TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
Abstract
1. Introduction
2. Results
2.1. TnP Significantly Impacts Drug Metabolism Networks
2.2. TnP Promotes Wound Healing Through Multi-Pathway Regulation
2.3. TnP Coordinates Proteolytic and Metabolic Pathways
2.4. TnP Regulates Pigmentation, Metabolism, and Ubiquitin Signaling
3. Discussion
4. Materials and Methods
4.1. TnP Peptide
4.2. Zebrafish Injury Model and TnP Treatment
4.3. RNA Purification and Sequencing
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADME | Absorption, Distribution, Metabolism, and Excretion |
AHR | Aryl Hydrocarbon Receptor |
CNS | Central Nervous System |
CYP | Cytochrome P450 |
DDI | Drug–Drug Interaction |
DE | Differential Expression |
DEG | Differentially Expressed Gene |
DME | Drug-Metabolizing Enzyme |
EAE | Experimental Autoimmune Encephalomyelitis |
ECM | Extracellular Matrix |
FC | Fold Change |
GABA | Gamma-Aminobutyric Acid |
GST | Glutathione S-Transferase |
GTPase | Guanosine Triphosphatase |
HPF | Hours Post Fertilization |
HPI | Hours Post Injury |
LPS | Lipopolysaccharide |
MS | Multiple Sclerosis |
mTOR | Mechanistic Target of Rapamycin |
NAT | N-acetyltransferases |
PPI | Protein–Protein Interaction |
RNA | Ribonucleic Acid |
SLC | Solute Carrier |
SULT | Sulfotransferase |
TLR | Toll-Like Receptor |
UGT | UDP-Glucuronosyltransferase |
References
- Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int. J. Mol. Sci. 2019, 20, 4367. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Yao, C.; Zhong, Z.; Ge, J.; Bai, Z.; Ye, X.; Xie, T.; Xie, Y. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur. J. Med. Chem. 2021, 213, 113165. [Google Scholar] [CrossRef] [PubMed]
- Uddin, G.; Rauf, A.; Siddiqui, B.S.; Muhammad, N.; Khan, A.; Shah, S.U. Anti-nociceptive, anti-inflammatory and sedative activities of the extracts and chemical constituents of Diospyros lotus L. Phytomedicine 2014, 21, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Del Gatto, A.; Saviano, M.; Zaccaro, L. An Overview of Peptide-Based Molecules as Potential Drug Candidates for Multiple Sclerosis. Molecules 2021, 26, 5227. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.; Eto, S.F.; Lopes-Ferreira, M. Shedding Light on the Drug-Target Prediction of the Anti-Inflammatory Peptide TnP with Bioinformatics Tools. Pharmaceuticals 2022, 15, 994. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lima, C.; Falcão, M.A.P.; Pinto, F.J.; Bernardo, J.T.G.; Lopes-Ferreira, M. The Anti-Inflammatory Peptide TnP Is a Candidate Molecule for Asthma Treatment. Cells 2023, 12, 924. [Google Scholar] [CrossRef] [PubMed]
- Pimentel Falcao, M.A.; Banderó Walker, C.I.; Rodrigo Disner, G.; Batista-Filho, J.; Silva Soares, A.B.; Balan-Lima, L.; Lima, C.; Lopes-Ferreira, M. Knockdown of miR-26a in zebrafish leads to impairment of the anti-inflammatory function of TnP in the control of neutrophilia. Fish Shellfish Immunol. 2021, 114, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Komegae, E.N.; Souza, T.A.; Grund, L.Z.; Lima, C.; Lopes-Ferreira, M. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS ONE 2017, 12, e0171796. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Batista-Filho, J.; Falcão, M.A.P.; Maleski, A.L.A.; Soares, A.B.S.; Balan-Lima, L.; Disner, G.R.; Lima, C.; Lopes-Ferreira, M. Early preclinical screening using zebrafish (Danio rerio) reveals the safety of the candidate anti-inflammatory therapeutic agent TnP. Toxicol. Rep. 2021, 8, 13–22. [Google Scholar] [CrossRef]
- Yang, X.; Kui, L.; Tang, M.; Li, D.; Wei, K.; Chen, W.; Miao, J.; Dong, Y. High-Throughput Transcriptome Profiling in Drug and Biomarker Discovery. Front. Genet. 2020, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Leidner, J.; Theis, H.; Kraut, M.; Ragogna, A.; Beyer, M.; Schultze, J.; Schulte-Schrepping, J.; Carraro, C.; Bonaguro, L. Cost-Efficient Transcriptomic-Based Drug Screening. J. Vis. Exp. 2024, 204, e65930. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sun, Q.; Liu, Y.; Zhang, J.; Li, G.; Wu, S.; Zheng, H.; Ye, J.; Zhou, M.; Zheng, H.; et al. Intelligent larval zebrafish phenotype recognition via attention mechanism for high-throughput screening. Comput. Biol. Med. 2025, 188, 109892. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, L.J.; Hou, Y.; Guo, R.Y.; Liu, M.; Yang, L.; Zhang, J.L. Different action mechanisms of low- and high-level quercetin in the brains of adult zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2021, 223, 112597. [Google Scholar] [CrossRef] [PubMed]
- Patton, E.E.; Zon, L.I.; Langenau, D.M. Zebrafish disease models in drug discovery: From preclinical modelling to clinical trials. Nat. Rev. Drug Discov. 2021, 20, 611–628. [Google Scholar] [CrossRef] [PubMed]
- MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.W.; Zhang, Z.J.; Li, S.; Lei, B.; Yuan, S.; Cui, G.Z.; Man Hoi, P.; Chan, K.; Lee, S.M. From omics to drug metabolism and high content screen of natural product in zebrafish: A new model for discovery of neuroactive compound. Evid. Based Complement. Altern. Med. 2012, 2012, 605303. [Google Scholar] [CrossRef] [PubMed]
- Rawls, J.F.; Samuel, B.S.; Gordon, J.I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 2004, 101, 4596–4601. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, J.V.; McArthur, A.G.; Kubota, A.; Zanette, J.; Parente, T.; Jönsson, M.E.; Nelson, D.R.; Stegeman, J.J. Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish. BMC Genom. 2010, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Disner, G.R.; Fernandes, T.A.M.; Nishiyama, M.Y., Jr.; Lima, C.; Wincent, E.; Lopes-Ferreira, M. TnP and AHR-CYP1A1 Signaling Crosstalk in an Injury-Induced Zebrafish Inflammation Model. Pharmaceuticals 2024, 17, 1155. [Google Scholar] [CrossRef] [PubMed]
- Isik, Z.; Baldow, C.; Cannistraci, C.V.; Schroeder, M. Drug target prioritization by perturbed gene expression and network information. Sci. Rep. 2015, 5, 17417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Wijk, R.C.; Krekels, E.H.J.; Hankemeier, T.; Spaink, H.P.; van der Graaf, P.H. Systems pharmacology of hepatic metabolism in zebrafish larvae. Drug Discov. Today Dis. Models 2016, 22, 27–34. [Google Scholar] [CrossRef]
- Shabbir, A.; Haider, K.; Rehman, K.; Akash, M.S.H.; Chen, S. Biochemical activation and functions of drug-metabolizing enzymes. In Biochemistry of Drug Metabolizing Enzymes; Akash, M.S.H., Rehman, K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–27. ISBN 9780323951203. [Google Scholar] [CrossRef]
- Smith, C. The potential of zebrafish as drug discovery research tool in immune-mediated inflammatory disease. Inflammopharmacology 2024, 32, 2219–2233. [Google Scholar] [CrossRef] [PubMed]
- Corsini, A.; Bortolini, M. Drug-induced liver injury: The role of drug metabolism and transport. J. Clin. Pharmacol. 2013, 53, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Meijer, A.H.; Schaaf, M.J.M. Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front. Cell Dev. Biol. 2021, 8, 620984. [Google Scholar] [CrossRef] [PubMed]
- Zanandrea, R.; Bonan, C.D.; Campos, M.M. Zebrafish as a model for inflammation and drug discovery. Drug Discov. Today 2020, 25, 2201–2211. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, L.; Zhumabayeva, B.; Gebauer, T.; Kisselev, I.; Aitasheva, Z. Zebrafish (Danio rerio) as a Model for Understanding the Process of Caudal Fin Regeneration. Zebrafish 2020, 17, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Love, M.I.; Soneson, C.; Hickey, P.F.; Johnson, L.K.; Pierce, N.T.; Shepherd, L.; Morgan, M.; Patro, R. Tximeta: Reference sequence checksums for provenance identification in RNA-seq. PLoS Comput. Biol. 2020, 16, e1007664. [Google Scholar] [CrossRef]
- Rainer, J.; Gatto, L.; Weichenberger, C.X. ensembldb: An R package to create and use Ensembl-based annotation resources. Bioinformatics 2019, 35, 3151–3153. [Google Scholar] [CrossRef]
- Carlson, M. org.Dr.eg.db: Genome Wide Annotation for Zebrafish, R Package Version 3.8.2; Bioconductor: Boston, MA, USA, 2019.
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
Likely Biological Function | Gene Symbol | Gene Name |
---|---|---|
Drug-metabolizing enzymes | ido1 | Indoleamine 2,3-dioxygenase 1 |
gstt1b | Glutathione S-transferase theta 1b | |
gpx3 | Glutathione peroxidase 3 | |
ugt5c3 | UDP glucuronosyltransferase 5 family, polypeptide C3 | |
ces2b | Carboxylesterase 2b | |
ugt5a2 | UDP glucuronosyltransferase 5 family, polypeptide A2 | |
cyp1a | Cytochrome P450, family 1, subfamily A | |
abcc2 | ATP-binding cassette, sub-family C (CFTR/MRP), member 2 | |
cyp2k21 | Cytochrome P450, family 2, subfamily k, polypeptide 21 | |
hsd11b1lb | Hydroxysteroid (11-beta) dehydrogenase 1-like b | |
ugt1a1 | UDP glucuronosyltransferase 1 family, polypeptide A1 | |
cyp3a65 | Cytochrome P450, family 3, subfamily A, polypeptide 65 | |
cyp2p6 | Cytochrome P450, family 2, subfamily P, polypeptide 6 | |
cyp2n13 | Cytochrome P450, family 2, subfamily N, polypeptide 13 | |
cyp2v1 | Cytochrome P450, family 2, subfamily V, polypeptide 1 | |
cyp2k18 | Cytochrome P450, family 2, subfamily K, polypeptide 18 | |
cyp3c3 | Cytochrome P450, family 3, subfamily c, polypeptide 3 | |
cyp2aa11 | Cytochrome P450, family 2, subfamily AA, polypeptide 11 | |
cyp4v7 | Cytochrome P450, family 4, subfamily V, member 2b | |
slc7a7 | Solute carrier family 7 member 7 | |
slc15a1b | Solute carrier family 15 member 1b | |
slc6a15 | Solute carrier family 6 member 15 | |
slc43a2a | Solute carrier family 43 member 2 | |
slc6a19b | Solute carrier family 6 member 19b | |
cyp7a1 | Cytochrome P450, family 7, subfamily A, polypeptide 1 | |
abca1a | ATP-binding cassette, sub-family A (ABC1), member 1A | |
abcg1 | ATP-binding cassette, sub-family G (WHITE), member 1 | |
lratb.2 | Lecithin retinol acyltransferase b, tandem duplicate 2 | |
rpe65a | Retinoid isomerohydrolase RPE65 a | |
rgra | Retinal G protein coupled receptor a | |
slc20a2 | Solute carrier family 20 member 2 | |
slc34a2b | Solute carrier family 34 member 2b | |
slc15a4 | Solute carrier family 15 member 4 | |
slc26a3.2 | Solute carrier family 26 member 3, tandem duplicate 2 | |
cytb | Cytochrome b, mitochondrial | |
znf704 | Zinc finger protein 704 | |
slc16a6b | Solute carrier family 16 member 6b | |
slc16a9a | Solute carrier family 16 member 9a | |
lcat | Lecithin-cholesterol acyltransferase | |
mogat2 | Monoacylglycerol O-acyltransferase 2 | |
smpdl3b | Sphingomyelin phosphodiesterase acid like 3B | |
gpcpd1 | Glycerophosphocholine phosphodiesterase 1 | |
pdk4 | Pyruvate dehydrogenase kinase, isozyme 4 | |
pdk2a | Pyruvate dehydrogenase kinase 2a | |
abcb11b | ATP binding cassette subfamily B member 11 | |
slc10a2 | Solute carrier family 10 member 2 | |
cyp24a1 | Cytochrome P450, family 24, subfamily A, polypeptide 1 | |
slc8a1b | Solute carrier family 8 member 1b | |
Cellular traffic | myhb | Myosin, heavy chain b |
mylz3 | Myosin, light polypeptide 3, skeletal muscle | |
myha | Myosin, heavy chain a | |
mybpc2a | Myosin binding protein Ca | |
tmem184ba | Transmembrane protein 184ba | |
gabarapb | GABA(A) receptor-associated protein b | |
urgcp | Upregulator of cell proliferation | |
ednrba | Endothelin receptor Ba | |
vwa11 | Von Willebrand factor A domain containing 11 | |
cxcr3.3 | Chemokine (C-X-C motif) receptor 3, tandem duplicate 3 | |
tlr5a | Toll-like receptor 5a | |
tlr5b | Toll-like receptor 5b | |
muc5.1 | Mucin 5.1, oligomeric mucus/gel-forming | |
cdhr2 | Cadherin related family member 2 | |
cdhr5b | Cadherin-related family member 5b | |
LOC568392 | Cadherin-1-like | |
cdc42ep1a | CDC42 effector protein (Rho GTPase binding) 1a | |
nhsa | NHS actin remodeling regulator | |
gabrd | Gamma-aminobutyric acid type A receptor subunit delta | |
drd1b | Dopamine receptor D1b | |
ifngr1 | Interferon gamma receptor 1 | |
crfb16 | Cytokine receptor family member B16 | |
Cell activity | c6ast4 | Six-cysteine containing astacin protease 4 |
prss59.1 | Serine protease 59, tandem duplicate 1 | |
prss1 | Serine protease 1 | |
cpa1 | Carboxypeptidase A1 (pancreatic) | |
cpa5 | Carboxypeptidase A5 | |
serpinf2a | Serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 2a | |
cpb1 | Carboxypeptidase B1 | |
cela1.4 | Chymotrypsin like elastase family member 1, tandem duplicate 4 | |
cel.1 | Carboxyl ester lipase, tandem duplicate 1 | |
pdia2 | Protein disulfide isomerase family A, member 2 | |
amy2a | Amylase alpha 2A-like 2 | |
meltf | Melanotransferrin | |
cel.2 | Carboxyl ester lipase, tandem duplicate 2 | |
ela2 | Elastase 2 | |
cpa4 | Carboxypeptidase A4 | |
atg2a | Autophagy related 2A | |
ulk1a | Unc-51 like autophagy activating kinase 1a | |
mlst8 | MTOR associated protein, LST8 homolog (S. cerevisiae) | |
anpepb | Alanyl (membrane) aminopeptidase b | |
ace2 | Angiotensin I converting enzyme 2 | |
bcl6ab | BCL6A transcription repressor b | |
bcl6aa | BCL6A transcription repressor a | |
lct | Lactase | |
g6pca.1 | Glucose-6-phosphatase catalytic subunit 1a, tandem duplicate 1 | |
mb | Myoglobin | |
tg | Thyroglobulin | |
ppp6r2b | Protein phosphatase 6, regulatory subunit 2b | |
ppp3ccb | Protein phosphatase 3, catalytic subunit, gamma isozyme, b | |
Signaling pathways | pmelb | Premelanosome protein b |
dct | Dopachrome tautomerase | |
tyr | Tyrosinase | |
pmela | Premelanosome protein a | |
fbxl3l | F-box and leucine-rich repeat protein 3, like | |
fbxl8 | F-box and leucine-rich repeat protein 8 | |
LOC100004499 | Stereocilin | |
chs1 | Chitin synthase 1 | |
chia.2 | Chitinase, acidic.2 | |
chia.1 | Chitinase, acidic.1 | |
ucp3 | Uncoupling protein 3 | |
lpin1 | Lipin 1a | |
pnpla2 | Patatin-like phospholipase domain containing 2 | |
crebrf | Creb3 regulatory factor | |
klhl24b | Kelch like family member 24 | |
histh1l | Histone H1 like1 | |
h1-10 | H1.10 linker histone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Disner, G.R.; Wincent, E.; Lima, C.; Lopes-Ferreira, M. TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity. Pharmaceuticals 2025, 18, 1146. https://doi.org/10.3390/ph18081146
Disner GR, Wincent E, Lima C, Lopes-Ferreira M. TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity. Pharmaceuticals. 2025; 18(8):1146. https://doi.org/10.3390/ph18081146
Chicago/Turabian StyleDisner, Geonildo Rodrigo, Emma Wincent, Carla Lima, and Monica Lopes-Ferreira. 2025. "TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity" Pharmaceuticals 18, no. 8: 1146. https://doi.org/10.3390/ph18081146
APA StyleDisner, G. R., Wincent, E., Lima, C., & Lopes-Ferreira, M. (2025). TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity. Pharmaceuticals, 18(8), 1146. https://doi.org/10.3390/ph18081146