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Abstract: Electric vehicles are the most innovative and promising area of the automotive industry.
The efficiency of a traction battery is an important factor in the performance of an electric vehicle. This
paper presents a mathematical model of an electric truck, including modules for the traction battery to
determine the depth of battery discharge during the operation of the electric truck, a traction electric
system for the electric truck and a system for calculating traction forces on the shaft in electric motors.
As a result of the modelling, the charging and discharging currents of an accumulator battery in a
real cycle of movement in peak and nominal modes of operation in electric motors and at different
voltages of the accumulator battery are determined. A functional scheme of a generalized model
of the electric vehicle traction electrical equipment system is developed. An experimental battery
charge degree, torques of asynchronous electric motors, temperature of electric motors and inverters,
battery voltage and the speed of electric motors have been measured and analysed. The developed
complex mathematical model of an electric vehicle including a traction battery, two inverters and two
asynchronous electric motors integrated into an electric portal bridge allowed us to obtain and study
the load parameters of the battery in real driving cycles. Data were verified by comparing simulation
results with the data obtained during driving.

Keywords: electric vehicle; lithium battery; performance characteristics; driving cycles; energy
efficiency

1. Introduction

Electric vehicles are the most innovative and promising area of the automotive indus-
try. In recent decades, they have undergone significant progress and are widely recognised
as environmentally friendly and energy-efficient vehicles. One of the key components of
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electric vehicles is a traction battery, which provides energy for the engine [1–3]. Determin-
ing the performance characteristics of an electric vehicle traction battery is an important
task for both electric vehicle manufacturers and potential buyers. The performance charac-
teristics determine the ability of the battery to supply energy throughout its lifetime and
also allow us to evaluate its reliability, efficiency and durability [4,5]. One of the main
characteristics of a traction battery is its capacity, expressed in ampere-hours (A·h). The
capacity of a battery determines the amount of energy it can store and supply to propel
an electric vehicle. A larger capacity allows for travelling a greater distance using a single
charge, which is an important factor for electric vehicles [6,7]. A second important char-
acteristic is the charging speed of a battery. In today’s environment, where a network of
charging stations is rapidly developing, charging time is becoming an increasingly critical
factor when choosing an electric vehicle. The faster the battery can be charged, the less
time it takes to reuse the vehicle [8,9]. Another important performance characteristic is
the durability of a battery. Traction batteries in electric vehicles have a limited life span,
which is determined by the number of charge–discharge cycles they can withstand. The
higher the number of cycles is, the longer the battery will last. It is also important to
consider the loss of battery capacity over time. Gradually, a battery may become lower
in capacity, which can reduce its mileage using a single charge [10–12]. The efficiency
of the traction battery is also an important factor. In electric vehicles, the energy stored
in the battery is converted into mechanical energy to drive the vehicle. The higher the
efficiency of the battery, the less energy is lost in the conversion process, which improves
the overall energy efficiency of an electric vehicle. Determining performance characteris-
tics of the traction battery in an electric vehicle plays an important role when selecting a
vehicle and its future operation [13,14]. Battery capacity, charging speed, durability and
efficiency are all important parameters to ensure comfortable and efficient operation of an
electric vehicle throughout its lifetime. Electric vehicle manufacturers continue to work on
improving the battery performance to make electric vehicles even more competitive in the
automotive industry [15–17].

An electric cargo vehicle, the Mitsubishi MIEV, was selected as the vehicle for perfor-
mance characterisation (Figure 1).
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This choice was determined by the fact that, for trucks, the daily mileage is unknown,
and statistical data do not allow for determining an exact value for the degree of charge at
extreme points in a driving cycle [18]. In 2010–2020, the maximum range of a passenger
electric car was about 100–150 km. But, in 2020, the mileage of electric cars increased to
300–500 km after the release of tesla cars. In this regard, there is still a need to increase the
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maximum range of electric cars, and accordingly, make a change to the battery capacity
and daily mileage [19].

In the case of electric trucks, driving modes are fixed and allow for a more accurate
assessment of daily mileage, the depth of discharge and the number of cycles. In addition,
electric vehicles can be driven in both under-loaded modes (lunchtime) and maximum load
modes (morning rush hour trips). In the case of a fixed route of movement, it is possible
to install charging stations on the route of an electric car, as well as in places with stops
for the boarding and disembarkation of passengers, during which it is possible to charge
the battery. When conducting experimental studies, it was possible to obtain a significant
amount of statistical data on the movement of an electric vehicle [20]. The average speed
exceeds 25 km/h, while the average speed of urban motor transport is 12–17 km/h.

Modern publications, concerning the environmental impact of electric vehicles, namely
analysing the sustainability of using electric vehicles in Europe to reduce CO2 emissions [1,3],
and the mathematical modelling of the state of the batteries in cargo electric vehicles [10],
are devoted to determining performance characteristics of the traction battery in an
electric truck.

The purpose of this work was to develop a mathematical model of the traction of a
cargo electric vehicle, including modules for a traction battery, the traction electric system
of an electric truck and a system for calculating the traction forces acting on a shaft in the
electric motors. As a result of the modelling, we determined the charging and discharging
currents of the battery in a real driving cycle in peak and nominal modes of operation of
electric motors, and at different battery voltages. To verify the results of the modelling,
using the obtained performance characteristics of the battery, the electric vehicle was
investigated while moving along a route.

2. Materials and Methods

In the course of our experimental studies, to determine the depth of battery discharge,
9 runs along a given route were performed. Each run involved different road conditions,
traffic intensities and vehicle loads [21,22].

The route included both urban and suburban driving modes. The maximum speed is
70 km/h and the electric vehicle made three stops for passenger boarding and disembarka-
tion. During the experiment, there were 2 runs without loading (13,600 kg) and with full
loading (16,000 kg).

Electrical characteristics are were using the CAN information protocol technology.
The following parameters were measured and recorded:

• The degree of charge of the battery;
• Torques of asynchronous electric motors;
• Temperature of electric motors and inverters;
• The battery voltage;
• The rotation frequency of the electric motor.

A functional scheme of a generalised model of the electric vehicle traction electrical
equipment system was developed.

The mathematical model of the traction electrical equipment of an electric
vehicle includes:

• Determining the depth of discharge of batteries during vehicle operation;
• Modelling the traction electrical system of an electric truck;
• Traction battery modelling;
• Modelling a system for the calculation of traction forces on a shaft in the electric

motors.

3. Determining the Depth of Discharge of Batteries during Vehicle Operation

Route #1. The route was a mixed traffic cycle with low-speed urban traffic sections,
as well as motorway traffic [23,24]. The electric vehicle was travelling and its mass was
13,600 kg. Figure 2 shows the dependence of the travelling speed on time along route #1.
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The electric vehicle had on-board equipment that captured the following characteristics:
Ibat is the battery current;
Pbat is the supplied battery power;
Ubat is the battery voltage.
Efficiency is the efficiency coefficient of a system. In our case, efficiency was defined

by the ratio of the energy in the electric vehicle’s motion to the energy expended to charge
the electric vehicle’s battery.

Wbat is the energy given by the battery;
SOC is the degree of charge.
The characteristics were measured using CAN bus technology and were recorded

throughout the cycle (Figures 2 and 3).
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Figure 3. Energy characteristics of an electric vehicle propulsion system (route #1): Wrecup is the
regeneration energy stored while an electric vehicle is in motion, Wbat is the battery energy used to
move an electric vehicle, Wcon is the consolidated battery and regenerative energy used for driving.
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The average battery current per cycle was 118 A (0.6C). The degree of charge decreased
from 90 to 82 per cent.

Route #2. On this route, the electric car was moving fully loaded; its mass was
16,000 kg. Figure 4 shows a speed graph of the electric car on route 2.
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Figure 5 shows characteristics of the traction electric drive system in the electric vehicle
when travelling along the second route.
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The average battery current per cycle was 140 A (0.7C). The degree of charge decreased
from 85 to 72 per cent.

The parameters of the test cycles and the test results for the electric vehicle are
summarized in Table 1.
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Table 1. Test cycle parameters and test results for the electric vehicle.

Route Number Distance, km Average Speed,
km/h

Energy in Cycle,
kW

Recovery Energy,
kW·h

Energy Consumption,
kWh/km

1 15.01 31.22 12.75 2.65 0.85
2 16.34 28.81 17.55 3.68 1.08

As a result of the tests, we found that the electric vehicle was capable of travelling
along the two routes under consideration with a partial load (13,600 kg) and being fully
loaded (16,000 kg). In this case, the depth of discharge can be seen in SOC(t) plots in
Figures 3 and 5, respectively.

To investigate the aging process of a battery [25], a system of equations describing
the dependence on battery temperature (T), the charge level (SOC), and the values of the
charge and discharge currents (Ah) was compiled [26].{

Qloss(Ah) = a(SOCmin, Ratio) · exp
(
− Eac

R·T

)
· Ahz

a = αc + βc · (Ratio)β + γc · (SOCmin − SOC0)
C

.

The United States Advanced Battery Consortium defines two operational modes for
PHEVs: Charge-Depleting (CD) and Charge-Sustaining (CS). A ratio of CD-CS to the total
operating time is defined as follows:

Ratio =
tCD

tCD + tCS
,

which indicates the fraction of time spent in the CD mode over the total operation time.
Therefore, Ratio = 1 corresponds to the CD operation, i.e., all of the operating time is spent
in CD. Ratio = 0 corresponds to the CS operation; that is, all of the operating time is spent
in CS. Arranging the ratios such that 0 < Ratio < 1 corresponds to the mixed operation,
i.e., the total operating time is divided between CD and CS.

Qloss is the estimated loss of battery capacity during the experiment;
SOC0 is the minimum state of charge of a cell;
SOCmin is the minimum state of charge of a cell;
a is the factor depending on a degree of charge and the ratio of charge time to

discharge time.

4. Mathematical Modelling of the Traction Electrical System in an Electric Truck

In order to determine the charging and discharging currents in a battery pack, when
driving according to a standardised cycle, a mathematical model of the traction electrical
equipment system in an electric vehicle was developed as part of the present work [27,28].
A mathematical model of an electric vehicle makes it possible to obtain the performance
characteristics of the battery in different driving cycles [29–31].

The development of the mathematical model involved several steps, including:

1. The development of a mathematical model that takes into account the mechanical
characteristics of the vehicle;

2. Verification of the obtained data with the results of vehicle test runs by comparing the
acceleration characteristics in the simulation with real characteristics when driving
according to an acceleration cycle along a straight road;

3. The integration of a mechanical model into the electrical model in order to calculate
the energy performance, reliable traction electrical system (TES) parameters and
vehicle dynamics (VD).

The mathematical model contains a battery pack which can be configured for different
parameters and chemical compositions. Our work provides a mathematical description of
a squirrel-cage induction machine. This type of electric motor is used in the electric portal
axle of an electric vehicle [32].
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The mathematical model is formed using specialised software. The main extension
packages used in the study are from MatLab library Simulink [33]. The extensively de-
veloped Simulink extension is mostly adapted for the analysis and synthesis of various
systems [34–36]. This extension provides a variety of possibilities ranging from a structural
(mathematical) representation of the system to the generation of codes in high-level lan-
guages and the subsequent programming of microprocessors according to the structural
diagram of the model [37,38].

For calculating the basic characteristics of the vehicle, the parameters of a Mitsubishi
MIEV electric truck were selected [39]. The parameters of the vehicle are given in Table 2.

Table 2. Vehicle parameters and traffic conditions.

Parameter Designation Significance Unit

Wheel arrangement 4 × 2
Gross weight ma 16,000 kg
Curb weight mc 10,000 kg

Frontal projection area of the EV Sa 7.53 m2

Aerodynamic drag coefficient cx 0.86
Dynamic radius of the EV wheel rk 0.451 m

Gearbox efficiency ηgb 0.958
Gear ratio of the first gearbox igb1 5.82

Gear ratio of the second gearbox igb2 3.92
Rolling resistance coefficient f 0.013

Speed of EV movement Va defined by a cycle m/s
Maximum speed Vmax 80 m/s

Traction motor (TM) torque, nom/peak Me 260/450 N m
Maximum speed of the TM nmax 11,500 min−1

Nominal/maximum battery voltage UBAT 460 V
Battery capacity C 140 A·h

Tyres 245/70R 19.5
Acceleration (deceleration) of the EV when

driving a defined by a loop m/s2

Air density r 1.31 kg/m3

Free-fall acceleration g 9.81 m/s2

Angle of a track profile inclination α defined by a track profile radians

The model proposed below is based on speed, torque consumed by the motor, electrical
power, mechanical power output by the motor and the depth of discharge of the battery
taking into account dynamic states of the electric vehicle (accelerated road travel, path
profile, i.e., an angle of ascent and descent of the electric vehicle, and its mass).

Characteristics required for the calculations can be determined according to the
following expressions [40]:

- Required traction force Fk on the drive wheels

Fk = Ff + Fa + Fv + Fα, (H) (1)

where Ff is the rolling resistance force of the vehicle;

Ff = f · ma · cos α (2)

Fa is the acceleration/deceleration resistance;

Fa = ma · a · δ (3)

where δ is the rotating mass factor; δ = 1.05 + 0.05igb1 · igb2
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Fv is the aerodynamic drag:

Fv =
ρ

2
cx · Sa · V2

a ; (4)

Fα is the force of resistance to uphill movement:

Fα = ma · g · sin α; (5)

- the required torque on drive wheels is:

Mk = Fk · rk; (6)

- the speed of the TM shaft rotation is:

nk =
30 · igb1igb2Va

π · rk
; (7)

- the required torque on the TM shaft is:

Me =
Mk

i · ηgb
; (8)

- the drag torque on the electric vehicle (EV) shaft is:

MC =
Ff + Fv + Fa

igb1 · igb2 · ηgb
rk; (9)

- the required power on the shaft of the TM is calculated by the following formula, kW:

Pe =
Me · ne

9550
. (10)

- The actual speed of the vehicle is calculated according to the speed of the TM shaft
using the following expression:

Va =
π · rk · nk

30 · igb1 · igb2
. (11)

- EV acceleration is as follows:

a =
dVa

dt
. (12)

Information about the value of the resistance torque on the EDG shaft, Mc, serves
as an input parameter for the mathematical model of EV. Data on the required values of
torque, speed and power on the EV shaft are used in the calculation of load moments in
the TM [41–43].

The process of model creation begins with a mathematical description of a traction
motor used as part of an electric portal bridge [44]. The initial data are presented in Table 3.

Table 3. Parameters of the electric motor installed in the electric portal bridge.

Parameter Unit Significance

Maximum motor shaft torque including intermediate gearboxes Nm 485
Maximum speed at a maximum torque 1/min 11,000

Maximum power per shaft kW 120
Maximum short-term effective current based on the maximum power rating A 350 A

Minimum DC voltage value V 580
Maximum DC voltage value V 800

Permissible ambient operating temperatures from −40 to 85 ◦C ◦C −40.85
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The energy performance of the system is proposed to be determined by means of a
mathematical model of an electric vehicle traction electrical system [45,46].

A functional diagram of a generalised model of the electric vehicle’s traction electrical
equipment system is shown in Figure 6.
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The mathematical model includes:

• Model of a traction electric machine;
• Model of an electric energy conversion and a control system for the traction electrical

equipment (two inverters for each electric motor);
• Traction battery model;
• Model of a system for calculating traction forces on the shaft of electric motors.

In addition, the scheme uses measuring devices and auxiliary units to perform mathe-
matical modelling and determine the system performance in given driving cycles [47–49].

4.1. Mathematical Model Considering the Mechanical Characteristics of the Vehicle, and
Subsequent Verification of Traction Characteristics

In order to observe the mechanical characteristics of an induction motor, it is necessary
to perform system modelling over the entire motor speed range [50].
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The speed is calculated using Formula (7). To calculate the tractive effort of a torque
on a motor shaft, the following formula must be used:

M =
F · r

i
(13)

The mechanical characteristics for maximum power are calculated using the ratio of
power to speed [51]; an external characteristic of the motor is shown in Figure 7.
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Figure 7. External characteristic of the electric motor.

The maximum speed of the traction motor was 11,000 rpm. The maximum torque was
450 Nm. These characteristics allow for the creation of a mechanical verification model
for the electric vehicle (Figure 8). The model allows us to clarify the traction-dynamic
characteristics of the electric vehicle by comparing the acceleration characteristic in the
simulation with real data obtained in experimental studies.
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The model consists of the following blocks:

• A vehicle characterisation unit;
• A block for calculating the torque in a cycle;
• A vehicle dynamics calculation unit;
• A braking system unit;
• A dynamic characteristics calculation block;
• A block for calculating energy characteristics;
• An oscilloscope unit.

A vehicle characterisation block (Figure 9) consists of sub-blocks, including:

• A motion cycle setting unit;
• A unit for calculating the moment of resistance to vehicle movement;
• A vehicle inertia calculation unit.
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Figure 9. Vehicle characterisation block.

A motion cycle setting block is shown in Figure 10, consisting of data tables that
describe motion cycles in the form of speed vs. time dependencies. The blocks are numbered
and connected to a multiport switch. The switch allows you to quickly change the cycle of
motion when loading the initial data into the modelling process.
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Figure 10. Motion cycle setting block.

The block converts the value of an angular frequency in an engine shaft rotation
into a linear speed of a car using the function “w_V”, which is calculated according to
Formula (11). After converting the frequency into speed, a signal is fed to a “Moment
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of resistance to movement” block (Figure 11), which realises the dependence (9). Blocks
“Constant1”, “Relational Operator” and “Switch” (the original names of the blocks used in
the Simulink software (v10.2) are given) are necessary for programme zeroing the resistance
forces when stopping the vehicle. This function is intended to eliminate possible errors
in the calculation and an incorrect determination of drag forces at the moment when the
vehicle has come to a complete stop.
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Figure 11. Block for calculating the moment of resistance to vehicle movement.

The block in Figure 12 calculates the vehicle’s moment of inertia using the
following formula:

J =
MA · r2

k
igb1 · igb2 · ηgb

+ Jr, (14)

where MA is the electric mobile weight; Jr is the rotor moment of inertia.
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Figure 12. Unit for calculating the moment of inertia applied to the motor shaft.

This formula allows us to find an approximate moment of inertia for the car [52]. In
order to find the real moment of inertia, it is necessary to verify the model.

In addition to receiving a signal from the motion cycle [53], the model allows us to
use external speed information to compare the speed during mathematical modelling with
the data registered via the CAN protocol. In this case, the data obtained as a result of
calculations are fed to a block to calculate the error in the obtained results and can also be
sent to an oscilloscope block. To obtain data from the CAN protocol, a workspace block
is used.



World Electr. Veh. J. 2024, 15, 64 13 of 22

A structure of the block for calculating the required torque per cycle is shown in
Figure 13.
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Figure 13. Block for calculating the torque by cycle.

The unit consists of a “PI controller” [54], which compares the error between the
theoretical cycle-defined angular speed of the TM shaft and the actual speed. The output
of the “PI controller” calculates a motor torque signal including all losses. The content of
the torque calculation block is shown in Figure 14. Just like the cycle assignment block,
the submodel consists of data tables and a switch between characteristics. The submodel
allows the dynamic characteristics of the vehicle to be calculated for all possible modes of
operation of the electric drive.
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Figure 14. Block for calculating the required torque in a motion cycle taking into account the
motor-operating mode.

The model is equipped with a special unit designed to realise an OEM braking system.
The OEM braking scheme is shown in Figure 15.
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The braking control system increases the drag torque on the motor shaft if the vehicle
speed is higher than the speed in a given driving cycle [55–57]. The model is necessary
when comparing the results from the test protocol. The electric vehicle uses regenerative
braking in addition to a conventional braking system. The energy generated by the braking
torque of the electric motor is used to charge the battery. However, in a case where the
battery is fully charged and cannot accept energy, the regenerative torque needs to be
limited by the OEM braking system [58]. The ratio of the mechanical braking system to
the electrical braking system determines an efficiency and electrical energy consumption.
When driving in a cycle, the braking system unit can be switched off so that full energy
regeneration takes place. The “Saturation 1” block limits values above zero so that the
controller will only switch on the regular system when there is an insufficient regenerative
torque [59,60]. The mechanical braking torque calculation block captures an error between
the theoretical speed in the cycle and the actual speed, and it uses the controller to add a
braking torque. When the regenerative torque is sufficient, the error between the speeds in
the braking mode is zero.

The block in Figure 16 calculates the angular acceleration according to the
following formula:

dw
dt

=
Mel − Mresist − Ft · w

J
(15)

where Ft is the coefficient of viscous friction for the motor shafts (Ft is 0.03 Nms).
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The integration of the obtained value for the acceleration over time using the integrator
block allows for determining the angular velocity of the motor shaft. The blocks for the
calculation of dynamic and energy characteristics reflect mathematical dependencies for
calculating the distance travelled, the average speed in the cycle, useful energy, the specific
consumption and the useful power in the shaft [61]. The oscilloscope block contains
oscilloscopes of all measured quantities.

4.2. Verification of the Mechanical Model with Real Test Results

To verify the vehicle dynamics in this work, the data obtained using the CAN bus
during testing an electric vehicle in accordance with “EN 1986-1:1997. Electrically propelled
road vehicles—Measurement of energy performances” [62] were used.

The following characteristics were measured as a result of the tests:

• Torques of electric motors;
• Motor shaft speed;
• Actual speed of the electric vehicle.
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Using the experimental data on driving in other conditions does not allow us to
estimate real drag forces acting on the wheels of an electric vehicle, because a drag moment
reduced to a motor shaft will be greater when climbing and less when descending due to
the presence of a drag moment when the vehicle is travelling along an uneven road [63,64].

Figure 17 shows speed characteristics of an electric vehicle when driving according to
a standardised cycle.
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Figure 18. Motor torque graph obtained from the experimental study: black line—engine torque;
blue line—resistance torque.

To verify the model, the sum of torques of electric motors measured under experi-
mental conditions (Figure 18) was input to the car dynamics calculation block (Figure 16).
During the first run of the model, without taking into account the moments of inertia in the
vehicle coupling mechanisms, the cycle speed significantly exceeded the simulation speed
(Figure 19).
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Figure 19. Comparison of electric vehicle speeds in simulation and real tests: black line—simulation
movement; blue line—real car movement.

After comparing the results, a value of the moment of inertia was corrected to take
into account rotating masses of gears used in an electric portal bridge [63]. After re-running
the mathematical model, the graph of acceleration plots matched the values provided in
the test report (Figure 20).
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Figure 20. Comparison of electric vehicle speeds in simulation and real tests after correcting a moment
of inertia: black line—simulation movement; blue line—real car movement.

As a result, the maximum error was 0.3% in the braking mode. The total error was
0.8%. A graph of the error in the cycle is shown in Figure 21.

The data obtained from the mechanical model were duplicated in its electrical part, and
verification of the mechanical performance with a maximum error of 0.8% was achieved.
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4.3. Verification of the Energy Performance of an Electric Bus

The energy consumption in real tests using the CAN protocol was 1.69 kWh/km. In
order to compare the obtained consumption data, it is necessary to perform mathematical
modelling according to the driving cycle [64]. Since energy recovery is limited, and a
standard braking system together with regeneration was applied during driving, the verifi-
cation of the energy consumption would be unreliable. Therefore, to compare the energy
performance, it is necessary to compare the energy expended without regeneration [65].

The value of the battery energy consumption measured in a cycle was 4.4 kWh. The
same parameter obtained by the mathematical modelling of the vehicle movement without
energy recovery was 4.48 kWh. The difference is due to the fact that, during stopping and
braking, the battery current in the mathematical model is not equal to zero. A combination
of the obtained values of the battery energy without regeneration in real tests and simulation
in the driving cycle is shown in Figure 22.
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The graph shows a discrepancy between the real tests and the modelling of the system
in the middle of the cycle, which is due to considering the own needs of an electric vehicle,
as well as the operation of a compressor of a pneumatic system [66].
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The results obtained allow us to obtain energy characteristics not only in driving
cycles measured as a result of experimental studies, but also to calculate characteristics in
standardised driving cycles with maximum reliability [67–69].

4.4. Verification of Speed Characteristics with a Test Report

According to the tests we performed, the acceleration required for an electric car to
reach a speed of 60 km/h is 33.8 s. To verify the acceleration, an external motor characteristic
is required. Taking into account the fact that motors do not operate in an optimal range of
battery voltage and external characteristics given in the specification cannot be realised, it
is necessary to obtain an external characteristic from acceleration tests on an electric car. A
family of external characteristics is obtained from tests on an electric vehicle in individual
modes. To investigate the acceleration characteristic, the external characteristic obtained
at a battery charge level of 35% was used in the simulation. Other characteristics were
not analysed because measurements were carried out for the sections during descents and
ascents. The external characteristic we obtained are shown in Figure 23.
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The torque signal of an external velocity characteristic is input to a mechanical model.
This compares velocities over a motion cycle and a simulation velocity (Figure 24).
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According to the simulation results, an acceleration to a speed of 58 km/h took 30 s.
Taking into account the battery discharge and limitations applied to an electric vehicle, a
difference of 0.1 s can be considered acceptable.

5. Conclusions

A mathematical model of an electric loader has been developed, including modules
for a traction battery to determine battery discharge depth in an electrically driven mode
of operation; a traction electric system for the electric loader; and a system for calculating
traction forces on a shaft in an electric motor. As a result of modelling, the charging and
discharging currents in an accumulator battery in a real cycle of movement in peak and
nominal modes of operation of electric motors at different voltages of the accumulator
battery have been determined.

A functional diagram of a generalised model of an electric vehicle traction electrical
equipment system has been developed. The battery charge degree, torques of induction
motors, temperature of electric motors and inverters, battery voltage and the speed of
electric motors have been measured and analysed.

The characteristics of a battery pack’s performance, when an electric vehicle is trav-
elling along a route, were obtained. Measurements were carried out using the CAN
technology, different electric vehicle weights and road conditions. As a result, we have
found that an electric bus can drive two complete cycles along the route. A comprehensive
mathematical model of the electric vehicle, including a traction battery, two inverters and
two asynchronous electric motors integrated into a portal axle of the electric vehicle, has
been developed to obtain and investigate battery load parameters in real driving cycles.
Vector control of induction motors in mathematical modelling has been implemented.
The work has shown that the developed mathematical model can be used to calculate
battery load parameters in standardised driving cycles. Data verification was carried out
by comparing data obtained during driving, according to EN 1986-1:1997 [62] Electrically
propelled road vehicles—Measurement of energy performances”, with the results of the
mathematical modelling.

The comparison of the characteristics obtained when modelling the electric vehicle in
peak and recommended modes shows a significant improvement in the energy character-
istics of the battery. The current plots obtained in the nominal driving mode can be used
to further calculate the lifetime and thermal characteristics of the battery. This provides a
theoretical and experimental mathematical platform for both electric vehicle developers
and organisations involved in the operation and maintenance of electric vehicles. The
performance characteristics of a battery pack, while driving a Mitsubishi MIEV electric
vehicle, have been obtained. The measurements have been performed with different electric
bus weights and road conditions.
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