Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,119)

Search Parameters:
Keywords = atmospheric wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 6505 KiB  
Review
Trends in Oil Spill Modeling: A Review of the Literature
by Rodrigo N. Vasconcelos, André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, Diego P. Costa, Soltan G. Duverger and Elaine C. B. Cambui
Water 2025, 17(15), 2300; https://doi.org/10.3390/w17152300 (registering DOI) - 2 Aug 2025
Abstract
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused [...] Read more.
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused on examining trends in scientific publications, utilizing the complete dataset derived after systematic screening and database integration. In the second phase, we applied elements of a systematic review to identify and evaluate the most influential contributions in the scientific field of oil spill simulations. Our analysis revealed a steady and accelerating growth of research activity over the past five decades, with a particularly notable expansion in the last two. The field has also experienced a marked increase in collaborative practices, including a rise in international co-authorship and multi-authored contributions, reflecting a more global and interdisciplinary research landscape. We cataloged the key modeling frameworks that have shaped the field from established systems such as OSCAR, OIL-MAP/SIMAP, and GNOME to emerging hybrid and Lagrangian approaches. Hydrodynamic models were consistently central, often integrated with biogeochemical, wave, atmospheric, and oil-spill-specific modules. Environmental variables such as wind, ocean currents, and temperature were frequently used to drive model behavior. Geographically, research has concentrated on ecologically and economically sensitive coastal and marine regions. We conclude that future progress will rely on the real-time integration of high-resolution environmental data streams, the development of machine-learning-based surrogate models to accelerate computations, and the incorporation of advanced biodegradation and weathering mechanisms supported by experimental data. These advancements are expected to enhance the accuracy, responsiveness, and operational value of oil spill modeling tools, supporting environmental monitoring and emergency response. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
Show Figures

Figure 1

14 pages, 2075 KiB  
Article
Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause
by Arseniy Sokolov, Elena Savenkova, Andrey Koval, Nikolai Gavrilov, Karina Kravtsova, Kseniia Didenko and Tatiana Ermakova
Atmosphere 2025, 16(8), 922; https://doi.org/10.3390/atmos16080922 - 30 Jul 2025
Viewed by 145
Abstract
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating [...] Read more.
The article is focused on the quantitative assessment of the thermal impact of polar mesospheric clouds (PMCs) on the mesopause caused by the emission of absorbed solar and terrestrial infrared (IR) radiation by cloud particles. For this purpose, a parameterization of mesopause heating by PMC crystals has been developed, the main feature of which is to incorporate the thermal properties of ice and the interaction of cloud particles with the environment. Parametrization is based on PMCs zero-dimensional (0-D) model and uses temperature, pressure, and water vapor data in the 80–90 km altitude range retrieved from Solar Occultation for Ice Experiment (SOFIE) measurements. The calculations are made for 14 PMC seasons in both hemispheres with the summer solstice as the central date. The obtained results show that PMCs can make a significant contribution to the heat balance of the upper atmosphere, comparable to the heating caused, for example, by the dissipation of atmospheric gravity waves (GWs). The interhemispheric differences in heating are manifested mainly in the altitude structure: in the Southern Hemisphere (SH), the area of maximum heating values is 1–2 km higher than in the Northern Hemisphere (NH), while quantitatively they are of the same order. The most intensive heating is observed at the lower boundary of the minimum temperature layer (below 150 K) and gradually weakens with altitude. The NH heating median value is 5.86 K/day, while in the SH it is 5.24 K/day. The lowest values of heating are located above the maximum of cloud ice concentration in both hemispheres. The calculated heating rates are also examined in the context of the various factors of temperature variation in the observed atmospheric layers. It is shown in particular that the thermal impact of PMC is commensurate with the influence of dissipating gravity waves at heights of the mesosphere and lower thermosphere (MLT), which parameterizations are included in all modern numerical models of atmospheric circulation. Hence, the developed parameterization can be used in global atmospheric circulation models for further study of the peculiarities of the thermodynamic regime of the MLT. Full article
(This article belongs to the Special Issue Observations and Analysis of Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

34 pages, 4141 KiB  
Article
Factors Impacting Projected Annual Energy Production from Offshore Wind Farms on the US East and West Coasts
by Rebecca J. Barthelmie, Kelsey B. Thompson and Sara C. Pryor
Energies 2025, 18(15), 4037; https://doi.org/10.3390/en18154037 - 29 Jul 2025
Viewed by 127
Abstract
Simulations are conducted using a microscale model framework to quantify differences in projected Annual Energy Production (AEP), Capacity Factor (CF) and wake losses for large offshore wind farms that arise due to different input datasets, installed capacity density (ICD) and/or wake parameterizations. Differences [...] Read more.
Simulations are conducted using a microscale model framework to quantify differences in projected Annual Energy Production (AEP), Capacity Factor (CF) and wake losses for large offshore wind farms that arise due to different input datasets, installed capacity density (ICD) and/or wake parameterizations. Differences in CF (and AEP) and wake losses that arise due to the selection of the wake parameterization have the same magnitude as varying the ICD within the likely range of 2–9 MW km−2. CF simulated with most wake parameterizations have a near-linear relationship with ICD in this range, and the slope of the dependency on ICD is similar to that in mesoscale simulations with the Weather Research and Forecasting (WRF) model. Microscale simulations show that remotely generated wakes can double AEP losses in individual lease areas (LA) within a large LA cluster. Finally, simulations with the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model are shown to differ in terms of wake-induced AEP reduction from those with the WRF model by up to 5%, but this difference is smaller than differences in CF caused by the wind farm parameterization used in the mesoscale modeling. Enhanced evaluation of mesoscale and microscale wake parameterizations against observations of climatological representative AEP and time-varying power production from wind farm Supervisory Control and Data Acquisition (SCADA) data remains critical to improving the accuracy of predictive AEP modeling for large offshore wind farms. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 166
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

20 pages, 2542 KiB  
Article
Rarefied Reactive Gas Flows over Simple and Complex Geometries Using an Open-Source DSMC Solver
by Rodrigo Cassineli Palharini, João Luiz F. Azevedo and Diego Vera Sepúlveda
Aerospace 2025, 12(8), 651; https://doi.org/10.3390/aerospace12080651 - 23 Jul 2025
Viewed by 202
Abstract
During atmospheric reentry, a significant number of chemical reactions are produced inside the high-temperature shock wave formed upstream of the spacecraft. Chemical reactions can significantly alter the flowfield structure surrounding the vehicle and affect surface properties, including heat transfer, pressure, and skin friction [...] Read more.
During atmospheric reentry, a significant number of chemical reactions are produced inside the high-temperature shock wave formed upstream of the spacecraft. Chemical reactions can significantly alter the flowfield structure surrounding the vehicle and affect surface properties, including heat transfer, pressure, and skin friction coefficients. In this scenario, the primary goal of this investigation is to evaluate the Quantum-Kinetic chemistry model for computing rarefied reactive gas flow over simple and complex geometries. The results are compared with well-established reaction models available for the transitional flow regime. The study focuses on two configurations, a sphere and the Orion capsule, analyzed at different altitudes to assess the impact of chemical nonequilibrium across varying flow rarefaction levels. Including chemical reactions led to lower post-shock temperatures, broader shock structures, and significant species dissociation in both geometries. These effects strongly influenced the surface heat flux, pressure, and temperature distributions. Comparison with results from the literature confirmed the validity of the implemented QK model and highlighted the importance of including chemical kinetics when simulating hypersonic flows in the upper atmosphere. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 158
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

24 pages, 4549 KiB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 504
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

18 pages, 886 KiB  
Review
Research Status and Prospect of Coal Spontaneous Combustion Source Location Determination Technology
by Yongfei Jin, Yixin Li, Wenyong Liu, Xiaona Yang, Xiaojiao Cheng, Chenyang Qi, Changsheng Li, Jing Hui and Lei Zhang
Processes 2025, 13(7), 2305; https://doi.org/10.3390/pr13072305 - 19 Jul 2025
Viewed by 325
Abstract
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes [...] Read more.
The spontaneous combustion disaster of coal not only causes a waste of resources but also affects the safe production of coal mines. In order to accurately detect the range and location of the spontaneous combustion source of coal, this paper studies and summarizes previous research results, and based on the principles and research and development progress of existing detection technologies such as the surface temperature measurement method, ground temperature measurement method, wellbore temperature measurement method, and infrared remote sensing detection method, it briefly reviews the application of various detection technologies in engineering practice at this stage and briefly explains the advantages and disadvantages of each application. Research shows that the existing technologies are generally limited by the interference of complex environmental conditions (such as temperature measurement deviations caused by atmospheric turbulence and the influence of rock layer structure on ground temperature conduction) and the implementation difficulties of geophysical methods in mining applications (such as the interference of stray currents in the ground by electromagnetic methods and the fast attenuation speed of waves detected by geological radar methods), resulting in the insufficient accuracy of fire source location and difficulties in identifying concealed fire sources. In response to the above bottlenecks, the ”air–ground integrated” fire source location determination technology that breaks through environmental constraints and the location determination method of a CSC fire source based on a multi-physics coupling mechanism are proposed. By significantly weakening the deficiency in obtaining parameters through a single detection method, a new direction is provided for the detection of coal spontaneous combustion fire sources in the future. Full article
Show Figures

Figure 1

18 pages, 7358 KiB  
Article
On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations
by Tingting Ye, Zhonghui Tan, Weihua Ai, Shuo Ma, Xianbin Zhao, Shensen Hu, Chao Liu and Jianping Guo
Remote Sens. 2025, 17(14), 2469; https://doi.org/10.3390/rs17142469 - 16 Jul 2025
Viewed by 213
Abstract
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager [...] Read more.
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager (AHI). The algorithm is featured by integrating deep learning techniques with a physical model. The algorithm first utilizes a convolutional neural network-based model to extract cloud top height (CTH) and cloud water path (CWP) from the AHI infrared observations. Then, a physical model is introduced to relate cloud geometric thickness (CGT) to CWP by constructing a look-up table of effective cloud water content (ECWC). Thus, the CBH can be obtained by subtracting CGT from CTH. The results demonstrate good agreement between our AHI CBH retrievals and the spaceborne active remote sensing measurements, with a mean bias of −0.14 ± 1.26 km for CloudSat-CALIPSO observations at daytime and −0.35 ± 1.84 km for EarthCARE measurements at nighttime. Additional validation against ground-based millimeter wave cloud radar (MMCR) measurements further confirms the effectiveness and reliability of the proposed algorithm across varying atmospheric conditions and temporal scales. Full article
Show Figures

Graphical abstract

18 pages, 5087 KiB  
Article
SD-WACCM-X Study of Nonmigrating Tidal Responses to the 2019 Antarctic Minor SSW
by Chen-Ke-Min Teng, Zhiqiang Fan, Wei Cheng, Yusong Qin, Zhenlin Yang and Jingzhe Sun
Atmosphere 2025, 16(7), 848; https://doi.org/10.3390/atmos16070848 - 12 Jul 2025
Viewed by 229
Abstract
The 2019 Antarctic sudden stratospheric warming (SSW) is well captured by the specified dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X). This SSW is dominated by a strong quasi-stationary planetary wave with zonal wavenumber 1 (SPW1) activity, and nonmigrating [...] Read more.
The 2019 Antarctic sudden stratospheric warming (SSW) is well captured by the specified dynamics Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (SD-WACCM-X). This SSW is dominated by a strong quasi-stationary planetary wave with zonal wavenumber 1 (SPW1) activity, and nonmigrating tides show great variations. The nonlinear interactions between SPW1 and diurnal, semidiurnal and terdiurnal migrating tides triggered by this SSW also have significant impacts on the variabilities of corresponding nonmigrating tides. This is clearly proven by the fact that the variations of the secondary nonmigrating tides, generated by the nonlinear interaction, show higher correlation during this SSW than those during the non-SSW period. Meanwhile, the SPW1 dominates the nonlinear interactions with diurnal, semidiurnal and terdiurnal migrating tides, and the corresponding secondary nonmigrating tides show concurrent increases with SPW1. In the ionosphere, the nonmigrating tidal oscillations exhibit consistent temporal variabilities with those shown in the neutral atmosphere, which demonstrates the neutral–ion coupling through nonmigrating tides and that nonmigrating tides are significant sources for the short-term ionospheric variability during this SSW event. Specifically, the enhancement of the ionospheric longitudinal wavenumber 4 structure coincides with the increase of the eastward-propagating diurnal tide with zonal wavenumber 3 (DE3), semidiurnal tide with zonal wavenumber 2 (SE2) and terdiurnal tide with zonal wavenumber 1 (TE1). Also, DE3 dominates the influence of nonmigrating tides on the ionospheric longitudinal wavenumber 4 structure during this SSW. Full article
(This article belongs to the Special Issue Ionospheric Disturbances and Space Weather)
Show Figures

Figure 1

17 pages, 14349 KiB  
Article
The Western North Pacific Monsoon Dominates Basin-Scale Interannual Variations in Tropical Cyclone Frequency
by Xin Li, Jian Cao, Boyang Wang and Jiawei Feng
Remote Sens. 2025, 17(13), 2317; https://doi.org/10.3390/rs17132317 - 6 Jul 2025
Viewed by 302
Abstract
The monsoon is regarded as a key system influencing tropical cyclone (TC) activity over the Western North Pacific (WNP). However, the relationship between WNP TC frequency (TCF) and the monsoon across different timescales remains incompletely understood. This study explores the interannual-scale relationship between [...] Read more.
The monsoon is regarded as a key system influencing tropical cyclone (TC) activity over the Western North Pacific (WNP). However, the relationship between WNP TC frequency (TCF) and the monsoon across different timescales remains incompletely understood. This study explores the interannual-scale relationship between WNP TCF and the WNP summer monsoon over the period 1982–2020. We found that the interannual variation in basin-scale TCF is dominated by dynamic factors, particularly lower troposphere vorticity and middle troposphere ascending motion, which are driven by the WNP summer monsoon. Enhanced monsoonal precipitation over the WNP intensifies convective heating, which acts as a diabatic heat source and triggers a Rossby wave response to the west. This response generates anomalous lower troposphere cyclonic circulation and ascending motion in the main TC development region. In turn, the strengthened WNP summer monsoon circulation further amplifies precipitation, establishing positive feedback between atmospheric circulation and convection. This mechanism establishes dynamic conditions favorable for TC genesis, thereby dominating the basin-scale interannual variation in TCF. Full article
Show Figures

Figure 1

26 pages, 9399 KiB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 413
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

21 pages, 2725 KiB  
Article
A Strategy for Improving Millimeter Wave Communication Reliability by Hybrid Network Considering Rainfall Attenuation
by Jiaqing Sun, Chunxiao Li, Junfeng Wei and Jiajun Shen
Symmetry 2025, 17(7), 1054; https://doi.org/10.3390/sym17071054 - 3 Jul 2025
Viewed by 319
Abstract
With the rapid development of smart connected vehicles, vehicle network communications demand high-speed data transmission to support advanced automotive services. Millimeter Wave (mmWave) communication offers fast data rates, strong anti-interference capabilities, high precision localization and low-latency, making it suitable for high-speed in-vehicle communications. [...] Read more.
With the rapid development of smart connected vehicles, vehicle network communications demand high-speed data transmission to support advanced automotive services. Millimeter Wave (mmWave) communication offers fast data rates, strong anti-interference capabilities, high precision localization and low-latency, making it suitable for high-speed in-vehicle communications. However, mmWave communication performance in vehicular networks is hindered by high path loss and frequent beam alignment updates, significantly degrading the coverage and connectivity of vehicle nodes (VNs). In addition, atmospheric propagation attenuation further deteriorates signal quality and limits system performance due to raindrop absorption and scattering. Therefore, the pure mmWave networks cannot meet the high requirements of highway vehicular communications. To address these challenges, this paper proposes a hybrid mmWave and microwave network architecture to improve VNs’ coverage and connectivity performances through the strategic deployment of Roadside Units (RSUs). Using Radio Access Technology (RAT), mmWave and microwave RSUs are symmetrically deployed on both sides of the road to communicate with VNs located at the road center. This symmetric RSUs deployment significantly improves the network reliability. Analytical expressions for coverage and connectivity in the proposed hybrid networks are derived and compared with the pure mmWave networks, accounting for rainfall attenuation. The study results show that the proposed hybrid network shows better performance than the pure mmWave network in both coverage and connectivity. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

26 pages, 8312 KiB  
Article
A Meteorological Data-Driven eLoran Signal Propagation Delay Prediction Model: BP Neural Network Modeling for Long-Distance Scenarios
by Tao Jin, Shiyao Liu, Baorong Yan, Wei Guo, Changjiang Huang, Yu Hua, Shougang Zhang, Xiaohui Li and Lu Xu
Remote Sens. 2025, 17(13), 2269; https://doi.org/10.3390/rs17132269 - 2 Jul 2025
Viewed by 261
Abstract
The timing accuracy of eLoran systems is susceptible to meteorological fluctuations, with medium-to-long-range propagation delay variations reaching hundreds of nanoseconds to microseconds. While conventional models have been widely adopted for short-range delay prediction, they fail to accurately characterize the coupled effects of multiple [...] Read more.
The timing accuracy of eLoran systems is susceptible to meteorological fluctuations, with medium-to-long-range propagation delay variations reaching hundreds of nanoseconds to microseconds. While conventional models have been widely adopted for short-range delay prediction, they fail to accurately characterize the coupled effects of multiple factors in long-range scenarios. This study theoretically examines the influence mechanisms of temperature, humidity, and atmospheric pressure on signal propagation delays, proposing a hybrid prediction model integrating meteorological data with a back-propagation neural network (BPNN) through path-weighted Pearson correlation coefficient analysis. Long-term observational data from multiple differential reference stations and meteorological stations reveal that short-term delay fluctuations strongly correlate with localized instantaneous humidity variations, whereas long-term trends are governed by cumulative temperature–humidity effects in regional environments. A multi-tier neural network architecture was developed, incorporating spatial analysis of propagation distance impacts on model accuracy. Experimental results demonstrate enhanced prediction stability in long-range scenarios. The proposed model provides an innovative tool for eLoran system delay correction, while establishing an interdisciplinary framework that bridges meteorological parameters with signal propagation characteristics. This methodology offers new perspectives for reliable timing solutions in global navigation satellite system (GNSS)-denied environments and advances our understanding of meteorological–electromagnetic wave interactions. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Temporal Evolution of Small-Amplitude Internal Gravity Waves Generated by Latent Heating in an Anelastic Fluid Flow
by Amir A. M. Sayed, Amna M. Grgar and Lucy J. Campbell
AppliedMath 2025, 5(3), 80; https://doi.org/10.3390/appliedmath5030080 - 30 Jun 2025
Viewed by 177
Abstract
A two-dimensional time-dependent model is presented for upward-propagating internal gravity waves generated by an imposed thermal forcing in a layer of fluid with uniform background velocity and stable stratification under the anelastic approximation. The configuration studied is representative of a situation with deep [...] Read more.
A two-dimensional time-dependent model is presented for upward-propagating internal gravity waves generated by an imposed thermal forcing in a layer of fluid with uniform background velocity and stable stratification under the anelastic approximation. The configuration studied is representative of a situation with deep or shallow latent heating in the lower atmosphere where the amplitude of the waves is small enough to allow linearization of the model equations. Approximate asymptotic time-dependent solutions, valid for late time, are obtained for the linearized equations in the form of an infinite series of terms involving Bessel functions. The asymptotic solution approaches a steady-amplitude state in the limit of infinite time. A weakly nonlinear analysis gives a description of the temporal evolution of the zonal mean flow velocity and temperature resulting from nonlinear interaction with the waves. The linear solutions show that there is a vertical variation of the wave amplitude which depends on the relative depth of the heating to the scale height of the atmosphere. This means that, from a weakly nonlinear perspective, there is a non-zero divergence of vertical momentum flux, and hence, a non-zero drag force, even in the absence of vertical shear in the background flow. Full article
(This article belongs to the Special Issue Exploring the Role of Differential Equations in Climate Modeling)
Show Figures

Figure 1

Back to TopTop