Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Climatic Characteristics of Summer Extreme Precipitation in the YRB
4. Leading Modes of Summer Extreme Precipitation in the YRB and Their Relationships with Atmospheric Circulation and SST
5. Conclusions and Discussion
- (1)
- All extreme precipitation indices in the YRB exhibit northwest-to-southeast increasing gradients in both climatological patterns and standard deviation distributions of frequency and intensity. The highest extreme precipitation values occur in the southeastern lower basin, followed by the northeastern regions, with the lowest values observed in the western mountainous upper reaches. Precipitation distribution demonstrates an intrinsic linkage with topography—the western mountainous areas are dominated by frequent light precipitation, whereas extreme precipitation events predominantly concentrate in the southeastern lower basin. Trend analysis reveals predominantly increasing trends in summer extreme precipitation across most regions of the YRB.
- (2)
- The first EOF mode of summer extreme precipitation in the YRB exhibits a spatially coherent pattern with a northwest-to-southeast increasing gradient, peaking in the southeastern basin, followed by the northeastern regions, and reaching minimum values in the western mountainous areas. The second EOF mode displays a dipolar distribution characterized by precipitation deficits in the northern basin and surpluses in the southern basin, with extremal centers located in the northern sector of the mid-basin and the southeastern basin, respectively. Notably, precipitation indices with higher extremity demonstrate smaller variance contributions, indicating more complex interannual variability in extreme precipitation indices.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, G.; Chen, S.; Liu, C.; Shepard, D. Hydro-climatic Trends of the Yellow River basin for the last 50 years. Clim. Change 2004, 65, 149–178. [Google Scholar] [CrossRef]
- Meng, F.; Su, F.; Yang, D.; Tong, K.; Hao, Z. Impacts of recent climate change on the hydrology in the source region of the Yellow River basin. J. Hydrol. Reg. Stud. 2016, 6, 66–81. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, Z.; Wang, J.; Zhao, Y.; He, F. Impacts of climate changes on water resources in Yellow River Basin, China. Procedia Eng. 2016, 154, 687–695. [Google Scholar] [CrossRef]
- Liang, K.; Liu, S.; Bai, P.; Nie, R. The Yellow River basin becomes wetter or drier? The case as indicated by mean precipitation and extremes during 1961–2012. Theor. Appl. Clim. 2015, 119, 701–722. [Google Scholar] [CrossRef]
- Guan, Y.; Zheng, F.; Zhang, P.; Qin, C. Spatial and temporal changes of meteorological disasters in China during 1950–2013. Nat. Hazards 2015, 75, 2607–2623. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Y.; Wang, H.; Sun, G. Characteristics of meteorological disasters and their impacts on the agricultural ecosystems in the northwest of China: A case study in Xinjiang. Geoenviron. Disasters 2015, 2, 3. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Wang, S.-P.; Wang, J.-S.; Yao, Y.-B. Characteristics of agro-meteorological disasters and their risk in Gansu Province against the background of climate change. Nat. Hazards 2017, 89, 899–921. [Google Scholar] [CrossRef]
- Ferreira, S. Extreme weather events and climate change: Economic impacts and adaptation policies. Annu. Rev. Resour. Econ. 2024, 16, 207–231. [Google Scholar] [CrossRef]
- Newman, R.; Noy, I. The global costs of extreme weather that are attributable to climate change. Nat. Commun. 2023, 14, 6103. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Q.; Song, Y.; Wang, H.; Li, J.; Han, C. Spatial variations of extreme precipitation events and attribution analysis in the main water resource area of the Belt and Road Initiative. Theor. Appl. Clim. 2021, 144, 535–554. [Google Scholar] [CrossRef]
- Tabari, H. Extreme value analysis dilemma for climate change impact assessment on global flood and extreme precipitation. J. Hydrol. 2021, 593, 125932. [Google Scholar] [CrossRef]
- Zhou, X.; Bai, Z.; Yang, Y. Linking trends in urban extreme rainfall to urban flooding in China. Int. J. Clim. 2017, 37, 4586–4593. [Google Scholar] [CrossRef]
- Yang, L.; Smith, J.; Niyogi, D. Urban impacts on extreme monsoon rainfall and flooding in complex terrain. Geophys. Res. Lett. 2019, 46, 5918–5927. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, L.; Huang, W.; Cheng, W.; Jia, N. Precipitation in the Yellow River drainage basin and East Asian monsoon strength on a decadal time scale. Quat. Res. 2012, 78, 486–491. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Y. Response of the hydrological regime of the Yellow River to the changing monsoon intensity and human activity. Hydrol. Sci. J. 2009, 54, 90–100. [Google Scholar] [CrossRef]
- Chen, F.; Opała-Owczarek, M.; Owczarek, P.; Chen, Y. Summer monsoon season streamflow variations in the middle Yellow River since 1570 CE inferred from tree rings of Pinus tabulaeformis. Atmosphere 2020, 11, 717. [Google Scholar] [CrossRef]
- Xu, H.; Goldsmith, Y.; Lan, J.; Tan, L.; Wang, X.; Zhou, X.; Cheng, J.; Lang, Y.; Liu, C. Juxtaposition of western Pacific subtropical high on Asian Summer Monsoon shapes subtropical East Asian precipitation. Geophys. Res. Lett. 2020, 47, e2019GL084705. [Google Scholar] [CrossRef]
- Xue, G.; Cai, Y.; Zheng, Y.; Zhang, H.; Han, T.; Huang, S.; Cheng, X.; Ma, L.; Liu, C.; Edwards, R.L.; et al. Western Pacific Subtropical High modulates regional hydroclimate changes on multiple timescales over central China. J. Geophys. Res. Atmos. 2025, 130, e2024JD042735. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Q.; Wang, G.; Singh, V.P.; Wu, W.; Fan, K.; Shen, Z. Flood disaster risk and socioeconomy in the Yellow River Basin, China. J. Hydrol. Reg. Stud. 2022, 44, 101272. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Q.; Singh, V.P. Flooding in the Yellow River Basin, China: Spatiotemporal patterns, drivers and future tendency. J. Hydrol. Reg. Stud. 2024, 52, 101706. [Google Scholar] [CrossRef]
- Zhu, Y.; Qiao, F.; Liu, Y.; Liang, X.-Z.; Liu, Q.; Wang, R.; Zhang, H. The impacts of multi-physics parameterization on forecasting heavy rainfall induced by weak landfalling Typhoon Rumbia (2018). Atmos. Res. 2021, 265, 105883. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, R.; Sun, J.; Lu, F.; Xu, J.; Zhang, F. A Review of Research on the Record-Breaking Precipitation Event in Henan Province, China, July 2021. Adv. Atmos. Sci. 2023, 40, 1485–1500. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Z.; Peng, M. Impacts of climate trends on the heavy precipitation event associated with Typhoon Doksuri in Northern China. Atmos. Res. 2025, 314, 107816. [Google Scholar] [CrossRef]
- He, K.; Chen, X.; Zhou, J.; Zhao, D.; Yu, X. Compound successive dry-hot and wet extremes in China with global warming and urbanization. J. Hydrol. 2024, 636, 131332. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Chi, H.; Wu, Y.; Zheng, H.; Zhang, B.; Sun, Z.H.; Yan, J.H.; Ren, Y.K.; Guo, L.N. Spatial patterns of climate change and asso-ciated climate hazards in Northwest China. Sci. Rep. 2023, 13, 10418. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, Y.; Xiao, C.; Chen, W.; Mei, M.; Wang, G. High-impact Extreme Weather and Climate Events in China: Summer 2024 Overview. Adv. Atmos. Sci. 2025, 42, 1064–1076. [Google Scholar] [CrossRef]
- Yin, L.; Ping, F.; Mao, J.; Jin, S. Analysis on precipitation efficiency of the “21.7” Henan extremely heavy rainfall event. Adv. Atmos. Sci. 2023, 40, 374–392. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, X.; Zhou, C.; Fu, B. Reconciling the strategic goals of irrigated food production, energy production with environmental flows under water transfer project in the Yellow River Basin. J. Hydrol. Reg. Stud. 2025, 60, 102575. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Titchner, H.A.; Rayner, N.A. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos. 2014, 119, 2864–2889. [Google Scholar] [CrossRef]
- Kang, K.K.; Lee, D.S.; Hwang, S.W.; Kim, B.S. Analysis of Changes in Extreme Weather Characteristics in Gangwon Region Using Expert Team on Climate Change Detection and Indices (ETCCDI). J. Korean Soc. Water. Res. 2014, 47, 1107–1119. [Google Scholar]
- Chauhan, A.S.; Singh, S.; Maurya, R.K.S.; Danodia, A. Spatio-temporal analysis of rainfall in relation to monsoon teleconnections and agriculture at Regional Scale in Haryana, India. Environ. Sci. Pollut. Res. 2022, 30, 116781–116803. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.S.; Singh, S.; Maurya, R.K.S.; Rani, A.; Danodia, A. Spatio-temporal trend analysis and future projections of precipitation at regional scale: A case study of Haryana, India. J. Water Clim. Change 2022, 13, 2143–2170. [Google Scholar] [CrossRef]
- Lau, N.-C.; Nath, M.J. The Role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J. Clim. 1996, 9, 2036–2057. [Google Scholar] [CrossRef]
- Klein, S.A.; Soden, B.J.; Lau, N.C. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Clim. 1999, 12, 917–932. [Google Scholar] [CrossRef]
- Yuan, F.; Yasuda, H.; Berndtsson, R.; Uvo, C.B.; Zhang, L.; Hao, Z.; Wang, X. Regional sea-surface temperatures explain spatial and temporal variation of summer precipitation in the source region of the Yellow River. Hydrol. Sci. J. 2016, 61, 1383–1394. [Google Scholar] [CrossRef]
- Ding, X.; Li, X.; Wang, A.; Guo, X.; Xu, X.; Liu, C.; Qin, X.; Xie, Y.; Wei, Y.; Cui, Z.; et al. Unprecedented phytoplankton blooms in autumn/winter in the southern Bohai Sea (China) due to high Yellow River discharge: Implications of extreme rainfall events. J. Environ. Manag. 2024, 351, 119901. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sielmann, F.; Fraedrich, K.; Zhu, X.; Zhi, X. Variability of winter extreme precipitation in Southeast China: Contributions of SST anomalies. Clim. Dyn. 2015, 45, 2557–2570. [Google Scholar] [CrossRef]
- Jiang, P.; Yu, Z.; Yuan, F.; Acharya, K. The Multi-scale temporal variability of extreme precipitation in the source region of the Yellow River. Water 2019, 11, 92. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Li, L.; Deng, W. Decadal variability of droughts and floods in the Yellow River basin during the last five centuries and relations with the North Atlantic SST. Int. J. Clim. 2013, 33, 3217–3228. [Google Scholar] [CrossRef]
- Zhu, Z.; Feng, Y.; Jiang, W.; Lu, R.; Yang, Y. The compound impacts of sea surface temperature modes in the Indian and North Atlantic oceans on the extreme precipitation days in the Yangtze River Basin. Clim. Dyn. 2023, 61, 3327–3341. [Google Scholar] [CrossRef]
- Liu, G.; He, S.; Wong, M.L.; Zou, Y.F.; He, H.B.; Chongyi, E.; Chawchai, S.; Zheng, H.B.; Li, X.Z. Tropical Pacific forcing of hydro-climate in the source area of the Yellow River. Geophys. Res. Lett. 2021, 48, e2021GL095876. [Google Scholar] [CrossRef]
- Yu, S.; Shi, X.; Lin, X. Interannual variation of East Asian summer monsoon and its impacts on general circulation and precipitation. J. Geogr. Sci. 2009, 19, 67–80. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, H.; Zhai, P.; Xu, C.; Ma, H. Characteristics of summer extreme precipitation in the Huai River basin and their relationship with East Asia summer monsoon during 1960–2014. Int. J. Clim. 2019, 39, 1555–1570. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Sun, Y. Inter–decadal variation of the summer precipitation in East China and its association with de-creasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol. 2008, 28, 1139–1161. [Google Scholar] [CrossRef]
- Veiga, S.F.; Yuan, H. The response of the East Asian summer rainfall to more extreme El Niño events in future climate scenarios. Atmos. Res. 2021, 268, 105983. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett. 2015, 42, 1165–1172. [Google Scholar] [CrossRef]
- Hu, Y.; Deng, Y.; Zhou, Z.; Cui, C.; Dong, X. A statistical and dynamical characterization of large-scale circulation patterns associated with summer extreme precipitation over the middle reaches of Yangtze river. Clim. Dyn. 2019, 52, 6213–6228. [Google Scholar] [CrossRef]
- Zhang, F.; Odins, A.M.; Nielsen-Gammon, J.W. Mesoscale predictability of an extreme warm-season precipitation event. Weather Forecast. 2006, 21, 149–166. [Google Scholar] [CrossRef]
- Bao, J.; Feng, J. Intercomparison of CMIP5 simulations of summer precipitation, evaporation, and water vapor transport over Yellow and Yangtze River basins. Theor. Appl. Clim. 2015, 123, 437–452. [Google Scholar] [CrossRef]
Index Name | Abbreviation | Definition | Unit |
---|---|---|---|
Rainy days | Rd | Days with precipitation ≥ 1 mm | days |
Heavy rain days | Rr25 | Days with precipitation ≥ 25 mm | days |
Torrential rain days | Rr50 | Days with precipitation ≥ 50 mm | days |
Total precipitation | PRCPTOT | Total precipitation | mm |
Extreme precipitation | R90PTOT | Total precipitation above the 90th percentile | mm |
Severe extreme precipitation | R95PTOT | Total precipitation above the 95th percentile | mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, D.; Wang, X.; Wang, J. Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin. Atmosphere 2025, 16, 892. https://doi.org/10.3390/atmos16070892
Yao D, Wang X, Wang J. Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin. Atmosphere. 2025; 16(7):892. https://doi.org/10.3390/atmos16070892
Chicago/Turabian StyleYao, Degui, Xiaohui Wang, and Jinyu Wang. 2025. "Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin" Atmosphere 16, no. 7: 892. https://doi.org/10.3390/atmos16070892
APA StyleYao, D., Wang, X., & Wang, J. (2025). Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin. Atmosphere, 16(7), 892. https://doi.org/10.3390/atmos16070892