On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Preprocessing
2.3. Methods
2.3.1. Deep Learning Model
2.3.2. Physical Model
3. Results
3.1. Statistical Evaluation of CTH and CWP Retrievals
3.2. Validation of CBH Using Spaceborne Cloud Radar and Lidar Measurements
3.3. Validation of CBH Using Ground-Based Ka-Band MMCR Measurements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lenaerts, J.T.M.; Gettelman, A.; Van Tricht, K.; van Kampenhout, L.; Miller, N.B. Impact of Cloud Physics on the Greenland Ice Sheet Near-Surface Climate: A Study With the Community Atmosphere Model. J. Geophys. Res. Atmos. 2020, 125, e2019JD031470. [Google Scholar] [CrossRef]
- Los, S.O.; Street-Perrott, F.A.; Loader, N.J.; Froyd, C.A. Detection of Signals Linked to Climate Change, Land-Cover Change and Climate Oscillators in Tropical Montane Cloud Forests. Remote Sens. Environ. 2021, 260, 112431. [Google Scholar] [CrossRef]
- Viúdez-Mora, A.; Costa-Surós, M.; Calbó, J.; González, J.A. Modeling Atmospheric Longwave Radiation at the Surface during Overcast Skies: The Role of Cloud Base Height. JGR Atmos. 2015, 120, 199–214. [Google Scholar] [CrossRef]
- Jiménez, P.A.; McCandless, T. Exploring the Potential of Statistical Modeling to Retrieve the Cloud Base Height from Geostationary Satellites: Applications to the ABI Sensor on Board of the GOES-R Satellite Series. Remote Sens. 2021, 13, 375. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, K.; Wong, E.; Ou, S.C. Cloud Base Heights Retrieved during Night-time Conditions with MODIS Data. Int. J. Remote Sens. 2006, 27, 2847–2862. [Google Scholar] [CrossRef]
- Noh, Y.-J.; Forsythe, J.M.; Miller, S.D.; Seaman, C.J.; Li, Y.; Heidinger, A.K.; Lindsey, D.T.; Rogers, M.A.; Partain, P.T. Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data. J. Atmos. Ocean. Technol. 2017, 34, 585–598. [Google Scholar] [CrossRef]
- Seaman, C.J.; Noh, Y.-J.; Miller, S.D.; Heidinger, A.K.; Lindsey, D.T. Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat. J. Atmos. Ocean. Technol. 2017, 34, 567–583. [Google Scholar] [CrossRef]
- Tan, Z.; Ma, S.; Liu, C.; Teng, S.; Letu, H.; Zhang, P.; Ai, W. Retrieving Cloud Base Height from Passive Radiometer Observations via a Systematic Effective Cloud Water Content Table. Remote Sens. Environ. 2023, 294, 113633. [Google Scholar] [CrossRef]
- Lin, H.; Li, Z.; Li, J.; Zhang, F.; Min, M.; Menzel, W.P. Estimate of Daytime Single-Layer Cloud Base Height from Advanced Baseline Imager Measurements. Remote Sens. Environ. 2022, 274, 112970. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, C.; Zhuge, X.; Liu, C.; Weng, F.; Wang, M. Retrieval of Cloud Properties from Thermal Infrared Radiometry Using Convolutional Neural Network. Remote Sens. Environ. 2022, 278, 113079. [Google Scholar] [CrossRef]
- Li, J.; Zhang, F.; Li, W.; Tong, X.; Pan, B.; Li, J.; Lin, H.; Letu, H.; Mustafa, F. Transfer-Learning-Based Approach to Retrieve the Cloud Properties Using Diverse Remote Sensing Datasets. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–10. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X.; Wang, Y. Determining AHI Cloud-Top Phase and Intercomparisons With MODIS Products Over North Pacific. IEEE Trans. Geosci. Remote Sens. 2021, 59, 436–448. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, C.; Ma, S.; Wang, X.; Shang, J.; Wang, J.; Ai, W.; Yan, W. Detecting Multilayer Clouds From the Geostationary Advanced Himawari Imager Using Machine Learning Techniques. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, C.; Letu, H.; Zhu, Y.; Zhuge, X.; Liu, C.; Weng, F.; Wang, M. Obtaining Cloud Base Height and Phase From Thermal Infrared Radiometry Using a Deep Learning Algorithm. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Iwabuchi, H.; Putri, N.S.; Saito, M.; Tokoro, Y.; Sekiguchi, M.; Yang, P.; Baum, B.A. Cloud Property Retrieval from Multiband Infrared Measurements by Himawari-8. J. Meteorol. Soc. Japan. Ser. II 2018, 96B, 27–42. [Google Scholar] [CrossRef]
- Letu, H.; Nakajima, T.Y.; Wang, T.; Shang, H.; Ma, R.; Yang, K.; Baran, A.J.; Riedi, J.; Ishimoto, H.; Yoshida, M.; et al. A New Benchmark for Surface Radiation Products over the East Asia–Pacific Region Retrieved from the Himawari-8/AHI Next-Generation Geostationary Satellite. Bull. Am. Meteorol. Soc. 2022, 103, E873–E888. [Google Scholar] [CrossRef]
- Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Riedi, J.; Ishimoto, H.; Baran, A.J.; Shang, H.; Sekiguchi, M.; Kikuchi, M. Ice Cloud Properties From Himawari-8/AHI Next-Generation Geostationary Satellite: Capability of the AHI to Monitor the DC Cloud Generation Process. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3229–3239. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X.; Wang, Y. AHI-Derived Daytime Cloud Optical/Microphysical Properties and Their Evaluations With the Collection-6.1 MOD06 Product. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6431–6450. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 2017, 55, 502–525. [Google Scholar] [CrossRef] [PubMed]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. THE CLOUDSAT MISSION AND THE A-TRAIN: A New Dimension of Space-Based Observations of Clouds and Precipitation. Bull. Am. Meteor. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef]
- Bruno, O.; Hoose, C.; Storelvmo, T.; Coopman, Q.; Stengel, M. Exploring the Cloud Top Phase Partitioning in Different Cloud Types Using Active and Passive Satellite Sensors. Geophys. Res. Lett. 2021, 48, e2020GL089863. [Google Scholar] [CrossRef]
- Li, W.; Zhang, F.; Guo, B.; Fu, H.; Letu, H. Physics-Driven Machine Learning Algorithm Facilitates Multilayer Cloud Property Retrievals From Geostationary Passive Imager Measurements. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–18. [Google Scholar] [CrossRef]
- Wehr, T.; Kubota, T.; Tzeremes, G.; Wallace, K.; Nakatsuka, H.; Ohno, Y.; Koopman, R.; Rusli, S.; Kikuchi, M.; Eisinger, M.; et al. The EarthCARE Mission—Science and System Overview. Atmos. Meas. Tech. 2023, 16, 3581–3608. [Google Scholar] [CrossRef]
- Burns, D.; Kollias, P.; Tatarevic, A.; Battaglia, A.; Tanelli, S. The Performance of the EarthCARE Cloud Profiling Radar in Marine Stratiform Clouds. J. Geophys. Res.: Atmos. 2016, 121, 14525–14537. [Google Scholar] [CrossRef]
- Irbah, A.; Delanoë, J.; Van Zadelhoff, G.-J.; Donovan, D.P.; Kollias, P.; Puigdomènech Treserras, B.; Mason, S.; Hogan, R.J.; Tatarevic, A. The Classification of Atmospheric Hydrometeors and Aerosols from the EarthCARE Radar and Lidar: The A-TC, C-TC and AC-TC Products. Atmos. Meas. Tech. 2023, 16, 2795–2820. [Google Scholar] [CrossRef]
- European Space Agency. EarthCARE CPR TC Level 2A; Version AC; European Space Agency: Paris, France, 2025. [Google Scholar] [CrossRef]
- Yang, X.; Ge, J.; Hu, X.; Wang, M.; Han, Z. Cloud-Top Height Comparison from Multi-Satellite Sensors and Ground-Based Cloud Radar over SACOL Site. Remote Sens. 2021, 13, 2715. [Google Scholar] [CrossRef]
- Huang, S.-C.; Chen, C.-C.; Lan, J.; Hsieh, T.-Y.; Chuang, H.-C.; Chien, M.-Y.; Ou, T.-S.; Chen, K.-H.; Wu, R.-C.; Liu, Y.-J.; et al. Deep Neural Network Trained on Gigapixel Images Improves Lymph Node Metastasis Detection in Clinical Settings. Nat. Commun. 2022, 13, 3347. [Google Scholar] [CrossRef] [PubMed]
- Bejani, M.M.; Ghatee, M. A Systematic Review on Overfitting Control in Shallow and Deep Neural Networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, Banff, AB, Canda, 14–16 April 2014. [Google Scholar]
- Skorokhodov, A.V.; Pustovalov, K.N.; Kharyutkina, E.V.; Astafurov, V.G. Cloud-Base Height Retrieval from MODIS Satellite Data Based on Self-Organizing Neural Networks. Atmos. Ocean. Opt. 2023, 36, 723–734. [Google Scholar] [CrossRef]
- Huo, J.; Lu, D.; Duan, S.; Bi, Y.; Liu, B. Comparison of the Cloud Top Heights Retrieved from MODIS and AHI Satellite Data with Ground-Based Ka-Band Radar. Atmos. Meas. Tech. 2020, 13, 1–11. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, G.; Zhaxi, S. Cloud Vertical Structure Measurements from a Ground-Based Cloud Radar over the Southeastern Tibetan Plateau. Atmos. Res. 2021, 258, 105629. [Google Scholar] [CrossRef]
Sensors | Products | Variables | Spatial Resolution |
---|---|---|---|
AHI | Level 1 | Infrared brightness temperatures in band 8–16 (centering wavelength from 6.2 to 13.3 μm) Satellite zenith angle | 0.05° (5 km) |
MODIS | Collection 6.1 MOD06 | Cloud top height Cloud water path | 0.05° (5 km) 0.01° (1 km) |
CloudSat-CPR, CALIOP | 2B-GEOPROF-LIDAR | Cloud top/base height | 1.4 × 1.7 km |
EarthCARE-CPR | CPR_TC_2A | Cloud top/base height | 1 × 1 km |
Dataset | Count | Day/Nighttime | Period |
---|---|---|---|
Training dataset | 55,635 | Daytime | 2016 |
Validation dataset | 5922 | Daytime | 10-day intervals in 2018 |
Testing dataset | 524, 765, and 336 | Daytime and Nighttime | 10-day intervals in 2017 and 2022, and 14–31 March 2025 |
Cloud pixel dataset (CloudSat-CALIPSO) | 143,019 and 40,320 | Daytime | 2017 & 2022 |
Cloud profile dataset (EarthCARE-CPR) | 1771 | Daytime and Nighttime | 14–31 March 2025 |
Number | R | BIAS (km) | RMSE (km) | |
---|---|---|---|---|
All clouds | 73,255 | 0.94 | −0.14 | 1.26 |
Clouds over land | 10,089 | 0.86 | −0.47 | 1.83 |
Clouds over the ocean | 63,166 | 0.95 | −0.08 | 1.14 |
High clouds | 11,388 | 0.65 | −0.95 | 1.85 |
Middle clouds | 14,368 | 0.51 | 0.28 | 2.19 |
Low clouds | 47,499 | 0.73 | −0.07 | 0.49 |
Station Name | Latitude | Longitude | Elevation |
---|---|---|---|
Hongyuan | 32.80°N | 102.55°E | 3493 m |
Yichang | 30.73°N | 111.30°E | 134 m |
Taiyuan | 37.78°N | 112.55°E | 780 m |
Jiuquan | 39.77°N | 98.48°E | 1478 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, T.; Tan, Z.; Ai, W.; Ma, S.; Zhao, X.; Hu, S.; Liu, C.; Guo, J. On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations. Remote Sens. 2025, 17, 2469. https://doi.org/10.3390/rs17142469
Ye T, Tan Z, Ai W, Ma S, Zhao X, Hu S, Liu C, Guo J. On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations. Remote Sensing. 2025; 17(14):2469. https://doi.org/10.3390/rs17142469
Chicago/Turabian StyleYe, Tingting, Zhonghui Tan, Weihua Ai, Shuo Ma, Xianbin Zhao, Shensen Hu, Chao Liu, and Jianping Guo. 2025. "On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations" Remote Sensing 17, no. 14: 2469. https://doi.org/10.3390/rs17142469
APA StyleYe, T., Tan, Z., Ai, W., Ma, S., Zhao, X., Hu, S., Liu, C., & Guo, J. (2025). On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations. Remote Sensing, 17(14), 2469. https://doi.org/10.3390/rs17142469