Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = automotive inverter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 32470 KiB  
Article
Effect of Laser Parameters on Surface Morphology and Material Removal Mechanism of Ablation Grooves in CFRP Composites Using Finite Element Simulations
by Juan Song, Bangfu Wang, Qingyang Jiang and Xiaohong Hao
Materials 2025, 18(4), 790; https://doi.org/10.3390/ma18040790 - 11 Feb 2025
Viewed by 843
Abstract
Carbon fiber resin matrix composites (CFRP) are widely recognized for their exceptional properties such as high temperature resistance and high strength, making them indispensable in aerospace, automotive, and medical applications. Despite their growing use, precision machining of CFRP remains challenging. Traditional mechanical machining [...] Read more.
Carbon fiber resin matrix composites (CFRP) are widely recognized for their exceptional properties such as high temperature resistance and high strength, making them indispensable in aerospace, automotive, and medical applications. Despite their growing use, precision machining of CFRP remains challenging. Traditional mechanical machining methods often lead to severe tool wear, matrix damage, fiber pullout, delamination, and chipping. In contrast, nanosecond pulsed laser machining has garnered significant attention due to its high precision, minimal heat-affected zone (HAZ), and versatility in processing various materials. In this study, a finite element model was developed to account for the anisotropic heat transfer and non-homogeneous properties of CFRP, enabling accurate simulation of laser machining processes. The study analyzed the influence of laser parameters on machining quality and revealed the ablation mechanism and HAZ evolution under varying laser conditions. Notably, it was observed that the thermal conductivity along the carbon fiber’s axial direction is higher than in the radial direction, resulting in an elliptical ablation pattern after laser irradiation. Additionally, the effects of the laser power, pulse frequency, and scanning speed on the depth and width of grooves were investigated through finite element simulations and validation experiments. A heat accumulation effect between laser pulses was observed, where resin matrix material around the grooves was removed once the accumulated heat exceeded the resin’s pyrolysis temperature. In addition, if there is too much laser power or too small a laser scanning speed, the fiber will undergo severe ablation removal, which will form serious thermal damage and a heat-affected zone. Gradually increasing the laser power or decreasing the scanning speed led to deeper and wider grooves, with an inverted triangular morphology. Moreover, the selection of different parameters had a significant effect on the ablation morphology, heat-affected zone, and the contour parameters of the grooves. This research contributes to understanding the laser–CFRP interaction mechanism and offers insights for optimizing laser processing parameters to improve material processing accuracy and efficiency, further expanding the potential applications of laser technology in composite material machining. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

25 pages, 6816 KiB  
Article
Online High Frequency Impedance Identification Method of Inverter-Fed Electrical Machines for Stator Health Monitoring
by Jérémy Creux, Najla Haje Obeid, Thierry Boileau and Farid Meibody-Tabar
Appl. Sci. 2024, 14(23), 10911; https://doi.org/10.3390/app142310911 - 25 Nov 2024
Cited by 3 | Viewed by 1123
Abstract
In electric powertrain traction applications, the adopted trend to improve the performance and efficiency of electromechanical power conversion systems is to increase supply voltages and inverter switching frequencies. As a result, electrical machine conductors are subjected to ever-increasing electrical stresses, leading to premature [...] Read more.
In electric powertrain traction applications, the adopted trend to improve the performance and efficiency of electromechanical power conversion systems is to increase supply voltages and inverter switching frequencies. As a result, electrical machine conductors are subjected to ever-increasing electrical stresses, leading to premature insulation degradation and eventual short-circuits. Winding condition monitoring is crucial to prevent such critical failures. Based on the scientific literature, several methods can be used for early identification of aging. A first solution is to monitor partial discharges. This method requires the use of a specific measurement device and an undisturbed test environment. A second solution is to monitor the inter-turn winding capacitance, which is directly related to the condition of the insulation and can cause a change in the stator impedance behavior. Several approaches can be used to estimate or characterize this impedance behavior. They must be performed on a machine at standstill, which limits their application. In this paper, a new characterization method is proposed to monitor the high-frequency stator impedance evolution of voltage source inverter-fed machines. This method can be applied at any time without removing the machine from its operating environment. The range and accuracy of the proposed frequency characterization depend in particular on the supply voltage level and the bandwidth of the measurement probes. The effects of parameters such as temperature, switching frequency, and DC voltage amplitude on the impedance characteristic were also studied and will be presented. Tests carried out on an automotive traction machine have shown that the first two series and parallel resonances of the high-frequency impedance can be accurately identified using the proposed technique. Therefore, by monitoring these resonances, it is possible to predict the aging rate of the conductor. Full article
Show Figures

Figure 1

17 pages, 12420 KiB  
Article
Design and Verification of Multiphase Multilevel Traction Inverter
by Patrik Resutík, Michal Praženica and Slavomír Kaščák
Appl. Sci. 2024, 14(22), 10562; https://doi.org/10.3390/app142210562 - 15 Nov 2024
Viewed by 1382
Abstract
The paper presents the practical design and implementation of a three-level neutral point clamped (TNPC) six-phase inverter rated at 100 kVA. The study initiates with prior work review, whereby most research work done earlier was mainly simulation-based. Based on the simulation results, this [...] Read more.
The paper presents the practical design and implementation of a three-level neutral point clamped (TNPC) six-phase inverter rated at 100 kVA. The study initiates with prior work review, whereby most research work done earlier was mainly simulation-based. Based on the simulation results, this paper focuses on the practical aspects of inverter design, such as the development of a power board on an Insulated Metal Substrate, a gate driver board, an interconnect board, and the main control board. An inverter physical prototype has been built and tested at 500 V and 20 kW of output power. The SiC semiconductor technology is the base of the inverter, which represents the main merit of the work. Finally, high power density, compact design, and high efficiency are shown, which are major contributions of the paper. Tests performed proved that the designed converter was operating reliably and efficiently. While a simple Sinusoidal Pulse Width Modulation (SPWM) control algorithm has been implemented, the overall performance of the inverter showed great promise for higher-power applications. Compact and high-efficiency TNPC converters are developed for meeting increasing demands of advanced energy, automotive, and industrial applications. Full article
Show Figures

Figure 1

10 pages, 1064 KiB  
Proceeding Paper
Compensation of Backlash for High Precision Tracking Control of Inverted Pendulum by Drive-Anti Drive Mechanisms
by Aisha Akbar Awan and Umar S. Khan
Eng. Proc. 2024, 75(1), 32; https://doi.org/10.3390/engproc2024075032 - 29 Sep 2024
Viewed by 902
Abstract
Many actuating and electro-mechanical devices are driven by DC motors. Gear trains are used to amplify the torque in these motors. They are used in a wide variety of automotives, robotics, and automation applications. However, gears are prone to backlash during their operation [...] Read more.
Many actuating and electro-mechanical devices are driven by DC motors. Gear trains are used to amplify the torque in these motors. They are used in a wide variety of automotives, robotics, and automation applications. However, gears are prone to backlash during their operation of amplifying torques of electromehanical drives. This results in the disengagement of gear teeth when the rotation is reversed. These effects give rise to positional inaccuracies and poor control of the system. This proposed Drive-Anti Drive mechanism is used to track the system’s desired response in the presence of backlash in such cases. The Drive-Anti Drive mechanism consists of two motors rotating in opposite directions. Both the drive and the anti-drive are the DC Machines. The simulation results of the proposed scheme on the tracking control of Inverted Pendulum have been presented. Simulation results depict that the utilization of Drive-Anti Drive system has achieved the target outcome in less than 20 s. However, the target tracking of a system with the utilization of single drives takes 40 s. Setting response of an inverted pendulum is approximately twice as efficient with the utilization of the Drive-Anti Drive mechanism. This approach has been able to effectively track the target in the presence of backlash with the utilization of the Drive-Anti Drive mechanism. Full article
Show Figures

Figure 1

17 pages, 4361 KiB  
Review
Simulating Noise, Vibration, and Harshness Advances in Electric Vehicle Powertrains: Strategies and Challenges
by Krisztián Horváth and Ambrus Zelei
World Electr. Veh. J. 2024, 15(8), 367; https://doi.org/10.3390/wevj15080367 - 14 Aug 2024
Cited by 15 | Viewed by 7559
Abstract
This study examines the management of noise, vibration, and harshness (NVH) in electric vehicle (EV) powertrains, considering the challenges of the automotive industry’s transition to electric drivetrains. The growing popularity of electric vehicles brings new NVH challenges as the lack of internal combustion [...] Read more.
This study examines the management of noise, vibration, and harshness (NVH) in electric vehicle (EV) powertrains, considering the challenges of the automotive industry’s transition to electric drivetrains. The growing popularity of electric vehicles brings new NVH challenges as the lack of internal combustion engine noise makes drivetrain noise more prominent. The key to managing NVH in electric vehicle powertrains is understanding the noise from electric motors, inverters, and gear systems. Noise from electric motors, mainly resulting from electromagnetic forces and high-frequency noise generated by inverters, significantly impacts overall NVH performance. This article details sources of mechanical noise and vibration, including gear defects in gear systems and shaft imbalances. The methods presented in the publication include simulation and modeling techniques that help identify and solve NVH difficulties. Tools like multi-body dynamics, the finite element method, and multi-domain simulation are crucial for understanding the dynamic behavior of complex systems. With the support of simulations, engineers can predict noise and vibration challenges and develop effective solutions during the design phase. This study emphasizes the importance of a system-level approach in NVH management, where the entire drivetrain is modeled and analyzed together, not just individual components. Full article
Show Figures

Figure 1

33 pages, 15774 KiB  
Article
Low-Voltage Control Circuits of Formula Student Electric Racing Cars
by Ahmed Darwish Badawy, Stefan Sfranciog, Jorge Takeshi Hiranoyama, Jaime Lacasta Ibarrola, James Engstrom, Kirollos Mikhail, William Hunt, Joshua Hartley, Fatemeh Nasr Esfahani and Amos Dexter
Hardware 2024, 2(3), 190-222; https://doi.org/10.3390/hardware2030010 - 3 Aug 2024
Cited by 1 | Viewed by 9752
Abstract
Formula Student (FS) competitions aim to prepare and encourage engineering students to participate in the progression of automotive and motorsport industries. The built racing cars adhere to strict regulations set by competition guidelines to ensure the safety of both teams and spectators. For [...] Read more.
Formula Student (FS) competitions aim to prepare and encourage engineering students to participate in the progression of automotive and motorsport industries. The built racing cars adhere to strict regulations set by competition guidelines to ensure the safety of both teams and spectators. For electric racing cars, the high-voltage (HV) battery system usually operates within a voltage range between 100 V to 600 V to supply the motor and its controller with the required electrical power. It is essential to ensure that these components are operating effectively to minimize battery and motor current as well as to ensure efficient and reliable performance throughout the race. A low-voltage control system (LVCS), usually operating at 12 V, is used to coordinate a wide array of critical operational and safety functions to control the HV system. These functions include: (1) turning on/off procedures, (2) monitoring speed, voltage, and current, (3) interfacing with pedals, (4) controlling dashboard features, (5) managing lighting, (6) facilitating data communication, and (7) implementing safety protocols. The design and operation of the LVCS are crucial for compliance with safety regulations and enhancing the FS electric racing car (FSERC) performance. This details and discusses the design procedures of the LVCS, using the Lancaster E-Racing (LER) FSERC as a case study. The LER car employs a 400 V battery system to power a 68-kW permanent manet synchronous motor (PMSM) using a three-phase voltage source inverter. Using mathematical analysis, SIMULINK/MATLAB® computer simulations, and the experimental real-data results provided by the LER FSERC, this study seeks to offer valuable insights regarding the LVCS practical implementation and optimization. Full article
Show Figures

Figure 1

29 pages, 8533 KiB  
Review
A Review of Modular Electrical Sub-Systems of Electric Vehicles
by Ahmed Darwish, Mohamed A. Elgenedy and Barry W. Williams
Energies 2024, 17(14), 3474; https://doi.org/10.3390/en17143474 - 15 Jul 2024
Cited by 6 | Viewed by 3651
Abstract
Climate change risks have triggered the international community to find efficient solutions to reduce greenhouse gas (GHG) emissions mainly produced by the energy, industrial, and transportation sectors. The problem can be significantly tackled by promoting electric vehicles (EVs) to be the dominant technology [...] Read more.
Climate change risks have triggered the international community to find efficient solutions to reduce greenhouse gas (GHG) emissions mainly produced by the energy, industrial, and transportation sectors. The problem can be significantly tackled by promoting electric vehicles (EVs) to be the dominant technology in the transportation sector. Accordingly, there is a pressing need to increase the scale of EV penetration, which requires simplifying the manufacturing process, increasing the training level of maintenance personnel, securing the necessary supply chains, and, importantly, developing the charging infrastructure. A new modular trend in EV manufacturing is being explored and tested by several large automotive companies, mainly in the USA, the European Union, and China. This modular manufacturing platform paves the way for standardised manufacturing and assembly of EVs when standard scalable units are used to build EVs at different power scales, ranging from small light-duty vehicles to large electric buses and trucks. In this context, modularising EV electric systems needs to be considered to prepare for the next EV generation. This paper reviews the main modular topologies presented in the literature in the context of EV systems. This paper summarises the most promising topologies in terms of modularised battery connections, propulsion systems focusing on inverters and rectifiers, modular cascaded EV machines, and modular charging systems. Full article
Show Figures

Figure 1

21 pages, 14868 KiB  
Article
Development of Shift Map for Electric Commercial Vehicle and Comparison Verification of Pneumatic 4-Speed AMT and 4-Speed Transmission with Synchronizer in Simulation
by Joohyung Kim, Yoonkwon Lee, Hyomin Jin, Seunguk Park and Sung-Ho Hwang
Energies 2024, 17(5), 1038; https://doi.org/10.3390/en17051038 - 22 Feb 2024
Cited by 1 | Viewed by 1472
Abstract
As the automotive industry transitions from internal combustion engine vehicles to the era of electric cars, extensive research is being conducted in the field of electric vehicles. While a significant portion of this research focuses on the electrification of passenger cars, commercial vehicles [...] Read more.
As the automotive industry transitions from internal combustion engine vehicles to the era of electric cars, extensive research is being conducted in the field of electric vehicles. While a significant portion of this research focuses on the electrification of passenger cars, commercial vehicles have experienced relatively modest changes towards electric propulsion. Particularly, challenges related to power and efficiency have prompted a concentrated effort in addressing these issues. However, improvements in the efficiency of motors and inverters are reaching their limits, necessitating the development of multi-speed transmissions for electric commercial vehicles to enhance overall system efficiency. In this paper, the development of a 4-speed transmission with a synchronizer designed for electric commercial vehicles is presented as part of a project. A transmission shift map was developed, and verification of increased power and efficiency was conducted through a comparison with the existing product (a pneumatic 4-speed internal combustion engine transmission) installed in the target commercial vehicle. The study utilized vehicle dynamics, component modeling, and simulation environments to assess the improvements in performance. Full article
(This article belongs to the Special Issue Performance Analysis and Simulation of Electric Vehicles)
Show Figures

Figure 1

18 pages, 58768 KiB  
Article
An SIW Quasi-Pyramid Horn Antenna Based on Patch Coupling Feed for Automotive Radar Sensors
by Pengchao Zhao, Na Li, Yiqun Zhang and Naigang Hu
Remote Sens. 2024, 16(4), 692; https://doi.org/10.3390/rs16040692 - 16 Feb 2024
Viewed by 1706
Abstract
An SIW quasi-pyramidal horn antenna based on patch coupling feed with reduced machining difficulty and facilitated integration with the radar chip is proposed in this paper. Compared with the metal pyramid horn antenna, the Rogers 5880 dielectric substrate based on the SIW structure [...] Read more.
An SIW quasi-pyramidal horn antenna based on patch coupling feed with reduced machining difficulty and facilitated integration with the radar chip is proposed in this paper. Compared with the metal pyramid horn antenna, the Rogers 5880 dielectric substrate based on the SIW structure is used to form the horn structure and waveguide structure, which effectively reduces the difficulty of machining the antenna. The patch coupling feed structure provides a solution for integrating the SIW quasi-pyramid horn antenna with the radar chip. The proposed SIW quasi-pyramid horn antenna element achieves approximately 9 dBi realized gain, about 95% radiation efficiency and 8.2 GHz bandwidth (74.1–82.3 GHz). A four-port inverting power divider was designed to verify the feasibility of forming an array with antenna elements. The designed antenna array achieves approximately 14.5 dBi realized gain, about 80% radiation efficiency and 7.2 GHz bandwidth (74.3–81.5 GHz). Simulation and measurement results maintain good agreement for the antenna array. To further assess the impact of errors on the performance of the proposed antenna array, we have implemented a corresponding error analysis. The proposed antenna element and antenna array show promising potential for application in automotive radar systems. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

22 pages, 12650 KiB  
Article
Determination of the Performance Characteristics of a Traction Battery in an Electric Vehicle
by Boris V. Malozyomov, Nikita V. Martyushev, Vladislav V. Kukartsev, Vladimir Yu. Konyukhov, Tatiana A. Oparina, Nadezhda S. Sevryugina, Valeriy E. Gozbenko and Viktor V. Kondratiev
World Electr. Veh. J. 2024, 15(2), 64; https://doi.org/10.3390/wevj15020064 - 12 Feb 2024
Cited by 60 | Viewed by 4097
Abstract
Electric vehicles are the most innovative and promising area of the automotive industry. The efficiency of a traction battery is an important factor in the performance of an electric vehicle. This paper presents a mathematical model of an electric truck, including modules for [...] Read more.
Electric vehicles are the most innovative and promising area of the automotive industry. The efficiency of a traction battery is an important factor in the performance of an electric vehicle. This paper presents a mathematical model of an electric truck, including modules for the traction battery to determine the depth of battery discharge during the operation of the electric truck, a traction electric system for the electric truck and a system for calculating traction forces on the shaft in electric motors. As a result of the modelling, the charging and discharging currents of an accumulator battery in a real cycle of movement in peak and nominal modes of operation in electric motors and at different voltages of the accumulator battery are determined. A functional scheme of a generalized model of the electric vehicle traction electrical equipment system is developed. An experimental battery charge degree, torques of asynchronous electric motors, temperature of electric motors and inverters, battery voltage and the speed of electric motors have been measured and analysed. The developed complex mathematical model of an electric vehicle including a traction battery, two inverters and two asynchronous electric motors integrated into an electric portal bridge allowed us to obtain and study the load parameters of the battery in real driving cycles. Data were verified by comparing simulation results with the data obtained during driving. Full article
Show Figures

Figure 1

20 pages, 8905 KiB  
Article
Three-Phase 75 kW Brushless Direct Current Motor for Electric Vehicles: Different Power Stage Design, Calculation of Losses, Cooling Techniques, and Comparison
by Ali Bahadir, Omer Aydogdu and Elif Bahadir
Appl. Sci. 2024, 14(4), 1365; https://doi.org/10.3390/app14041365 - 7 Feb 2024
Viewed by 1965
Abstract
This study focuses on determining the technical specifications and parameters of an all-electric passenger vehicle, modeling it according to these parameters, selecting the appropriate electric motor as a result of the modeling, and then designing and making a new 75 kW three-phase DC-AC [...] Read more.
This study focuses on determining the technical specifications and parameters of an all-electric passenger vehicle, modeling it according to these parameters, selecting the appropriate electric motor as a result of the modeling, and then designing and making a new 75 kW three-phase DC-AC converter (inverter) as per to automotive standards for the brushless DC motor used for vehicle propulsion. Three different power stage designs are conducted and compared. The system losses were calculated, and three variants of cooling systems were used for cooling the power stage to reduce losses. Performances of such cooling systems were compared. Air cooling, fan-assisted air cooling, and liquid cooling structures are designed for power stage cooling, and the performances of these three systems were compared. Full article
(This article belongs to the Topic Vehicle Dynamics and Control)
Show Figures

Figure 1

22 pages, 15024 KiB  
Article
Winding Loss Suppression in Inverter-Fed Traction Motors via Hybrid Coil Materials and Configurations
by Ahmed Selema, Kotb B. Tawfiq, Mohamed N. Ibrahim and Peter Sergeant
Appl. Sci. 2023, 13(20), 11429; https://doi.org/10.3390/app132011429 - 18 Oct 2023
Cited by 3 | Viewed by 2063
Abstract
In a typical inverter-fed AC drive system, the stator windings carry a current with a large harmonics content, resulting in an increased AC loss. In this paper, the additional copper losses caused by non-sinusoidal currents are investigated for different magnet wire topologies, including [...] Read more.
In a typical inverter-fed AC drive system, the stator windings carry a current with a large harmonics content, resulting in an increased AC loss. In this paper, the additional copper losses caused by non-sinusoidal currents are investigated for different magnet wire topologies, including the flat conductor, stranded, and litz wires. Also, a two-slot simplified model is introduced for accurate prediction of the AC losses at high frequency. It is found that one of the major issues of the conventional copper coil is that the losses are not uniformly distributed across the slot, and over 70% of the losses are concentrated near the slot opening. Moreover, using the transient finite element method, different winding topologies and arrangements are simulated at the stranded level to evaluate the losses and current density for each strand under highly distorted currents. Furthermore, different coil samples are prototyped for the same slot geometries to compare their performance under the same pulse-width modulation (PWM) waveforms for a wide range of frequencies. Finally, new hybrid coil topologies are proposed, which employ different magnet wires or materials within the same slot. The results demonstrate that utilizing a mixed wire configuration can effectively mitigate the adverse effects of eddy current losses. This approach can yield up to 16–41% lower losses while also achieving a weight savings of 36–70%. Full article
Show Figures

Figure 1

14 pages, 3163 KiB  
Technical Note
Silicon Carbide: Physics, Manufacturing, and Its Role in Large-Scale Vehicle Electrification
by Filippo Di Giovanni
Chips 2023, 2(3), 209-222; https://doi.org/10.3390/chips2030013 - 13 Sep 2023
Cited by 7 | Viewed by 6094
Abstract
Silicon carbide is changing power electronics; it is enabling massive car electrification owing to its far more efficient operation with respect to mainstream silicon in a large variety of energy conversion systems like the main traction inverter of an electric vehicle (EV). Its [...] Read more.
Silicon carbide is changing power electronics; it is enabling massive car electrification owing to its far more efficient operation with respect to mainstream silicon in a large variety of energy conversion systems like the main traction inverter of an electric vehicle (EV). Its superior performance depends upon unique properties such as lower switching and conduction losses, safer high-temperature operation and high-voltage capability. Starting briefly with a description of its physics, more detailed information is then given about some key manufacturing steps such as crystal growth and epitaxy. Afterwards, an overview of its inherent defects and how to mitigate them is presented. Finally, a typical EV’s propulsion inverter is shown, proving the technology’s effectiveness in meeting requirements for mass electrification. Foreword: In recent years, SiC has drawn the attention of a growing number of power electronics designers as the material has good prospects for reducing environmental impacts on a global basis. The goal of this paper, based on the author’s contribution to the introduction of the technology at STMicroelectronics, is to show the potential of silicon carbide in enabling massive car electrification. The company’s SiC MOSFETs, tailored to the automotive industry, are enabling visionary EV makers to pave the way for sustainable e-mobility. The intent of this paper is to describe, for a large crowd of readers, how SiC features can accelerate such a transition by quantifying the benefits they bring in terms of improved efficiency in an EV electric powertrain. The paper also has the ambition to highlight the material’s physics and to give an overview of its production processes, starting from the crystal growth for realizing substrates to the main epitaxy techniques. Some space has been devoted to the analysis of the main crystal defects not present in silicon and whose nature poses new challenges in terms of manufacturing yields and screening. Finally, some insights into the market evolution and on the transition to 200 mm wafers are given. Full article
Show Figures

Figure 1

29 pages, 10986 KiB  
Article
Design of a 350 kW DC/DC Converter in 1200-V SiC Module Technology for Automotive Component Testing
by Alessio Alemanno, Fabio Ronchi, Carlo Rossi, Jacopo Pagliuca, Matteo Fioravanti and Corrado Florian
Energies 2023, 16(5), 2341; https://doi.org/10.3390/en16052341 - 28 Feb 2023
Cited by 4 | Viewed by 4457
Abstract
In this paper, the design and implementation of a DC/DC converter for automotive component testing with state-of-the art performance is described. The converter is the core of a battery emulator for the characterization and development of automotive batteries, electronic chargers, traction inverters, DC-DC [...] Read more.
In this paper, the design and implementation of a DC/DC converter for automotive component testing with state-of-the art performance is described. The converter is the core of a battery emulator for the characterization and development of automotive batteries, electronic chargers, traction inverters, DC-DC converters, E-motors and E-axles. Cutting edge performance, flexibility and compactness are obtained by exploiting 1200-V SiC modules, high switching frequency, planar transformer technology, suitable topology solutions and fast digital control strategies. The implemented system is a liquid-cooled, bidirectional converter with galvanic isolation capable of 350 kW continuous output power, output voltage range 48–1000 V, continuous output current up to 800 A (1600 A peak), voltage/current ramp-up time below 10/2 ms and 0.1% current/voltage accuracy. The entire instrument is implemented in a standard full-height 19-inch rack cabinet. Full article
Show Figures

Figure 1

16 pages, 1299 KiB  
Article
DC Charging Capabilities of Battery-Integrated Modular Multilevel Converters Based on Maximum Tractive Power
by Arvind Balachandran, Tomas Jonsson and Lars Eriksson
Electricity 2023, 4(1), 62-77; https://doi.org/10.3390/electricity4010005 - 13 Feb 2023
Cited by 6 | Viewed by 4292
Abstract
The increase in the average global temperature is a consequence of high greenhouse gas emissions. Therefore, using alternative energy carriers that can replace fossil fuels, especially for automotive applications, is of high importance. Introducing more electronics into an automotive battery pack provides more [...] Read more.
The increase in the average global temperature is a consequence of high greenhouse gas emissions. Therefore, using alternative energy carriers that can replace fossil fuels, especially for automotive applications, is of high importance. Introducing more electronics into an automotive battery pack provides more precise control and increases the available energy from the pack. Battery-integrated modular multilevel converters (BI-MMCs) have high efficiency, improved controllability, and better fault isolation capability. However, integrating the battery and inverter influences the maximum DC charging power. Therefore, the DC charging capabilities of 5 3-phase BI-MMCs for a 40-ton commercial vehicle designed for a maximum tractive power of 400 kW was investigated. Two continuous DC charging scenarios are considered for two cases: the first considers the total number of submodules during traction, and the second increases the total number of submodules to ensure a maximum DC charging voltage of 1250 V. The investigation shows that both DC charging scenarios have similar maximum power between 1 and 3 MW. Altering the number of submodules increases the maximum DC charging power at the cost of increased losses. Full article
(This article belongs to the Special Issue Modular Battery Systems and Advanced Energy Storage Solutions)
Show Figures

Figure 1

Back to TopTop