After adjusting for potential confounders, such as age, BMI, and comorbidities, the association between physical activity and BPH risk was no longer statistically significant, indicating that the initially observed relationship may be influenced by other underlying factors. |
Rohrmann et al., 2005 [42] | Case–Control Study | 2797 | LUTS | Physically active individuals had a 52% lower odds of developing lower urinary tract symptoms (LUTS) compared to their sedentary counterparts (OR = 0.48), indicating a strong inverse association between regular physical activity and BPH-related symptom severity. |
Dal Maso et al., 2006 [36] | Case–Control Study | 2820 | BPH | The odds of developing BPH were reduced by 30% to 40% among individuals engaging in higher levels of occupational physical activity (OR = 0.6–0.7), and by 30% to 50% among those reporting greater levels of recreational physical activity (OR = 0.5–0.7), highlighting a dose-dependent inverse relationship between physical activity and BPH risk. |
Hong et al., 2006 [43] | Cross-Sectional Study | 641 | BPH/LUTS | While no significant overall difference was found between exercising and non-exercising groups, men who engaged in moderate levels of exercise demonstrated a reduced odds of BPH compared to those with low or no exercise, suggesting that moderate physical activity may confer protective benefits. |
Parsons et al., 2008 [14] | Systematic review and meta-analysis | 43,083 | NA | The odds ratios for BPH ranged from 0.70 to 0.74 across individuals reporting low to high levels of physical activity, indicating a consistent, modest inverse association between physical activity and BPH risk. |
Kristal et al., 2007 [35] | Cohort Study | 5667 | LUTS | Although no statistically significant association was observed between physical activity levels and BPH risk, the data suggest a possible trend without clear evidence supporting a protective effect of increased physical activity. |
Williams PT. 2008 [44] | Cohort Study | 1899 | BPH | The odds ratio of 0.68 comparing the fastest to the slowest exercisers indicates that higher exercise intensity is associated with a 32% reduced risk of BPH, suggesting a protective effect of more vigorous physical activity. |
Lagiou et al., 2008 [45] | Case–Control Study | 430 | BPH | The odds ratio of 0.59 for individuals with high versus low levels of physical activity indicates that those engaging in higher physical activity have a 41% lower risk of developing BPH, highlighting the protective association between increased exercise and BPH risk. |
Lee et al., 2014 [46] | Cohort Study | 582 | BPH | The odds ratio of 0.93 for individuals with lower sedentary time suggests a modest reduction in BPH risk, whereas an odds ratio of 0.17 for those with higher sedentary time indicates a substantially increased risk, highlighting the detrimental impact of prolonged sedentary behavior on BPH development. |
Wolin et al., 2015 [47] | Cohort Study | 4710 | LUTS | The odds ratio decreased to 0.87 for nocturia and further to 0.66 for severe nocturia among men engaging in regular physical activity, indicating that exercise is associated with a 13% reduction in the risk of experiencing nocturia and a 34% reduction in the risk of severe nocturia. |
Jia et al., 2024 [12] | A Two-Sample Mendelian Randomization Study | NR | NR | In this study, no significant association was found between sedentary behavior or varying levels of physical activity and the risk of developing BPH, indicating that neither increased exercise nor sedentary time alone significantly influenced BPH risk within the study population. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshahrani, S. Modulating Benign Prostatic Hyperplasia Through Physical Activity—The Emerging Role of Myokines: A Narrative Review. Medicina 2025, 61, 1362. https://doi.org/10.3390/medicina61081362
Alshahrani S. Modulating Benign Prostatic Hyperplasia Through Physical Activity—The Emerging Role of Myokines: A Narrative Review. Medicina. 2025; 61(8):1362. https://doi.org/10.3390/medicina61081362
Chicago/Turabian StyleAlshahrani, Saad. 2025. "Modulating Benign Prostatic Hyperplasia Through Physical Activity—The Emerging Role of Myokines: A Narrative Review" Medicina 61, no. 8: 1362. https://doi.org/10.3390/medicina61081362
APA StyleAlshahrani, S. (2025). Modulating Benign Prostatic Hyperplasia Through Physical Activity—The Emerging Role of Myokines: A Narrative Review. Medicina, 61(8), 1362. https://doi.org/10.3390/medicina61081362