Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause
Abstract
1. Introduction
2. Methodology
2.1. Parameterization of PMC Thermal Impact
2.2. Solar Occultation Data
3. Results
3.1. Parameterization Sensitivity to Temperature and Water Vapor
3.2. Heating Quantifying
4. Discussion
5. Conclusions
- Since the parameterization depends solely on Qice, the most intense εPMC heating values are concentrated at the altitudes of maximum ice crystal concentrations: 81–82 km in NH and 82–83 km in SH.
- Any variations of atmospheric parameters, caused, for example, by IGWs, and perturbing the Qice distribution in time and space, lead to perturbations in the heating intensity. An increase in water vapor concentration is expected to enhance the formation of PMC and, as a consequence, enhance radiative heating.
- The median εPMC values centered below the Tmes heights are 5.86 and 5.24 K/day in NH and SH, respectively, and their distribution is symmetric in both hemispheres.
- The lowest values of heating are located above the maximum of cloud ice concentration in both hemispheres. The maximum values of the calculated heat influx are concentrated at the lower boundary of the cloud layer, which is due to the behavior of sublimated crystals: appearing above 85 km, small cloud particles settle, shifting to the zone of low temperatures, where the radius of the crystals increases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, A.K. Global Dynamics of the MLT. Surv. Geophys. 2012, 33, 1177–1230. [Google Scholar] [CrossRef]
- Laštovicka, J. Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys. 2006, 68, 479–497. [Google Scholar] [CrossRef]
- Koval, A.V.; Gavrilov, N.M.; Zubov, V.A.; Rozanov, E.V.; Golovko, A.G. Modified Parameterization Scheme of Orographic Gravity Waves in the SOCOL Chemistry-Climate Model. Pure Appl. Geophys. 2025, 182, 255–270. [Google Scholar] [CrossRef]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef]
- Baumgarten, G.; Fritts, D.C. Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. J. Geophys. Res. Atmos. 2014, 119, 9324–9337. [Google Scholar] [CrossRef]
- Thurairajah, B.; Bailey, S.M.; Harvey, V.L.; Randall, C.E.; France, J.A. The role of the quasi 5-day wave on the onset of polar mesospheric cloud seasons in the northern hemisphere. J. Geophys. Res. Atmos. 2023, 128, e2022JD037982. [Google Scholar] [CrossRef]
- Koval, A.V.; Chen, W.; Didenko, K.A.; Ermakova, T.S.; Gavrilov, N.M.; Pogoreltsev, A.I.; Toptunova, O.N.; Wei, K.; Yarusova, A.N.; Zarubin, A.S. Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events. Ann. Geophys. 2021, 39, 357–368. [Google Scholar] [CrossRef]
- Karlsson, B.; Kuilman, M. On how the middle atmospheric residual circulation responds to the solar cycle close to the solstices. J. Clim. 2018, 31, 401–421. [Google Scholar] [CrossRef]
- Christensen, O.M.; Benze, S.; Eriksson, P.; Gumbel, J.; Megner, L.; Murtagh, D.P. The relationship between polar mesospheric clouds and their background atmosphere as observed by Odin-SMR and Odin-OSIRIS. Atmos. Chem. Phys. 2016, 16, 12587–12600. [Google Scholar] [CrossRef]
- García-Comas, M.; López-Puertas, M.; Funke, B.; Jurado-Navarro, Á.A.; Gardini, A.; Stiller, G.P.; von Clarmann, T.; Höpfner, M. Measurements of global distributions of polar mesospheric clouds during 2005–2012 by MIPAS/Envisat. Atmos. Chem. Phys. 2016, 16, 6701–6719. [Google Scholar] [CrossRef]
- Romejko, V.A.; Dalin, P.A.; Pertsev, N.N. Forty years of noctilucent cloud observations near Moscow: Database and simple statistics. J. Geophys. Res. 2003, 108, 8443. [Google Scholar] [CrossRef]
- DeLand, M.T.; Thomas, G.E. Updated PMC trends derived from SBUV data. J. Geophys. Res. Atmos. 2015, 120, 2140–2166. [Google Scholar] [CrossRef]
- Hervig, M.E.; Berger, U.; Siskind, D.E. Decadal variability in PMCs and implications for changing temperature and water vapor in the upper mesosphere. J. Geophys. Res. Atmos. 2016, 121, 2383–2392. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, N.; Soon, W.; Herrera, V.M.V.; Yang, C.; Dou, X. The Hemispheric Asymmetry of Gravity Wave Impact on the Polar Mesospheric Cloud, Based on the Aeronomy of Ice in the Mesosphere Satellite. Atmosphere 2023, 14, 419. [Google Scholar] [CrossRef]
- Siskind, D.E.; Merkel, A.W.; Marsh, D.R.; Randall, C.E.; Hervig, M.E.; Mlynczak, M.G.; Russell, J.M., III. Understanding the effects of polar mesospheric clouds on the environment of the upper mesosphere and lower thermosphere. J. Geophys. Res. Atmos. 2018, 123, 11705–11719. [Google Scholar] [CrossRef]
- Siskind, D.E.; Stevens, M.H. A radiative feedback from an interactive polar mesospheric cloud parameterization in a two dimensional model. Adv. Space Res. 2006, 38, 2383–2387. [Google Scholar] [CrossRef]
- Vargin, P.; Kostrykin, S.; Koval, A.; Rozanov, E.; Egorova, T.; Smyshlyaev, S.; Tsvetkova, N. Arctic stratosphere changes in the 21st century in the Earth system model SOCOLv4. Front. Earth Sci. 2023, 11, 1214418. [Google Scholar] [CrossRef]
- Yue, J.; Russell, J., III; Gan, Q.; Wang, T.; Rong, P.; Garcia, R.; Mlynczak, M. Increasing water vapor in the stratosphere and mesosphere after 2002. Geophys. Res. Lett. 2019, 46, 13452–13460. [Google Scholar] [CrossRef]
- Yu, W.; Yue, J.; Garcia, R.; Mlynczak, M.; Russell, J., III. WACCM6 projections of polar mesospheric cloud abundance over the 21st century. J. Geophys. Res. Atmos. 2023, 128, e2023JD038985. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Sun, S.; Li, X. Correlation between Peak Height of Polar Mesospheric Clouds and Mesopause Temperature. Atmosphere 2024, 15, 1149. [Google Scholar] [CrossRef]
- Hervig, M.E.; Stevens, M.H.; Gordley, L.L.; Deaver, L.E.; Russell, J.M., III; Bailey, S.M. Relationships between polar mesospheric clouds, temperature, and water vapor from Solar Occultation for Ice Experiment (SOFIE) observations. J. Geophys. Res. 2009, 114, D20203. [Google Scholar] [CrossRef]
- Thomas, G.E. Mesospheric clouds and the physics of the mesopause region. Rev. Geophys. 1991, 29, 553–575. [Google Scholar] [CrossRef]
- Murphy, D.M.; Koop, T. Review of the vapor pressure of ice and super-cooled water for atmospheric applications. Q. J. R. Meteorol. Soc. 2005, 131, 1539–1565. [Google Scholar] [CrossRef]
- Asmus, H.; Wilms, H.; Strelnikov, B.; Rapp, M. On the heterogeneous nucleation of mesospheric ice on meteoric smoke particles: Microphysical modeling. J. Atmos. Sol.-Terr. Phys. 2014, 118, 180–189. [Google Scholar] [CrossRef][Green Version]
- Espy, P.J.; Jutt, H. Equilibrium temperature of water-ice aerosols in the high-latitude summer mesosphere. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1823–1832. [Google Scholar] [CrossRef]
- Siskind, D.E.; Hervig, M.; Gumbel, J.; Stevens, M.H. Polar mesospheric cloud mass and the ice budget: 3. Application of a coupled ice-chemistry-dynamics model and comparison with observations. J. Geophys. Res. 2007, 112, D08303. [Google Scholar] [CrossRef]
- Gordley, L.L.; Hervig, M.E.; Fish, C.; Russell, J.M., III; Bailey, S.; Cook, J.; Hansen, S.; Shumway, A.; Paxton, G.; Deaver, L.; et al. The solar occultation for ice experiment. J. Atmos. Sol.-Terr. Phys. 2008, 71, 300–315. [Google Scholar] [CrossRef]
- Russell, J.M.; Bailey, S.M.; Gordley, L.L.; Rush, D.W.; Horányi, M.; Hervig, M.E.; Thomas, G.E.; Randall, C.E.; Siskind, D.E.; Stevens, M.H.; et al. The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results. J. Atmos. Sol.-Terr. Phys. 2009, 71, 289–299. [Google Scholar] [CrossRef]
- Waters, J.W.; Froidevaux, L.; Harwood, R.S.; Jarnot, R.F.; Pickett, H.M.; Read, W.G.; Siegel, P.H.; Cofield, R.E.; Filipiak, M.J.; Flower, D.A.; et al. The Earth observing system microwave limb sounder (EOS MLS) on the Aura Satellite. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1075–1092. [Google Scholar] [CrossRef]
- Fischer, H.; Birk, M.; Blom, C.; Carli, B.; Carlotti, M.; von Clarmann, T.; Delbouille, L.; Dudhia, A.; Ehhalt, D.; Endemann, M.; et al. MIPAS: An instrument for atmospheric and climate research. Atmos. Chem. Phys. 2008, 8, 2151–2188. [Google Scholar] [CrossRef]
- Murtagh, D.; Frisk, U.; Merino, F.; Ridal, M.; Jonsson, A.; Stegman, J.; Witt, G.; Eriksson, P.; Jiménez, C.; Megie, G.; et al. An overview of the Odin atmospheric mission. Can. J. Phys. 2002, 80, 309–319. [Google Scholar] [CrossRef]
- Bernath, P.F.; McElroy, C.T.; Abrams, M.C.; Boone, C.D.; Butler, M.; Camy-Peyret, C.; Carleer, M.; Clerbaux, C.; Coheur, P.-F.; Colin, R.; et al. Atmospheric Chemistry Experiment (ACE): Mission overview. Geophys. Res. Lett. 2005, 32, L15S01. [Google Scholar] [CrossRef]
- Russell, J.M., III; Mlynczak, M.G.; Gordley, L.L.; Tansock, J.J., Jr.; Esplin, R.W. Overview of the SABER experiment and preliminary calibration results. Proc. SPIE 1999, 3756, 277. [Google Scholar] [CrossRef]
- Pertsev, N.; Dalin, P.; Perminov, V.; Romejko, V.; Dubietis, A.; Balčiunas, R.; Černis, K.; Noctilucent, M.Z. clouds observed from the ground: Sensitivity to mesospheric parameters and long-term time series. Earth Planets Space 2014, 66, 98. [Google Scholar] [CrossRef]
- Kuilman, M.; Karlsson, B.; Benze, S.; Megner, L. Exploring noctilucent cloud variability using the nudged and extended version of the Canadian middle atmosphere model. J. Atmos. Sol.-Terr. Phys. 2017, 164, 276–288. [Google Scholar] [CrossRef]
- Dalin, P.; Pogoreltsev, A.; Pertsev, N.; Perminov, V.; Shevchuk, N.; Dubietis, A.; Zalcik, M.; Kulikov, S.; Zadorozhny, A.; Kudabayeva, D.; et al. Evidence of the formation of noctilucent clouds due to propagation of an isolated gravity wave caused by a tropospheric occluded front. Geophys. Res. Lett. 2015, 42, 2037–2046. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Roble, R.G. The effect of gravity waves on the global mean temperature and composition structure of the upper atmosphere. J. Geophys. Res. 1994, 99, 25773–25780. [Google Scholar] [CrossRef]
- Pautet, P.-D.; Stegman, J.; Wrasse, C.M.; Nielsen, K.; Takahashi, H.; Taylor, M.J.; Hoppel, K.W.; Eckermann, S.D. Analysis of gravity waves structures visible in noctilucent cloud images. J. Atmos. Sol.-Terr. Phys. 2011, 73, 2082–2090. [Google Scholar] [CrossRef]
- Taylor, M.J.; Pautet, P.-D.; Zhao, Y.; Randall, C.E.; Lumpe, J.; Bailey, S.M.; Carstens, J.; Nielsen, K.; Russell, J.M., III; Stegman, J. High-latitude gravity wave measurements in noctilucent clouds and polar mesospheric clouds. In Aeronomy of the Earth’s Atmosphere and Ionosphere; IAGA Special Sopron Book Series; Springer: Berlin/Heidelberg, Germany, 2011; Volume 2, pp. 93–105. [Google Scholar] [CrossRef]
- Demissie, T.D.; Espy, P.J.; Kleinknecht, N.H.; Halten, M.; Kaifler, N.; Baumgarten, G. Characteristics and sources of gravity waves observed in noctilucent cloud over Norway. Atmos. Chem. Phys. 2014, 14, 12133–12142. [Google Scholar] [CrossRef]
- Lindzen, R.S. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 1981, 86, 9707–9714. [Google Scholar] [CrossRef]
- Gossard, E.E.; Hooke, W.H. Waves in the Atmosphere, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Lübken, F.-J. Physics in the mesosphere/lower thermosphere: A personal perspective. Front. Astron. Space Sci. 2022, 9, 1000766. [Google Scholar] [CrossRef]
- Vadas, S.L.; Becker, E.; Bossert, K.; Hozumi, Y.; Stober, G.; Harvey, V.L.; Baumgarten, G.; Hoffmann, L. The role of the polar vortex jet for secondary and higher-order gravity waves in the northern mesosphere and thermosphere during 11–14 January 2016. J. Geophys. Res. Space Phys. 2024, 129, e2024JA032521. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Kshevetskii, S.P.; Koval, A.V.; Kurdyaeva, Y.A. Tunneling of acoustic-gravity waves through critical levels to the upper atmosphere. Adv. Space Res. 2025, 75, 3661–3670. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Yudin, V.A. Model for coefficients of turbulence and effective Prandtl number produced by breaking gravity waves in the upper atmosphere. J. Geophys. Res. 1992, 97, 7619–7624. [Google Scholar] [CrossRef]
- Dalin, P.; Pertsev, N.; Dubietis, A.; Zalcik, M.; Zadorozhny, A.; Connors, M.; Schofield, I.; McEwan, T.; McEachran, I.; Frandsen, S.; et al. A comparison between ground-based observations of noctilucent clouds and Aura satellite data. J. Atmos. Sol.-Terr. Phys. 2011, 73, 2097–2109. [Google Scholar] [CrossRef]
- Mukhtarov, P.; Pancheva, D.; Andonov, B. Climatology of the stationary planetary waves seen in the SABER/TIMED temperatures (2002–2007). J. Geophys. Res. 2010, 115, A06315. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Koval, A.V.; Didenko, K.A.; Ermakova, T.S.; Gavrilov, N.M.; Golovko, A.G. Diagnostics of the solar activity influence on the global atmospheric circulation in the thermosphere and MLT area: Wave—Mean flow interaction effects. Clim. Dyn. 2025, 63, 19. [Google Scholar] [CrossRef]
- Garcia, R.R.; Smith, A.K.; Kinnison, D.E.; de la Cámara, Á.; Murphy, D.J. Modification of the Gravity Wave Parameterization in the Whole Atmosphere Community Climate Model: Motivation and Results. J. Atmos. Sci. 2017, 74, 275–291. [Google Scholar] [CrossRef]
- Medvedev, A.S.; Klaassen, P. Thermal effects of saturating gravity waves in the atmosphere. J. Geophys. Res. 2003, 108, 4040. [Google Scholar] [CrossRef]
- Yiğit, E.; Medvedev, A.S. Heating and cooling of the thermosphere by internal gravity waves. Geophys. Res. Lett. 2009, 36, L14807. [Google Scholar] [CrossRef]
Surface Type | Temperature (K) | Pterr (W/cm3) |
---|---|---|
Cloud top | 220 | 17 |
Ocean surface | 263 | 41 |
Soil | 283 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolov, A.; Savenkova, E.; Koval, A.; Gavrilov, N.; Kravtsova, K.; Didenko, K.; Ermakova, T. Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause. Atmosphere 2025, 16, 922. https://doi.org/10.3390/atmos16080922
Sokolov A, Savenkova E, Koval A, Gavrilov N, Kravtsova K, Didenko K, Ermakova T. Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause. Atmosphere. 2025; 16(8):922. https://doi.org/10.3390/atmos16080922
Chicago/Turabian StyleSokolov, Arseniy, Elena Savenkova, Andrey Koval, Nikolai Gavrilov, Karina Kravtsova, Kseniia Didenko, and Tatiana Ermakova. 2025. "Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause" Atmosphere 16, no. 8: 922. https://doi.org/10.3390/atmos16080922
APA StyleSokolov, A., Savenkova, E., Koval, A., Gavrilov, N., Kravtsova, K., Didenko, K., & Ermakova, T. (2025). Quantifying Polar Mesospheric Clouds Thermal Impact on Mesopause. Atmosphere, 16(8), 922. https://doi.org/10.3390/atmos16080922