Trends in Oil Spill Modeling: A Review of the Literature
Abstract
1. Introduction
2. Materials and Methods
2.1. Bibliographic Base
2.2. Search Query
2.3. Data Analysis
3. Results
3.1. Publishing Trends
3.2. Most Cited Documents
3.3. Influential Sources
3.4. Authors Contributing
3.5. Trends in the Most Influential Publications
3.5.1. Prominent Oil Spil Modeling and Integrative Components
3.5.2. Critical Variables and Emerging Trajectories in Oil Spill Modeling
4. Discussion
4.1. General Patterns
4.1.1. Historical Growth and Research Relevance
4.1.2. Key Publications, Journals, and Influential Authors
4.2. Literature Trends
4.2.1. Modeling Frameworks, Critical Variables, and Future Prospects
4.2.2. Relevant Issue Perspectives
4.2.3. Future Prospects and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasr, M.M.; Kamel, F.K.; Abd ElWahab, Y.S. A Survey on Predicting Oil Spills by Studying Its Causes Using Deep Learning Techniques. Indones. J. Electr. Eng. Comput. Sci. 2021, 22, 580–589. [Google Scholar] [CrossRef]
- Jha, M.N.; Levy, J.; Gao, Y. Advances in Remote Sensing for Oil Spill Disaster Management: State-of-the-Art Sensors Technology for Oil Spill Surveillance. Sensors 2008, 8, 236–255. [Google Scholar] [CrossRef]
- Burmakova, A.; Kalibatiene, D. An ANFIS-Based Model to Predict the Oil Spill Consequences on the Ground. In Proceedings of the 2021 IEEE Open Conference of Electrical, Electronic and Information Sciences, eStream 2021-Proceedings, Vilnius, Lithuania, 22 April 2021; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2021. [Google Scholar]
- Bui, N.A.; Oh, Y.; Lee, I. Oil Spill Detection and Classification through Deep Learning and Tailored Data Augmentation. Int. J. Appl. Earth Obs. Geoinf. 2024, 129, 103845. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Espeseth, M.M.; Borch, N. Large-Scale Detection and Categorization of Oil Spills from Sar Images with Deep Learning. Remote Sens. 2020, 12, 2260. [Google Scholar] [CrossRef]
- Depellegrin, D.; Blažauskas, N. Integrating Ecosystem Service Values into Oil Spill Impact Assessment. J. Coast. Res. 2013, 29, 836–846. [Google Scholar] [CrossRef]
- Kingston, P.F. Long-Term Environmental Impact of Oil Spills. Spill Sci. Technol. Bull. 2002, 7, 53–61. [Google Scholar] [CrossRef]
- Kalibatiene, D.; Burmakova, A.; Smelov, V. On Knowledge-Based Forecasting Approach for Predicting the Effects of Oil Spills on the Ground. Digit. Transform. 2021, 4, 44–56. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Xu, X.; Li, M. The Application of Ship Oil Spill Risk Prediction in Dongying Emergency Capacity Planning. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bristol, UK, 26–28 September 2018; Institute of Physics Publishing: Bristol, UK, 2018; p. 153. [Google Scholar]
- Keramea, P.; Spanoudaki, K.; Zodiatis, G.; Gikas, G.; Sylaios, G. Oil Spill Modeling: A Critical Review on Current Trends, Perspectives, and Challenges. J. Mar. Sci. Eng. 2021, 9, 181. [Google Scholar] [CrossRef]
- Dhavalikar, A.S.; Choudhari, P.C. Prediction of Oil Spill Trajectory on the Ocean Surface Using Mathematical Modeling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5894–5905. [Google Scholar] [CrossRef]
- Barker, C.H.; Kourafalou, V.H.; Beegle-Krause, C.J.; Boufadel, M.; Bourassa, M.A.; Buschang, S.G.; Androulidakis, Y.; Chassignet, E.P.; Dagestad, K.F.; Danmeier, D.G.; et al. Progress in Operational Modeling in Support of Oil Spill Response. J. Mar. Sci. Eng. 2020, 8, 668. [Google Scholar] [CrossRef]
- Olascoaga, M.J.; Beron-Vera, F.J. Exploring the Use of Transition Path Theory in Building an Oil Spill Prediction Scheme. Front. Mar. Sci. 2022, 9, 1041005. [Google Scholar] [CrossRef]
- Liu, X.; Wirtz, K.W. The Economy of Oil Spills: Direct and Indirect Costs as a Function of Spill Size. J. Hazard. Mater. 2009, 171, 471–477. [Google Scholar] [CrossRef]
- Psaraftis, H.N.; Tharakan, G.G.; Ceder, A. Optimal response to oil spills: The strategic decision case. Oper. Res. 1986, 34, 203–217. [Google Scholar] [CrossRef]
- Li, P.; Cai, Q.; Lin, W.; Chen, B.; Zhang, B. Offshore Oil Spill Response Practices and Emerging Challenges. Mar. Pollut. Bull. 2016, 110, 6–27. [Google Scholar] [CrossRef]
- Keramea, P.; Kokkos, N.; Gikas, G.D.; Sylaios, G. Operational Modeling of North Aegean Oil Spills Forced by Real-Time Met-Ocean Forecasts. J. Mar. Sci. Eng. 2022, 10, 411. [Google Scholar] [CrossRef]
- Samuels, W.B.; Amstutz, D.E.; Bahadur, R.; Ziemniak, C. Development of a Global Oil Spill Modeling System. Earth Sci. Res. 2013, 2, 52. [Google Scholar] [CrossRef]
- Spaulding, M.L. State of the Art Review and Future Directions in Oil Spill Modeling. Mar. Pollut. Bull. 2017, 115, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Keramea, P.; Kokkos, N.; Zodiatis, G.; Sylaios, G. Modes of Operation and Forcing in Oil Spill Modeling: State-of-Art, Deficiencies and Challenges. J. Mar. Sci. Eng. 2023, 11, 1165. [Google Scholar] [CrossRef]
- Purssell, E.; McCrae, N. How to Perform a Systematic Literature Review; Springer International Publishing: Cham, Switzerland, 2020; ISBN 9783030496715. [Google Scholar]
- Pan, M.L. Preparing Literature Reviews: Qualitative and Quantitative Approaches; Taylor and Francis: Abingdon, UK, 2016; ISBN 9781315265872. [Google Scholar]
- Harris, D. Literature Review and Research Design; Taylor and Francis: Abingdon, UK, 2019; ISBN 9780367250362. [Google Scholar]
- Rafael Ball. An Introduction to Bibliometrics, 1st ed.; Chandos Publishing: Cambridge, UK; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1, ISBN 9780081021507. [Google Scholar]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Efron, S.E.; Ravid, R. Writing the Literature Review: A Practical Guide; Guilford Publications: New York, NY, USA, 2019; ISBN 978-1-4625-3689-4. [Google Scholar]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting Systematic Literature Reviews and Bibliometric Analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
- Elsevier Content-How Scopus Works-Scopus|Elsevier Solutions. Available online: https://www.elsevier.com/solutions/scopus/how-scopus-works/content (accessed on 26 September 2020).
- Liu, W. The Data Source of This Study Is Web of Science Core Collection? Not Enough. Scientometrics 2019, 121, 1815–1824. [Google Scholar] [CrossRef]
- Team, R.C. The R Project for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.r-project.org/ (accessed on 1 January 2025).
- R Core Team. A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- RStudio RStudio|Open Source & Professional Software for Data Science Teams-RStudio. Available online: https://rstudio.com/ (accessed on 26 September 2020).
- Wickham, H. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, R package version 3.6.1; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar] [CrossRef]
- McNutt, M.K.; Camilli, R.; Crone, T.J.; Guthrie, G.D.; Hsieh, P.A.; Ryerson, T.B.; Savas, O.; Shaffer, F. Review of Flow Rate Estimates of the Deepwater Horizon Oil Spill. Proc. Natl. Acad. Sci. USA 2012, 109, 20260–20267. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of Oil Spill Remote Sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [Google Scholar] [CrossRef]
- Silliman, B.R.; Van De Koppel, J.; McCoy, M.W.; Diller, J.; Kasozi, G.N.; Earl, K.; Adams, P.N.; Zimmerman, A.R. Degradation and Resilience in Louisiana Salt Marshes after the BP-Deepwater Horizon Oil Spill. Proc. Natl. Acad. Sci. USA 2012, 109, 11234–11239. [Google Scholar] [CrossRef] [PubMed]
- Poje, A.C.; Özgökmen, T.M.; Lipphardt, B.L.; Haus, B.K.; Ryan, E.H.; Haza, A.C.; Jacobs, G.A.; Reniers, A.J.H.M.; Olascoaga, M.J.; Novelli, G.; et al. Submesoscale Dispersion in the Vicinity of the Deepwater Horizon Spill. Proc. Natl. Acad. Sci. USA 2014, 111, 12693–12698. [Google Scholar] [CrossRef]
- Fingas, M.F.; Brown, C.E. Review of Oil Spill Remote Sensing. Spill Sci. Technol. Bull. 1997, 4, 199–208. [Google Scholar] [CrossRef]
- Spaulding, M.L. A State-of-the-Art Review of Oil Spill Trajectory and Fate Modeling. Oil Chem. Pollut. 1988, 4, 39–55. [Google Scholar] [CrossRef]
- Johansen, Ø. DeepBlow—A Lagrangian Plume Model for Deep Water Blowouts. Spill Sci. Technol. Bull. 2000, 6, 103–111. [Google Scholar] [CrossRef]
- Dagestad, K.-F.; Rohrs, J.; Breivik, O.; Adlandsvik, B. OpenDrift v1.0: A Generic Framework for Trajectory Modelling. Geosci. Model. Dev. 2018, 11, 1405–1420. [Google Scholar] [CrossRef]
- Lumpkin, R.; Özgökmen, T.; Centurioni, L. Advances in the Application of Surface Drifters. Ann. Rev. Mar. Sci. 2017, 9, 59–81. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H.; Hu, C.; Zheng, L. Tracking the Deepwater Horizon Oil Spill: A Modeling Perspective. Eos Trans. Am. Geophys. Union 2011, 92, 45–46. [Google Scholar] [CrossRef]
- Mariano, A.J.; Kourafalou, V.H.; Srinivasan, A.; Kang, H.; Halliwell, G.R.; Ryan, E.H.; Roffer, M. On the Modeling of the 2010 Gulf of Mexico Oil Spill. Dyn. Atmos. Ocean. 2011, 52, 322–340. [Google Scholar] [CrossRef]
- Johansen, Ø.; Rye, H.; Cooper, C. DeepSpill––Field Study of a Simulated Oil and Gas Blowout in Deep Water. Spill Sci. Technol. Bull. 2003, 8, 433–443. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H. Evaluation of Trajectory Modeling in Different Dynamic Regions Using Normalized Cumulative Lagrangian Separation. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, L.; Shiller, A.M.; Lohrenz, S.E.; Asper, V.L.; Osburn, C.L. Characterization of Oil Components from the Deepwater Horizon Oil Spill in the Gulf of Mexico Using Fluorescence EEM and PARAFAC Techniques. Mar. Chem. 2013, 148, 10–21. [Google Scholar] [CrossRef]
- Röhrs, J.; Christensen, K.H.; Hole, L.R.; Broström, G.; Drivdal, M.; Sundby, S. Observation-Based Evaluation of Surface Wave Effects on Currents and Trajectory Forecasts. Ocean. Dyn. 2012, 62, 1519–1533. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, X.; Xu, Q.; Garcia-Pineda, O.; Andersen, O.B.; Pichel, W.G. SAR Observation and Model Tracking of an Oil Spill Event in Coastal Waters. Mar. Pollut. Bull. 2011, 62, 350–363. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, Features, and Machine Learning for Oil Spill Detection and Monitoring: A Review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- Wang, S.D.; Shen, Y.M.; Zheng, Y.H. Two-Dimensional Numerical Simulation for Transport and Fate of Oil Spills in Seas. Ocean Eng. 2005, 32, 1556–1571. [Google Scholar] [CrossRef]
- Le Hénaff, M.; Kourafalou, V.H.; Paris, C.B.; Helgers, J.; Aman, Z.M.; Hogan, P.J.; Srinivasan, A. Surface Evolution of the Deepwater Horizon Oil Spill Patch: Combined Effects of Circulation and Wind-Induced Drift. Environ. Sci. Technol. 2012, 46, 7267–7273. [Google Scholar] [CrossRef]
- Spaulding, M.L.; Jayko, K.B.; Anderson, E.L. Hindcast of the Argo Merchant Spill Using the Uri Oil Spill Fates Model. Ocean. Eng. 1982, 9, 455–482. [Google Scholar] [CrossRef]
- Samuels, W.B.; LaBelle, R.P.; Amstutz, D.E. Applications of Oilspill Trajectory Models to the Alaskan Outer Continental Shelf. Ocean Manag. 1983, 8, 233–250. [Google Scholar] [CrossRef]
- Beer, T.; Humphries, R.B.; Bouwhuis, R. Modelling Nearshore Oil Slick Trajectories. Mar. Pollut. Bull. 1983, 14, 141–144. [Google Scholar] [CrossRef]
- Klemas, V. Remote Sensing of Coastal Fronts and Their Effects on Oil Dispersion. Int. J. Remote Sens. 1980, 1, 11–28. [Google Scholar] [CrossRef]
- Munday, J.C.; Harrison, W.; Maalntyre, W.G. OIL SLICK MOTION NEAR CHESAPEAKE BAY ENTRANCE. J. Am. Water Resour. Assoc. 1970, 6, 879–884. [Google Scholar] [CrossRef]
- Sbragio, R.; Martins, M.R. Modelling and CFD simulation of the trajectory of an oil spill in a large domain: Analysis of the 2003 Foss Barge—Point Wells event. Ocean Eng. 2022, 262, 112315. [Google Scholar] [CrossRef]
- Tessarolo, L.F.; Barreto, F.T.C.; Innocentini, V.; Silva, L.H.M.M.; Chacaltana, J.T.A.; Gonçalves, I.A. Oil Trajectories from Hypothetical Leaks near the Fernando de Noronha Chain (Brazil). In Proceedings of the 44th AMOP Technical Seminar on Environmental Contamination and Response, Virtual, 7–9 June 2022; pp. 481–498. [Google Scholar]
- Guo, W.; Jiang, M.; Li, X.; Ren, B. Using a Genetic Algorithm to Improve Oil Spill Prediction. Mar. Pollut. Bull. 2018, 135, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Marghany, M. Utilization of a Genetic Algorithm for the Automatic Detection of Oil Spill from RADARSAT-2 SAR Satellite Data. Mar. Pollut. Bull. 2014, 89, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Marghany, M. Multi-Objective Evolutionary Algorithm for Oil Spill Detection from COSMO-SkeyMed Satellite. In Computational Science and Its Applications–ICCSA 2014; Springer: Cham, Switzerland, 2014; pp. 355–371. [Google Scholar]
- Marghany, M. Multi-Objective Entropy Evolutionary Algorithm for Marine Oil Spill Detection Using Cosmo-Skymed Satellite Data. Ocean Sci. Discuss. 2015, 12, 1263–1289. [Google Scholar]
- Marghany, M. Quantum of Oil Spill. In Synthetic Aperture Radar Imaging Mechanism for Oil Spills; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–17. [Google Scholar]
- De Dominicis, M.; Pinardi, N.; Zodiatis, G.; Archetti, R. MEDSLIK-II, a Lagrangian Marine Surface Oil Spill Model for Short-Term Forecasting-Part 2: Numerical Simulations and Validations. Geosci. Model. Dev. 2013, 6, 1871–1888. [Google Scholar] [CrossRef]
- Fingas, M.; Fieldhouse, B. Studies of the Formation Process of Water-in-Oil Emulsions. Mar. Pollut. Bull. 2003, 47, 369–396. [Google Scholar] [CrossRef]
- North, E.W.; Adams, E.E.; Schlag, Z.; Sherwood, C.R.; He, R.; Hyun, K.H.; Socolofsky, S.A. Simulating Oil Droplet Dispersal from the Deepwater Horizon Spill With a Lagrangian Approach; Wiley: Oxford, UK, 2013; ISBN 9781118666753; 9780875904856. [Google Scholar]
- Lubchenco, J.; McNutt, M.K.; Dreyfus, G.; Murawski, S.A.; Kennedy, D.M.; Anastas, P.T.; Chu, S.; Hunter, T. Science in Support of the Deepwater Horizon Response. Proc. Natl. Acad. Sci. USA 2012, 109, 20212–20221. [Google Scholar] [CrossRef]
- Guo, W.J.; Wang, Y.X. A Numerical Oil Spill Model Based on a Hybrid Method. Mar. Pollut. Bull. 2009, 58, 726–734. [Google Scholar] [CrossRef]
- Sebastião, P.; Guedes Soares, C. Modeling the Fate of Oil Spills at Sea. Spill Sci. Technol. Bull. 1995, 2, 121–131. [Google Scholar] [CrossRef]
- Fingas, M.; Fieldhouse, B. Formation of Water-in-Oil Emulsions and Application to Oil Spill. J. Hazard. Mater. 2004, 107, 37–50. [Google Scholar] [CrossRef]
- Proctor, R.; Flather, R.A.; Elliott, A.J. Modelling Tides and Surface Drift in the Arabian Gulf-Application to the Gulf Oil Spill. Cont. Shelf Res. 1994, 14, 531–545. [Google Scholar] [CrossRef]
- Wang, S.D.; Shen, Y.M.; Guo, Y.K.; Tang, J. Three-Dimensional Numerical Simulation for Transport of Oil Spills in Seas. Ocean Eng. 2008, 35, 503–510. [Google Scholar] [CrossRef]
- Abascal, A.J.; Castanedo, S.; Medina, R.; Losada, I.J.; Alvarez-Fanjul, E. Application of HF Radar Currents to Oil Spill Modelling. Mar. Pollut. Bull. 2009, 58, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Fingas, M.F. A literature-review of the physics and predictive modeling of oil-spill. J. Hazard. Mater. 1995, 42, 157–175. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Ghedira, H.; Hu, C. Exploring the Potential of Optical Remote Sensing for Oil Spill Detection in Shallow Coastal Waters-a Case Study in the Arabian Gulf. Opt. Express 2014, 22, 13755–13772. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; You, F. Oil Spill Response Planning with Consideration of Physicochemical Evolution of the Oil Slick: A Multiobjective Optimization Approach. Comput. Chem. Eng. 2011, 35, 1614–1630. [Google Scholar] [CrossRef]
- Alves, T.M.; Kokinou, E.; Zodiatis, G.; Lardner, R.; Panagiotakis, C.; Radhakrishnan, H. Modelling of Oil Spills in Confined Maritime Basins: The Case for Early Response in the Eastern Mediterranean Sea. Environ. Pollut. 2015, 206, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Chao, X.; Shankar, N.J.; Cheong, H.F. Two- And Three-Dimensional Oil Spill Model for Coastal Waters. Ocean Eng. 2001, 28, 1557–1573. [Google Scholar] [CrossRef]
- Wang, Z.D.; Yang, C.; Fingas, M.; Hollebone, B.; Peng, X.Z.; Hansen, A.B.; Christensen, J.H. Characterization, Weathering, and Application of Sesquiterpanes to source Identification of Spilled Lighter Petroleum Products. Environ. Sci. Technol. 2005, 39, 8700–8707. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H.; Hu, C.; Zheng, L. Trajectory Forecast as a Rapid Response to the Deepwater Horizon Oil Spill; Wiley: Oxford, UK, 2013; ISBN 9781118666753; 9780875904856. [Google Scholar]
- Fingas, M. The Challenges of Remotely Measuring Oil Slick Thickness. Remote Sens. 2018, 10, 319. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H.; Vignudelli, S.; Mitchum, G.T. Evaluation of Altimetry-Derived Surface Current Products Using Lagrangian Drifter Trajectories in the Eastern Gulf of Mexico. J. Geophys. Res. Oceans 2014, 119, 2827–2842. [Google Scholar] [CrossRef]
- Socolofsky, S.A.; Adams, E.E.; Boufadel, M.C.; Aman, Z.M.; Johansen, Ø.; Konkel, W.J.; Lindo, D.; Madsen, M.N.; North, E.W.; Paris, C.B.; et al. Intercomparison of Oil Spill Prediction Models for Accidental Blowout Scenarios with and without Subsea Chemical Dispersant Injection. Mar. Pollut. Bull. 2015, 96, 110–126. [Google Scholar] [CrossRef]
- Fingas, M.F.; Hollebone, B.P. Review of Behaviour of Oil in Freezing Environments. Mar. Pollut. Bull. 2003, 47, 333–340. [Google Scholar] [CrossRef]
- Al-Rabeh, A.H.; Cekirge, H.M.; Gunay, N. A Stochastic Simulation Model of Oil Spill Fate and Transport. Appl. Math. Model. 1989, 13, 322–329. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Wei, Y.; Tang, Z.; Cheng, Y.; Pichel, W.G. Satellite Observations and Modeling of Oil Spill Trajectories in the Bohai Sea. Mar. Pollut. Bull. 2013, 71, 107–116. [Google Scholar] [CrossRef]
- Reed, M.; Turner, C.; Odulot, A. The Role of Wind and Emulsification in Modelling Oil Spill and Surface Drifter Trajectories. Spill Sci. Technol. Bull. 1994, 1, 143–157. [Google Scholar] [CrossRef]
- Jones, C.E.; Dagestad, K.F.; Breivik, Ø.; Holt, B.; Röhrs, J.; Christensen, K.H.; Espeseth, M.; Brekke, C.; Skrunes, S. Measurement and Modeling of Oil Slick Transport. J. Geophys. Res. Oceans 2016, 121, 7759–7775. [Google Scholar] [CrossRef]
- Abascal, A.J.; Castanedo, S.; Mendez, F.J.; Medina, R.; Losada, I.J. Calibration of a Lagrangian Transport Model Using Drifting Buoys Deployed during the Prestige Oil Spill. J. Coast. Res. 2009, 25, 80–90. [Google Scholar] [CrossRef]
- Reed, M.; Gundlach, E.; Kana, T. A Coastal Zone Oil Spill Model: Development and Sensitivity Studies. Oil Chem. Pollut. 1989, 5, 411–449. [Google Scholar] [CrossRef]
- Castanedo, S.; Medina, R.; Losada, I.J.; Vidal, C.; Méndez, F.J.; Osorio, A.; Juanes, J.A.; Puente, A. The Prestige Oil Spill in Cantabria (Bay of Biscay). Part I: Operational Forecasting System for Quick Response, Risk Assessment, and Protection of Natural Resources. J. Coast. Res. 2006, 22, 1474–1489. [Google Scholar] [CrossRef]
- Allshouse, M.R.; Thiffeault, J.-L. Detecting Coherent Structures Using Braids. Phys. D 2012, 241, 95–105. [Google Scholar] [CrossRef]
- Reed, M.; Daling, P.S.; Brakstad, O.G.; Singsaas, I.; Faksness, L.-G.; Hetland, B.; Ekrol, N. OSCAR2000: A Multi-Component 3-Dimensional Oil Spill Contingency and Response Model; Environment Canada Arctic and Marine Oil Spill Program Technical Seminar (AMOP) Proceedings; Environment Canada: Vancouver, BC, Canada, 2000; Volume 23, pp. 663–680.
- Klemas, V. Tracking Oil Slicks and Predicting Their Trajectories Using Remote and Models: Case Studies of the Sea Princess and Deepwater Oil Spills. J. Coast. Res. 2010, 26, 789–797. [Google Scholar] [CrossRef]
- Payne, J.R.; Clayton, J.R.; Kirstein, B.E. Oil/Suspended Particulate Material Interactions and Sedimentation. Spill Sci. Technol. Bull. 2003, 8, 201–221. [Google Scholar] [CrossRef]
- McCay, D.F.; Rowe, J.J.; Whittier, N.; Sankaranarayanan, S.; Etkin, D.S. Estimation of Potential Impacts and Natural Resource Damages of Oil. J. Hazard. Mater. 2004, 107, 11–25. [Google Scholar] [CrossRef]
- Fingas, M.F. Studies on the Evaporation of Crude Oil and Petroleum Products: I. the relationship between Evaporation Rate and Time. J. Hazard. Mater. 1997, 56, 227–236. [Google Scholar] [CrossRef]
- Walker, N.D.; Pilley, C.T.; Raghunathan, V.V.; D’Sa, E.J.; Leben, R.; Hoffmann, N.G.; Brickley, P.J.; Coholan, P.D.; Sharma, N.; Graber, H.C.; et al. Impacts of Loop Current Frontal Cyclonic Eddies and Wind Forcing on the 2010 Gulf of Mexico Oil Spill; Wiley: Oxford, UK, 2013; ISBN 9781118666753; 9780875904856. [Google Scholar]
- Cucco, A.; Sinerchia, M.; Ribotti, A.; Olita, A.; Fazioli, L.; Perilli, A.; Sorgente, B.; Borghini, M.; Schroeder, K.; Sorgente, R. A High-Resolution Real-Time Forecasting System for Predicting the Fate of Oil Spills in the Strait of Bonifacio (Western Mediterranean Sea). Mar. Pollut. Bull. 2012, 64, 1186–1200. [Google Scholar] [CrossRef]
- Klyatskin, V.I. Stochastic Equations Through the Eye of the Physicist: Basic Concepts, Exact Results and Asymptotic Approximations; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 9780444517975. [Google Scholar]
- Abascal, A.J.; Castanedo, S.; Medina, R.; Liste, M. Analysis of the Reliability of a Statistical Oil Spill Response Model. Mar. Pollut. Bull. 2010, 60, 2099–2110. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Weisberg, R.H.; Niiler, P.P.; Sturges, W.; Johnson, W. Lagrangian Circulation and Forbidden Zone on the West Florida Shelf. Cont. Shelf Res. 1999, 19, 1221–1245. [Google Scholar] [CrossRef]
- Periáñez, R.; Elliott, A.J. A Particle-Tracking Method for Simulating the Dispersion of non-Conservative Radionuclides in Coastal Waters. J. Environ. Radioact. 2002, 58, 13–33. [Google Scholar] [CrossRef]
- Dissanayake, A.L.; Gros, J.; Socolofsky, S.A. Integral Models for Bubble, Droplet, and Multiphase Plume Dynamics in Stratification and Crossflow. Environ. Fluid Mech. 2018, 18, 1167–1202. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Trahan, C.J.; Howard, M.T.; Fleming, J.G.; Weaver, R.J.; Tanaka, S.; Yu, L.; Luettich, R.A.; Dawson, C.N.; Westerink, J.J.; et al. Surface Trajectories of Oil Transport along the Northern Coastline of the Gulf of Mexico. Cont. Shelf Res. 2012, 41, 17–47. [Google Scholar] [CrossRef]
- Fingas, M.F. Modeling Evaporation Using Models That Are Not Boundary-Layer Regulated. J. Hazard. Mater. 2004, 107, 27–36. [Google Scholar] [CrossRef]
- Fingas, M. Water-in-Oil emulsion formation—A review of physics and mathematical-modeling. Spill Sci. Technol. Bull. 1995, 2, 55–59. [Google Scholar] [CrossRef]
- Price, J.M.; Reed, M.; Howard, M.K.; Johnson, W.R.; Ji, Z.-G.; Marshall, C.F.; Guinasso, N.L., Jr.; Rainey, G.B. Preliminary Assessment of an Oil-Spill Trajectory Model Using Satellite-Tracked, Oil-Spill-Simulating Drifters. Environ. Model. Softw. 2006, 21, 258–270. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Fingas, M.; Fieldhouse, B. An Adaptive Neuro-Fuzzy Approach for Modeling of Water-in-Oil Emulsion. Colloids Surf. A-Physicochem. Eng. Asp. 2011, 389, 50–62. [Google Scholar] [CrossRef]
- Marta-Almeida, M.; Ruiz-Villarreal, M.; Pereira, J.; Otero, P.; Cirano, M.; Zhang, X.; Hetland, R.D. Efficient Tools for Marine Operational Forecast and Oil Spill Tracking. Mar. Pollut. Bull. 2013, 71, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Moon, W.M.; Kim, Y.-S. Application of TerraSAR-X Data for Emergent Oil-Spill Monitoring. IEEE Trans. Geosci. Remote Sens. 2010, 48, 852–863. [Google Scholar] [CrossRef]
- Röhrs, J.; Dagestad, K.-F.; Asbjørnsen, H.; Nordam, T.; Skancke, J.; Jones, C.E.; Brekke, C. The Effect of Vertical Mixing on the Horizontal Drift of Oil Spills. Ocean Sci. 2018, 14, 1581–1601. [Google Scholar] [CrossRef]
- Spaulding, M.L.; Howlett, E.; Anderson, E.; Jayko, K. Oilmap: A Global Approach to Spill Modeling. In Proceedings of the Proceedings—15th Arctic and Marine Oil Spill Program Technical Seminar, Edmonton, AB, Canada, 10–12 June 1992; Environment Canada: Vancouver, BC, Canada, 1992; pp. 15–21. [Google Scholar]
- Korotenko, K.A.; Mamedov, R.M.; Kontar, A.E.; Korotenko, L.A. Particle Tracking Method in the Approach for Prediction of Oil Slick Transport in the Sea: Modelling Oil Pollution Resulting from River Input. J. Mar. Syst. 2004, 48, 159–170. [Google Scholar] [CrossRef]
- Al-Rabeh, A.H.; Lardner, R.W.; Gunay, N. Gulfspill, version 2.0; A Software Package for Oil Spills in the Arabian Gulf. Environ. Model. Softw. 2000, 15, 425–442. [Google Scholar] [CrossRef]
- Naz, S.; Iqbal, M.F.; Mahmood, I.; Allam, M. Marine Oil Spill Detection Using Synthetic Aperture Radar over Indian. Mar. Pollut. Bull. 2021, 162, 111921. [Google Scholar] [CrossRef]
- Yekeen, S.T.; Balogun, A.-L. Advances in Remote Sensing Technology, Machine Learning and Deep Learning for Marine Oil Spill Detection, Prediction and Vulnerability Assessment. Remote Sens. 2020, 12, 3416. [Google Scholar] [CrossRef]
- Evans, D.D.; Mulholland, G.W.; Baum, H.R.; Walton, W.D.; McGrattan, K.B. In Situ Burning of Oil Spills. J. Res. Natl. Inst. Stand. Technol. 2001, 106, 231–278. [Google Scholar] [CrossRef] [PubMed]
- Fingas, M.; Fieldhouse, B. Studies on Water-in-Oil Products from Crude Oils and Petroleum Products. Mar. Pollut. Bull. 2012, 64, 272–283. [Google Scholar] [CrossRef]
- Sun, S.; Lu, Y.; Liu, Y.; Wang, M.; Hu, C. Tracking an Oil Tanker Collision and Spilled Oils in the East China Sea Using Multisensor Day and Night Satellite Imagery. Geophys. Res. Lett. 2018, 45, 3212–3220. [Google Scholar] [CrossRef]
- Carracedo, P.; Torres-López, S.; Barreiro, M.; Montero, P.; Balseiro, C.F.; Penabad, E.; Leitao, P.C.; Pérez-Muñuzuri, V. Improvement of Pollutant Drift Forecast System Applied to the Prestige Oil Spills in Galicia Coast (NW of Spain): Development of an Operational System. Mar. Pollut. Bull. 2006, 53, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, L.; Griffa, A.; Cosoli, S.; Falcof, P.; Gerin, R.; Iermanof, I.; Kalampokis, A.; Kokkini, Z.; Lana, A.; Magaldi, M.G.; et al. Toward an Integrated HF Radar Network in the Mediterranean Sea to improve Search and Rescue and Oil Spill Response: The TOSCA Project. J. Oper. Oceanogr. 2015, 8, 95–107. [Google Scholar] [CrossRef]
- Vethamony, P.; Sudheesh, K.; Babu, M.T.; Jayakumar, S.; Manimurali, R.; Saran, A.K.; Sharma, L.H.; Rajan, B.; Srivastava, M. Trajectory of an Oil Spill off Goa, Eastern Arabian Sea: Field Observations and Simulations. Environ. Pollut. 2007, 148, 438–444. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C.E. Oil Spill Remote Sensing: A Review. In Oil Spill Science and Technology: Prevention, Response, and Cleanup; Fingas, M., Ed.; Gulf Professional Publishing: Cambridge, MA, USA, 2011; ISBN 978-1-85617-944-7; 978-1-85617-943-0. [Google Scholar]
- Qiao, F.; Wang, G.; Yin, L.; Zeng, K.; Zhang, Y.; Zhang, M.; Xiao, B.; Jiang, S.; Chen, H.; Chen, G. Modelling Oil Trajectories and Potentially Contaminated Areas from the Sanchi Oil Spill. Sci. Total Environ. 2019, 685, 856–866. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-C.; Chen, W.-B.; Hsu, M.-H. Using a Three-Dimensional Particle-Tracking Model to Estimate the residence Time and Age of Water in a Tidal Estuary. Comput. Geosci. 2011, 37, 1148–1161. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, B.; Perrie, W.; Lu, Y.; Wang, C. A Novel Deep Learning Method for Marine Oil Spill Detection from Satellite Synthetic Aperture Radar Imagery. Mar. Pollut. Bull. 2022, 179, 113666. [Google Scholar] [CrossRef]
- Liubartseva, S.; De Dominicis, M.; Oddo, P.; Coppini, G.; Pinardi, N.; Greggio, N. Oil Spill Hazard from Dispersal of Oil along Shipping Lanes in the Southern Adriatic and Northern Ionian Seas. Mar. Pollut. Bull. 2015, 90, 259–272. [Google Scholar] [CrossRef]
- Adamo, M.; de Carolis, G.; de Pasquale, V.; Pasquariello, G. Detection and Tracking of Oil Slicks on Sun-Glittered Visible and near Infrared Satellite Imagery. Int. J. Remote Sens. 2009, 30, 6403–6427. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, B.; Li, X.; Nunziata, F.; Xu, Q.; Ding, X.; Migliaccio, M.; Pichel, W.G. Monitoring of Oil Spill Trajectories with COSMO-Skymed X-Band SAR Images and Model Simulation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2895–2901. [Google Scholar] [CrossRef]
- Elhakeem, A.A.; Elshorbagy, W.; Chebbi, R. Oil Spill Simulation and Validation in the Arabian (Persian) Gulf with Special Reference to the UAE Coast. Water Air Soil Pollut. 2007, 184, 243–254. [Google Scholar] [CrossRef]
- Zheng, L.; Yapa, P.D. Simulation of Oil Spills from Underwater Accidents II: Model Verification. J. Hydraul. Res. 1998, 36, 117–134. [Google Scholar] [CrossRef]
- Zhang, J.; Teixeira, A.P.; Soares, C.G.; Yan, X. Probabilistic Modelling of the Drifting Trajectory of an Object under the Effect of Wind and Current for Maritime Search and Rescue. Ocean Eng. 2017, 129, 253–264. [Google Scholar] [CrossRef]
- Canu, D.M.; Solidoro, C.; Bandelj, V.; Quattrocchi, G.; Sorgente, R.; Olita, A.; Fazioli, L.; Cucco, A. Assessment of Oil Slick Hazard and Risk at Vulnerable Coastal Sites. Mar. Pollut. Bull. 2015, 94, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Price, J.M.; Johnson, W.R.; Marshall, C.F.; Ji, Z.-G.; Rainey, G.B. Overview of the Oil Spill Risk Analysis (OSRA) Model for Environmental Impact Assessment. Spill Sci. Technol. Bull. 2003, 8, 529–533. [Google Scholar] [CrossRef]
- Korotenko, K.A.; Mamedov, R.M.; Mooers, C.N.K. Prediction of the Dispersal of Oil Transport in the Caspian Sea Resulting from a Continuous Release. Spill Sci. Technol. Bull. 2000, 6, 323–339. [Google Scholar] [CrossRef]
- Fingas, M.F. Studies on the Evaporation of Crude Oil and Petroleum Products—II. Boundary Layer Regulation. J. Hazard. Mater. 1998, 57, 41–58. [Google Scholar] [CrossRef]
- Michel, J.; Hayes, M.O.; Brown, P.J. Application of an Oil Spill Vulnerability Index to the Shoreline of Lower Cook Inlet, Alaska. Environ. Geol. 1978, 2, 107–117. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y. Modeling Oil Spills Transportation in Seas Based on Unstructured Grid, Finite-Volume, Wave-Ocean Model. Ocean Model. 2010, 35, 332–344. [Google Scholar] [CrossRef]
- Nordam, T.; Beegle-Krause, C.J.; Skancke, J.; Nepstad, R.; Reed, M. Improving Oil Spill Trajectory Modelling in the Arctic. Mar. Pollut. Bull. 2019, 140, 65–74. [Google Scholar] [CrossRef]
- De Dominicis, M.; Bruciaferri, D.; Gerin, R.; Pinardi, N.; Poulain, P.M.; Garreau, P.; Zodiatis, G.; Perivoliotis, L.; Fazioli, L.; Sorgente, R.; et al. A Multi-Model Assessment of the Impact of Currents, Waves and Wind in Modelling Surface Drifters and Oil Spill. Deep. Sea Res. Part. II Top. Stud. Oceanogr. 2016, 133, 21–38. [Google Scholar] [CrossRef]
- Zhao, L.; Shaffer, F.; Robinson, B.; King, T.; D’Ambrose, C.; Pan, Z.; Gao, F.; Miller, R.S.; Conmy, R.N.; Boufadel, M.C. Underwater Oil Jet: Hydrodynamics and Droplet Size Distribution. Chem. Eng. J. 2016, 299, 292–303. [Google Scholar] [CrossRef]
- Spaulding, M.L.; Kolluru, V.S.; Anderson, E.; Howlett, E. Application of Three-Dimensional Oil Spill Model (WOSM/OILMAP) to Hindcast the Braer Spill. Spill Sci. Technol. Bull. 1994, 1, 23–35. [Google Scholar] [CrossRef]
- Ghommam, J.; Saad, M.; Mnif, F.; Zhu, Q.M. Guaranteed Performance Design for Formation Tracking and Collision of Multiple USVs With Disturbances and Unmodeled Dynamics. IEEE Syst. J. 2021, 15, 4346–4357. [Google Scholar] [CrossRef]
- Zodiatis, G.; De Dominicis, M.; Perivoliotis, L.; Radhakrishnan, H.; Georgoudis, E.; Sotillo, M.; Lardner, R.W.; Krokos, G.; Bruciaferri, D.; Clementi, E.; et al. The Mediterranean Decision Support System for Marine Safety Dedicated to oil Slicks Predictions. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2016, 133, 4–20. [Google Scholar] [CrossRef]
- Zodiatis, G.; Lardner, R.; Solovyov, D.; Panayidou, X.; De Dominicis, M. Predictions for Oil Slicks Detected from Satellite Images Using MyOcean Forecasting Data. Ocean Sci. 2012, 8, 1105–1115. [Google Scholar] [CrossRef]
- Varlamov, S.M.; Kazuko, A.B. Oil Spill Initial Stage Spreading and Physical Properties Model. Rep. Res. Inst. Appl. Mech. 2000, 119, 89–101. [Google Scholar]
- Zhou, L.; Zheng, G.; Li, X.; Yang, J.; Ren, L.; Chen, P.; Zhang, H.; Lou, X. An Improved Local Gradient Method for Sea Surface Wind Direction from SAR Imagery. Remote Sens. 2017, 9, 671. [Google Scholar] [CrossRef]
- Chen, H.; An, W.; You, Y.; Lei, F.; Zhao, Y.; Li, J. Numerical Study of Underwater Fate of Oil Spilled from Deepwater Blowout. Ocean Eng. 2015, 110, 227–243. [Google Scholar] [CrossRef]
- French-Mccay, D. State-of-the-Art and Research Needs for Oil Spill Impact Assessment Modeling; IAEA: Vienna, Austria, 2009. [Google Scholar]
- Sun, S.; Hu, C.; Tunnel, J.W., Jr. Surface Oil Footprint and Trajectory of the Ixtoc-I Oil Spill determined from Landsat/MSS and CZCS Observations. Mar. Pollut. Bull. 2015, 101, 632–641. [Google Scholar] [CrossRef]
- Sayol, J.M.; Orfila, A.; Simarro, G.; Conti, D.; Renault, L.; Molcard, A. A Lagrangian Model for Tracking Surface Spills and SaR Operations in the Ocean. Environ. Model. Softw. 2014, 52, 74–82. [Google Scholar] [CrossRef]
- Kankara, R.S.; Arockiaraj, S.; Prabhu, K. Environmental Sensitivity Mapping and Risk Assessment for Oil Spill along the Chennai Coast in India. Mar. Pollut. Bull. 2016, 106, 95–103. [Google Scholar] [CrossRef]
- Gopalakrishnan, G.; Cornuelle, B.D.; Hoteit, I.; Rudnick, D.L.; Owens, W.B. State Estimates and Forecasts of the Loop Current in the Gulf of Mexico Using the MITgcm and Its Adjoint. J. Geophys. Res. Oceans 2013, 118, 3292–3314. [Google Scholar] [CrossRef]
- Chen, B.; Ye, X.; Zhang, B.; Jing, L.; Lee, K. Marine Oil Spills-Preparedness and Countermeasures; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128050521; 9780128052044. [Google Scholar]
- Yin, L.; Zhang, M.; Zhang, Y.; Qiao, F. The Long-Term Prediction of the Oil-Contaminated Water from the Sanchi Collision in the East China Sea. Acta Oceanol. Sin. 2018, 37, 69–72. [Google Scholar] [CrossRef]
- Esler, D.; Ballachey, B.E.; Matkin, C.; Cushing, D.; Kaler, R.; Bodkin, J.; Monson, D.; Esslinger, G.; Kloecker, K. Timelines and Mechanisms of Wildlife Population Recovery Following the Exxon Valdez Oil Spill. Deep. Sea Res. II Top. Stud. Oceanogr. 2018, 147, 36–42. [Google Scholar] [CrossRef]
- Guo, W. Development of a Statistical Oil Spill Model for Risk Assessment. Environ. Pollut. 2017, 230, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Annika, P.; George, T.; George, P.; Konstantinos, N.; Costas, D.; Koutitas, C. The Poseidon Operational Tool for the Prediction of Floating Pollutant Transport. Mar. Pollut. Bull. 2001, 43, 270–278. [Google Scholar] [CrossRef]
- Ma, X.; Xu, J.; Pan, J.; Yang, J.; Wu, P.; Meng, X. Detection of Marine Oil Spills from Radar Satellite Images for the Coastal Ecological Risk Assessment. J. Environ. Manag. 2023, 325, 116637. [Google Scholar] [CrossRef] [PubMed]
- Periáñez, R. A Particle-Tracking Model for Simulating Pollutant Dispersion in the Strait of Gibraltar. Mar. Pollut. Bull. 2004, 49, 613–623. [Google Scholar] [CrossRef]
- Al-Rabeh, A.H.; Cekirge, H.M.; Gunay, N. Modeling the Fate and Transport of Al-Ahmadi Oil Spill. Water Air Soil Pollut. 1992, 65, 257–279. [Google Scholar] [CrossRef]
- Youssef, M.; Spaulding, M. Drift Current under the Action of Wind and Waves. In Proceedings of the 16th AMOP Technical Seminar, Calgary, AB, Canada, 7–9 June 1993; Environment Canada: Vancouver, BC, Canada, 1993; pp. 587–615. [Google Scholar]
- Dagestad, K.F.; Röhrs, J. Prediction of Ocean Surface Trajectories Using Satellite Derived vs. Modeled Ocean Currents. Remote Sens. Environ. 2019, 223, 130–142. [Google Scholar] [CrossRef]
- Barrick, D.; Fernandez, V.; Ferrer, M.I.; Whelan, C.; Breivik, Ø. A Short-Term Predictive System for Surface Currents from a Rapidly Deployed Coastal HF Radar Network. Ocean Dyn. 2012, 62, 725–740. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, L. Evolution of the Optical Properties of Seawater Influenced by the Deepwater Horizon Oil Spill in the Gulf of Mexico. Environ. Res. Lett. 2012, 7. [Google Scholar] [CrossRef]
- MacFadyen, A.; Watabayashi, G.Y.; Barker, C.H.; Beegle-Krause, C.J. Tactical Modeling of Surface Oil Transport During the Deepwater Horizon Spill Response; Wiley: Oxford, UK, 2013; ISBN 9781118666753; 9780875904856. [Google Scholar]
- Franceschetti, G.; Riccio, D. Scattering, Natural Surfaces, and Fractals; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 9780122656552. [Google Scholar]
- Balseiro, C.F.; Carracedo, P.; Gómez, B.; Leitão, P.C.; Montero, P.; Naranjo, L.; Penabad, E.; Pérez-Muñuzuri, V. Tracking the Prestige Oil Spill: An Operational Experience in Simulation at MeteoGalicia. Weather 2003, 58, 452–458. [Google Scholar] [CrossRef]
- Balogun, A.L.; Yekeen, S.T.; Pradhan, B.; Wan Yusof, K.B. Oil Spill Trajectory Modelling and Environmental Vulnerability Mapping Using GNOME Model and GIS. Environ. Pollut. 2021, 268, 115812. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhang, J.; Yip, T.L.; Soares, C.G. A Quantitative Decision-Making Model for Emergency Response to Oil spill from Ships. Marit. Policy Manag. 2021, 48, 299–315. [Google Scholar] [CrossRef]
- Liu, X.; Guo, J.; Guo, M.; Hu, X.; Tang, C.; Wang, C.; Xing, Q. Modelling of Oil Spill Trajectory for 2011 Penglai 19-3 Coastal Drilling Field, China. Appl. Math. Model. 2015, 39, 5331–5340. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Al Azhar, M.; Ghedira, H. Satellite-Based Tracking of Oil Pollution in the Arabian Gulf and the Sea of Oman. Can. J. Remote Sens. 2015, 41, 113–125. [Google Scholar] [CrossRef]
- Rusu, L. Application of Numerical Models to Evaluate Oil Spills Propagation in the Coastal Environment of the Black Sea. J. Environ. Eng. Landsc. Manag. 2010, 18, 288–295. [Google Scholar] [CrossRef]
- Fingas, M.; Fieldhouse, B. Water-in-Oil Emulsions: Formation and Prediction. In Handbook of Oil Spill Science and Technology; Fingas, M., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015; pp. 225–270. ISBN 978-1-118-98998-2; 978-0-470-45551-7. [Google Scholar]
- Callies, U.; Groll, N.; Horstmann, J.; Kapitza, H.; Klein, H.; Massmann, S.; Schwichtenberg, F. Surface Drifters in the German Bight: Model Validation Considering and Stokes Drift. Ocean Sci. 2017, 13, 799–827. [Google Scholar] [CrossRef]
- Lindo-Atichati, D.; Paris, C.B.; Le Henaff, M.; Schedler, M.; Juarez, A.G.V.; Mueller, R. Simulating the Effects of Droplet Size, High-Pressure Biodegradation, and Variable Flow Rate on the Subsea Evolution of Deep Plumes from the Macondo Blowout. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 2016, 129, 301–310. [Google Scholar] [CrossRef]
- Guo, W.; Wu, G.; Liang, B.; Xu, T.; Chen, X.; Yang, Z.; Xie, M.; Jiang, M. The Influence of Surface Wave on Water Exchange in the Bohai Sea. Cont. Shelf Res. 2016, 118, 128–142. [Google Scholar] [CrossRef]
- De Dominicis, M.; Falchetti, S.; Trotta, F.; Pinardi, N.; Giacomelli, L.; Napolitano, E.; Fazioli, L.; Sorgente, R.; Haley, P.J.; Lermusiaux, P.F.J.; et al. A Relocatable Ocean Model in Support of Environmental Emergencies. Ocean Dyn. 2014, 64, 667–688. [Google Scholar] [CrossRef]
- Aulov, O.; Halem, M. Human Sensor Networks for Improved Modeling of Natural Disasters. Proc. IEEE 2012, 100, 2812–2823. [Google Scholar] [CrossRef]
- Reed, M.; Aamo, O.M. Real Time Oil Spill Forecasting during an Experimental Oil Spill in the Arctic Ice. Spill Sci. Technol. Bull. 1994, 1, 69–77. [Google Scholar] [CrossRef]
- Chrastansky, A.; Callies, U. Model-Based Long-Term Reconstruction of Weather-Driven Variations in Chronic Oil Pollution along the German North Sea Coast. Mar. Pollut. Bull. 2009, 58, 967–975. [Google Scholar] [CrossRef]
- García-Garrido, V.J.; Ramos, A.; Mancho, A.M.; Coca, J.; Wiggins, S. A Dynamical Systems Perspective for a Real-Time Response to a Marine Oil Spill. Mar. Pollut. Bull. 2016, 112, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.J.; Hao, Y.; Zhang, L.; Xu, T.; Ren, X.; Cao, F.; Wang, S. Development and Application of an Oil Spill Model with Wave-Current Interactions in Coastal Areas. Mar. Pollut. Bull. 2014, 84, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Delpeche-Ellmann, N.C.; Soomere, T. Investigating the Marine Protected Areas Most at Risk of Current-Driven in the Gulf of Finland, the Baltic Sea, Using a Lagrangian Model. Mar. Pollut. Bull. 2013, 67, 121–129. [Google Scholar] [CrossRef]
- Xu, H.L.; Chen, J.N.; Wang, S.D.; Liu, Y. Oil Spill Forecast Model Based on Uncertainty Analysis: A Case Study of Dalian Oil Spill. Ocean Eng. 2012, 54, 206–212. [Google Scholar] [CrossRef]
- Svejkovsky, J.; Lehr, W.; Muskat, J.; Graettinger, G.; Mullin, J. Operational Utilization of Aerial Multispectral Remote Sensing during Oil Spill Response: Lessons Learned during the Deepwater Horizon (MC-252) Spill. Photogramm. Eng. Remote Sens. 2012, 78, 1089–1102. [Google Scholar] [CrossRef]
- Zhang, X.; Marta-Almeida, M.; Hetland, R.D. A High-Resolution Pre-Operational Forecast Model of Circulation on the Texas-Louisiana Continental Shelf and Slope. J. Oper. Oceanogr. 2012, 5, 19–34. [Google Scholar] [CrossRef]
- Carmichael, C.A.; Arey, J.S.; Graham, W.M.; Linn, L.J.; Lemkau, K.L.; Nelson, R.K.; Reddy, C.M. Floating Oil-Covered Debris from Deepwater Horizon: Identification and Application. Environ. Res. Lett. 2012, 7, 015301. [Google Scholar] [CrossRef]
- Chang, Y.L.; Oey, L.; Xu, F.H.; Lu, H.F.; Fujisaki, A. 2010 Oil Spill: Trajectory Projections Based on Ensemble Drifter Analyses. Ocean. Dyn. 2011, 61, 829–839. [Google Scholar] [CrossRef]
- Guo, W.J.; Wang, Y.X.; Xie, M.X.; Cui, Y.J. Modeling Oil Spill Trajectory in Coastal Waters Based on Fractional Brownian Motion. Mar. Pollut. Bull. 2009, 58, 1339–1346. [Google Scholar] [CrossRef]
- Fingas, M.; Fieldhouse, B.; Mullin, J. Water-in-Oil Emulsions Results of Formation Studies and Applicability to oil Spill Modelling. Spill Sci. Technol. Bull. 1999, 5, 81–91. [Google Scholar] [CrossRef]
- Li, Y.; Yu, H.; Wang, Z.y.; Li, Y.; Pan, Q.q.; Meng, S.j.; Yang, Y.q.; Lu, W.; Guo, K.x. The Forecasting and Analysis of Oil Spill Drift Trajectory during the Sanchi Collision Accident, East China Sea. Ocean Eng. 2019, 187, 106231. [Google Scholar] [CrossRef]
- Yu, F.; Xue, S.; Zhao, Y.; Chen, G. Risk Assessment of Oil Spills in the Chinese Bohai Sea for Prevention and Readiness. Mar. Pollut. Bull. 2018, 135, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Abascal, A.J.; Sanchez, J.; Chiri, H.; Ferrer, M.I.; Cárdenas, M.; Gallego, A.; Castanedo, S.; Medina, R.; Alonso-Martirena, A.; Berx, B.; et al. Operational Oil Spill Trajectory Modelling Using HF Radar Currents: A Northwest European Continental Shelf Case Study. Mar. Pollut. Bull. 2017, 119, 336–350. [Google Scholar] [CrossRef]
- De Padova, D.; Mossa, M.; Adamo, M.; De Carolis, G.; Pasquariello, G. Synergistic Use of an Oil Drift Model and Remote Sensing Observations for Oil Spill Monitoring. Environ. Sci. Pollut. Res. 2017, 24, 5530–5543. [Google Scholar] [CrossRef]
- Korotenko, K.A.; Bowman, M.J.; Dietrich, D.E. High-Resolution Numerical Model for Predicting the Transport and Dispersal of Oil Spilled in the Black Sea. Terr. Atmos. Ocean Sci. 2010, 21, 123–136. [Google Scholar] [CrossRef]
- Sebastião, P.; Guedes Soares, C. Uncertainty in Predictions of Oil Spill Trajectories in Open Sea. Ocean Eng. 2007, 34, 576–584. [Google Scholar] [CrossRef]
- French-McCay, D.P.; Horn, M.; Li, Z.; Jayko, K.; Spaulding, M.L.; Crowley, D.; Mendelsohn, D. Modeling Distribution, Fate, and Concentrations of Deepwater Horizon Oil in Subsurface Waters of the Gulf of Mexico; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128044353; 9780128044346. [Google Scholar]
- Moiseev, A.; Johnsen, H.; Hansen, M.W.; Johannessen, J.A. Evaluation of Radial Ocean Surface Currents Derived From Sentinel-1 IW Shift Using Coastal Radar and Lagrangian Surface Drifter. J. Geophys. Res.-Ocean 2020, 125. [Google Scholar] [CrossRef]
- Geng, X.; Boufadel, M.C.; Ozgokmen, T.; King, T.; Lee, K.; Lu, Y.; Zhao, L. Oil Droplets Transport Due to Irregular Waves: Development of Large-Scale Spreading Coefficients. Mar. Pollut. Bull. 2016, 104, 279–289. [Google Scholar] [CrossRef]
- Mestres, M.; Sierra, J.P.; Mösso, C.; Sánchez-Arcilla, A. Sources of Contamination and Modelled Pollutant Trajectories in a Mediterranean Harbour (Tarragona, Spain). Mar. Pollut. Bull. 2010, 60, 898–907. [Google Scholar] [CrossRef]
- Persson, K.; Destouni, G. Propagation of Water Pollution Uncertainty and Risk from the Subsurface to the Surface Water System of a Catchment. J. Hydrol. 2009, 377, 434–444. [Google Scholar] [CrossRef]
- Suneel, V.; Rao, V.T.; Suresh, G.; Chaudhary, A.; Vethamony, P.; Ratheesh, R. Oil Pollution in the Eastern Arabian Sea from Invisible Sources: A Multi-Technique Approach. Mar. Pollut. Bull. 2019, 146, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Amir-Heidari, P.; Raie, M. Probabilistic Risk Assessment of Oil Spill from Offshore Oil Wells in Persian Gulf. Mar. Pollut. Bull. 2018, 136, 291–299. [Google Scholar] [CrossRef]
- Bayramov, E.; Kada, M.; Buchroithner, M. Monitoring Oil Spill Hotspots, Contamination Probability Modelling and assessment of Coastal Impacts in the Caspian Sea Using SENTINEL-1, LANDSAT-8, RADARSAT, ENVISAT and ERS Satellite Sensors. J. Oper. Oceanogr. 2018, 11, 27–43. [Google Scholar] [CrossRef]
- Zodiatis, G.; Lardner, R.; Alves, T.M.; Krestenitis, Y.; Perivoliotis, L.; Sofianos, S.; Spanoudaki, K. Oil spill forecasting (prediction). Oil J. Mar. Res. 2017, 75, 923–953. [Google Scholar] [CrossRef]
- Liu, X.; Guo, M.; Wang, Y.; Yu, X.; Guo, J.; Tang, C.; Hu, X.; Wang, C.; Li, B. Assessing Pollution-Related Effects of Oil Spills from Ships in the Chinese Bohai Sea. Mar. Pollut. Bull. 2016, 110, 194–202. [Google Scholar] [CrossRef]
- Frolov, S.; Paduan, J.; Cook, M.; Bellingham, J. Improved Statistical Prediction of Surface Currents Based on Historic HF-Radar Observations. Ocean Dyn. 2012, 62, 1111–1122. [Google Scholar] [CrossRef]
- González, M.; Ferrer, L.; Uriarte, A.; Urtizberea, A.; Caballero, A. Operational Oceanography System Applied to the Prestige Oil-Spillage Event. J. Mar. Syst. 2008, 72, 178–188. [Google Scholar] [CrossRef]
- Sebastião, P.; Guedes Soares, C. Uncertainty in Predictions of Oil Spill Trajectories in a Coastal Zone. J. Mar. Syst. 2006, 63, 257–269. [Google Scholar] [CrossRef]
- Jordi, A.; Ferrer, M.I.; Vizoso, G.; Orfila, A.; Basterretxea, G.; Casas, B.; Álvarez, A.; Roig, D.; Garau, B.; Martínez, M.; et al. Scientific Management of Mediterranean Coastal Zone: A Hybrid Ocean Forecasting System for Oil Spill and Search and Rescue Operations. Mar. Pollut. Bull. 2006, 53, 361–368. [Google Scholar] [CrossRef]
- Elliott, A.J.; Dale, A.C.; Proctor, R. Modelling the Movement of Pollutants in the UK Shelf Seas. Mar. Pollut. Bull. 1992, 24, 614–619. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Lyu, X.; Liu, S.; Zhao, Z.; Ren, P. An Adversarial Learning Approach to Forecasted Wind Field correction with an Application to Oil Spill Drift Prediction. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102924. [Google Scholar] [CrossRef]
- Zhu, H.; You, J.; Zhao, H. Underwater Spreading and Surface Drifting of Oil Spilled from a submarine Pipeline under the Combined Action of Wave and Current. Appl. Ocean Res. 2017, 64, 217–235. [Google Scholar] [CrossRef]
- Kim, T.-S.; Park, K.-A.; Li, X.; Lee, M.; Hong, S.; Lyu, S.J.; Nam, S. Detection of the Hebei Spirit Oil Spill on SAR Imagery and Its Temporal in a Coastal Region of the Yellow Sea. Adv. Space Res. 2015, 56, 1079–1093. [Google Scholar] [CrossRef]
- Rusu, L.; Ivan, A. Modelling Wind Waves in the Romanian Coastal Environment. Environ. Eng. Manag. J. 2010, 9, 547–552. [Google Scholar] [CrossRef]
- Zhu, Z.; Waterman, D.M.; Garcia, M.H. Modeling the Transport of Oil–Particle Aggregates Resulting from an Oil Spill in a Freshwater Environment. Environ. Fluid Mech. 2018, 18, 967–984. [Google Scholar] [CrossRef]
- Caballero, A.; Espino, M.; Sagarminaga, Y.; Ferrer, L.; Uriarte, A.; González, M. Simulating the Migration of Drifters Deployed in the Bay of Biscay, during the Prestige Crisis. Mar. Pollut. Bull. 2008, 56, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Boufadel, M.; Liu, R.; Zhao, L.; Lu, Y.; Özgökmen, T.; Nedwed, T.; Lee, K. Transport of Oil Droplets in the Upper Ocean: Impact of the Eddy Diffusivity. J. Geophys. Res. Oceans 2020, 125. [Google Scholar] [CrossRef]
- Spaulding, M.L.; Bishnoi, P.R.; Anderson, E.; Isaji, T. An Integrated Model for Prediction of Oil Transport from a Deep Water Blowout. In Environment Canada Arctic and Marine Oil Spill Program Technical Seminar (AMOP) Proceedings; Environment Canada: Vancouver, BC, Canada, 2000; Volume 23, pp. 611–635. [Google Scholar]
- Gough, M.K.; Beron-Vera, F.J.; Olascoaga, M.J.; Sheinbaum, J.; Jouanno, J.; Duran, R. Persistent Lagrangian Transport Patterns in the Northwestern Gulf of Mexico. J. Phys. Oceanogr. 2019, 49, 353–367. [Google Scholar] [CrossRef]
- French-McCay, D.P.; Tajalli-Bakhsh, T.; Jayko Kathy and Spaulding, M.L.; Li, Z. Validation of Oil Spill Transport and Fate Modeling in Arctic Ice. Arct. Sci. 2018, 4, 71–97. [Google Scholar] [CrossRef]
- Pereiro, D.; Souto, C.; Gago, J. Calibration of a Marine Floating Litter Transport Model. J. Oper. Oceanogr. 2018, 11, 125–133. [Google Scholar] [CrossRef]
- Niu, H.; Li, Z.; Lee, K.; Kepkay, P.; Mullin, J.V. Modelling the Transport of Oil-Mineral-Aggregates (OMAs) in the Marine Environment and Assessment of Their Potential Risks. Environ. Model. Assess. 2011, 16, 61–75. [Google Scholar] [CrossRef]
- Periáñez, R.; Pascual-Granged, A. Modelling Surface Radioactive, Chemical and Oil Spills in the Strait of Gibraltar. Comput. Geosci. 2008, 34, 163–180. [Google Scholar] [CrossRef]
- Abou Samra, R.M.; Ali, R.R. Tracking the Behavior of an Accidental Oil Spill and Its Impacts on the Marine Environment in the Eastern Mediterranean. Mar. Pollut. Bull. 2024, 198, 115887. [Google Scholar] [CrossRef]
- Prasad, S.J.; Balakrishnan Nair, T.M.; Rahaman, H.; Shenoi, S.S.C.; Vijayalakshmi, T. An Assessment on Oil Spill Trajectory Prediction: Case Study on Oil Spill off Ennore Port. J. Earth Syst. Sci. 2018, 127. [Google Scholar] [CrossRef]
- Daneshgar Asl, S.; Dukhovskoy, D.S.; Bourassa, M.; MacDonald, I.R. Hindcast Modeling of Oil Slick Persistence from Natural Seeps. Remote Sens. Environ. 2017, 189, 96–107. [Google Scholar] [CrossRef]
- Coelho, E.F.; Hogan, P.; Jacobs, G.; Thoppil, P.; Huntley, H.S.; Haus, B.K.; Lipphardt, B.L.; Kirwan, A.D.; Ryan, E.H.; Olascoaga, J.; et al. Ocean Current Estimation Using a Multi-Model Ensemble Kalman Filter during the Grand Lagrangian Deployment Experiment (GLAD). Ocean Model. 2015, 87, 86–106. [Google Scholar] [CrossRef]
Main Information | |||||||
---|---|---|---|---|---|---|---|
Timespan | 1970:1979 | 1980:1989 | 1990:1999 | 2000:2009 | 2010:2019 | 2020:2024 | 1970:2024 |
Sources * | 14 | 34 | 67 | 127 | 385 | 211 | 730 |
Documents | 15 | 40 | 157 | 299 | 667 | 363 | 1541 |
Annual growth rate % | - | - | - | - | - | - | 7.81 |
Paper contents | |||||||
AUTHORS | |||||||
Authors | 34 | 71 | 233 | 675 | 1928 | 1406 | 3756 |
Authors of single-authored docs | 2 | 5 | 21 | 31 | 39 | 16 | 96 |
Authors collaboration | |||||||
Co-authors per doc | 2.40 | 2.5 | 2.73 | 3.39 | 4.37 | 4.79 | 4.04 |
International co-authorships % | 0.00 | 0.00 | 2.54 | 7.02 | 14.39 | 19.83 | 12.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, R.N.; Lima, A.T.C.; Lentini, C.A.D.; Miranda, J.G.V.; de Mendonça, L.F.F.; Costa, D.P.; Duverger, S.G.; Cambui, E.C.B. Trends in Oil Spill Modeling: A Review of the Literature. Water 2025, 17, 2300. https://doi.org/10.3390/w17152300
Vasconcelos RN, Lima ATC, Lentini CAD, Miranda JGV, de Mendonça LFF, Costa DP, Duverger SG, Cambui ECB. Trends in Oil Spill Modeling: A Review of the Literature. Water. 2025; 17(15):2300. https://doi.org/10.3390/w17152300
Chicago/Turabian StyleVasconcelos, Rodrigo N., André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, Diego P. Costa, Soltan G. Duverger, and Elaine C. B. Cambui. 2025. "Trends in Oil Spill Modeling: A Review of the Literature" Water 17, no. 15: 2300. https://doi.org/10.3390/w17152300
APA StyleVasconcelos, R. N., Lima, A. T. C., Lentini, C. A. D., Miranda, J. G. V., de Mendonça, L. F. F., Costa, D. P., Duverger, S. G., & Cambui, E. C. B. (2025). Trends in Oil Spill Modeling: A Review of the Literature. Water, 17(15), 2300. https://doi.org/10.3390/w17152300