Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = asymmetric electrical responses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 15997 KiB  
Article
Conductivity of Filled Diblock Copolymer Systems: Identifying the Main Influencing Factors
by A. I. Chervanyov
Polymers 2025, 17(11), 1502; https://doi.org/10.3390/polym17111502 - 28 May 2025
Viewed by 278
Abstract
By developing and making use of the multi-scale theoretical approach, we identify the main factors that affect the conductivity of a composite composed of a diblock copolymer (DBC) system and conductive particles. This approach relies on the consistent phase-field model of DBC, Monte-Carlo [...] Read more.
By developing and making use of the multi-scale theoretical approach, we identify the main factors that affect the conductivity of a composite composed of a diblock copolymer (DBC) system and conductive particles. This approach relies on the consistent phase-field model of DBC, Monte-Carlo simulations of the filler localization in DBC, and the resistor network model that mimics the conductive filler network formed in DBC. Based on the described approach, we thoroughly explore the relation among the morphological state of the microphase-separated DBC, localization of fillers in DBC, and the electrical response of the composite. Good agreement with experimental results confirms the accuracy of our theoretical predictions regarding the localization of fillers in the DBC microphases. The main factors affecting the composite conductivity are found to be: (i) affinities of fillers for copolymer blocks; (ii) degree of the segregation of a host DBC system, driven by external stimuli; (iii) geometry of the microphases formed in the microphase-separated DBC; and (iv) interactions between fillers. The conductor-insulator transition in the filler network is found to be caused by the order-disorder transition in the symmetric DBC. The order-order transition between the ordered lamellae and cylindrical microphases of asymmetric DBC causes a spike in the composite conductivity. Full article
Show Figures

Figure 1

19 pages, 8435 KiB  
Article
Method for Network-Wide Characteristics in Multi-Terminal DC Distribution Networks During Asymmetric Short-Circuit Faults
by Xinhao Li, Qianmin Li, Hanwei Li, Xinze Zhou and Zhihui Dai
Electronics 2025, 14(6), 1120; https://doi.org/10.3390/electronics14061120 - 12 Mar 2025
Viewed by 534
Abstract
With the widespread integration of distributed energy resources and novel loads, the DC attributes of distribution networks are becoming increasingly pronounced. Multi-terminal flexible DC distribution networks have emerged as a trend for future distribution grids due to lower line losses, better power quality, [...] Read more.
With the widespread integration of distributed energy resources and novel loads, the DC attributes of distribution networks are becoming increasingly pronounced. Multi-terminal flexible DC distribution networks have emerged as a trend for future distribution grids due to lower line losses, better power quality, etc. However, owing to their low damping and inertia, the multi-terminal flexible DC distribution network is vulnerable to DC faults. Analyzing the fault characteristics and calculating the fault current level is of great significance for the design of relay protection systems and the optimization of associated parameters. Throughout the fault process, the discharge paths of multiple converters are mutually coupled, and the fault characteristics are complex, which poses a great challenge to short-circuit calculations. This paper proposes a method for calculating the characteristic quantities of the whole network throughout the asymmetric short-circuit fault in a multi-terminal flexible DC distribution network. During the capacitor discharge stage, an equivalent model of the fault port is established before the control response. During the fault ride-through stage, a transfer matrix that takes into account the electrical constraints on both the AC and DC sides of the converters is proposed by combining the equivalent circuit of fully controlled converters. Finally, a simulation model of a six-terminal flexible DC distribution network is developed in PSCAD/EMTDC, and the simulation results demonstrate that the proposed method expands the calculation range from faulty branch to network-wide characteristic quantities throughout the process of asymmetric short-circuit faults, with the maximum relative error remaining below 5%. Full article
(This article belongs to the Special Issue Efficient and Resilient DC Energy Distribution Systems)
Show Figures

Figure 1

18 pages, 3323 KiB  
Article
Curvature-Induced Electrical Properties of Two-Dimensional Electrons on Carbon Nanotube Springs
by Jakkapong Charoenpakdee, Artit Hutem and Sutee Boonchui
Symmetry 2025, 17(3), 316; https://doi.org/10.3390/sym17030316 - 20 Feb 2025
Viewed by 476
Abstract
This study investigates the mechanisms driving current generation, power output, and charge storage in carbon nanotube springs under mechanical strain, addressing the gap between experimental observations and theoretical modeling, particularly in asymmetric electrical responses. Leveraging the Dirac equation in curved spacetime, we analyze [...] Read more.
This study investigates the mechanisms driving current generation, power output, and charge storage in carbon nanotube springs under mechanical strain, addressing the gap between experimental observations and theoretical modeling, particularly in asymmetric electrical responses. Leveraging the Dirac equation in curved spacetime, we analyze how curvature-induced scalar and pseudo-gauge potentials shape two-dimensional electron gases confined to carbon nanotube springs. We incorporate applied mechanical strain by introducing time-dependent variations in the Lamé coefficient and curvature parameters, enabling the analysis of mechanical deformation’s influence on electrical properties. Our model clarifies asymmetric electrical responses during stretching and compression cycles and explains how strain-dependent power outputs arise from the interplay between mechanical deformation and curvature effects. Additionally, we demonstrate mechanisms by which strain influences charge redistribution within the helically coiled structure. We develop a new equivalent circuit model linking mechanical deformation directly to electronic behavior, bridging theoretical physics with practical electromechanical applications. The analysis reveals asymmetric time-dependent currents, enhanced power output during stretching, and strain-dependent charge redistribution. Fourier analysis uncovers dominant frequency components (primary at Ω, harmonic at 2Ω) explaining these asymmetries. Theoretical investigations explain the mechanisms behind the curvature-driven time-dependent current source, the frequency-dependent peak power, the characteristics of open-circuit voltage with strain, and the asymmetric electrical property response under applied strain as the generated current and the charge distribution within the carbon nanotube springs. These findings highlight carbon nanotube springs applied to energy harvesting, wearable electronics, and sensing technologies. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

29 pages, 10283 KiB  
Article
Multi-Fault-Tolerant Operation of Grid-Interfaced Photovoltaic Inverters Using Twin Delayed Deep Deterministic Policy Gradient Agent
by Shyamal S. Chand, Branislav Hredzak and Maurizio Cirrincione
Energies 2025, 18(1), 44; https://doi.org/10.3390/en18010044 - 26 Dec 2024
Cited by 1 | Viewed by 959
Abstract
The elevated penetration of renewable energy has seen a significant increase in the integration of inverter-based resources (IBRs) into the electricity network. According to various industrial standards on interconnection and interoperability, IBRs should be able to withstand variability in grid conditions. Positive sequence [...] Read more.
The elevated penetration of renewable energy has seen a significant increase in the integration of inverter-based resources (IBRs) into the electricity network. According to various industrial standards on interconnection and interoperability, IBRs should be able to withstand variability in grid conditions. Positive sequence voltage-oriented control (PSVOC) with a feed-forward decoupling approach is often adopted to ensure closed-loop control of inverters. However, the dynamic response of this control scheme deteriorates during fluctuations in the grid voltage due to the sensitivity of proportional–integral controllers, the presence of the direct- and quadrature-axis voltage terms in the cross-coupling, and predefined saturation limits. As such, a twin delayed deep deterministic policy gradient-based voltage-oriented control (TD3VOC) is formulated and trained to provide effective current control of inverter-based resources under various dynamic conditions of the grid through transfer learning. The actor–critic-based reinforcement learning agent is designed and trained using the model-free Markov decision process through interaction with a grid-connected photovoltaic inverter environment developed in MATLAB/Simulink® 2023b. Using the standard PSVOC method results in inverter input voltage overshoots of up to 2.50 p.u., with post-fault current restoration times of as high as 0.55 s during asymmetrical faults. The designed TD3VOC technique confines the DC link voltage overshoot to 1.05 p.u. and achieves a low current recovery duration of 0.01 s after fault clearance. In the event of a severe symmetric fault, the conventional control method is unable to restore the inverter operation, leading to integral-time absolute errors of 0.60 and 0.32 for the currents of the d and q axes, respectively. The newly proposed agent-based control strategy restricts cumulative errors to 0.03 and 0.09 for the d and q axes, respectively, thus improving inverter regulation. The results indicate the superior performance of the proposed control scheme in maintaining the stability of the inverter DC link bus voltage, reducing post-fault system recovery time, and limiting negative sequence currents during severe asymmetrical and symmetrical grid faults compared with the conventional PSVOC approach. Full article
(This article belongs to the Special Issue Advances in Electrical Power System Quality)
Show Figures

Figure 1

11 pages, 1091 KiB  
Article
4D Printing Self-Sensing and Load-Carrying Smart Components
by Yi Qin, Jianxin Qiao, Shuai Chi, Huichun Tian, Zexu Zhang and He Liu
Materials 2024, 17(23), 5903; https://doi.org/10.3390/ma17235903 - 2 Dec 2024
Cited by 1 | Viewed by 966
Abstract
In the past decade, 4D printing has received attention in the aerospace, automotive, robotics, and biomedical fields due to its lightweight structure and high productivity. Combining stimulus-responsive materials with 3D printing technology, which enables controllable changes in shape and mechanical properties, is a [...] Read more.
In the past decade, 4D printing has received attention in the aerospace, automotive, robotics, and biomedical fields due to its lightweight structure and high productivity. Combining stimulus-responsive materials with 3D printing technology, which enables controllable changes in shape and mechanical properties, is a new technology for building smart bearing structures. A multilayer smart truss structural component with self-sensing function is designed, and an internal stress calibration strategy is established to better adapt to asymmetric loads. A material system consisting of continuous carbon fibers and polylactic acid was constructed, and an isosceles trapezoidal structure was chosen as the basic configuration of the smart component. The self-inductive properties are described by analyzing the relationship between the pressure applied to the specimen and the change in the specimen’s own resistance. Load-carrying capacity is realized by electrically heating the continuous carbon fibers in the component. Thermal deformation calibrates internal stress and enhances the load-carrying ability of the component over 50%. The experimental results demonstrate that the truss structure designed in this paper has strong self-induction, self-driving ability, and asymmetric load adaptation ability at the same time. This verifies that the 4D-printed smart component can be used as a load-carrying element, which broadens the application scope of smart components. Full article
Show Figures

Figure 1

25 pages, 3439 KiB  
Article
Research on Multi-Microgrid Electricity–Carbon Collaborative Sharing and Benefit Allocation Based on Emergy Value and Carbon Trading
by Yanhe Yin, Yong Xiao, Zhijie Ruan, Yuxin Lu, Jizhong Zhu, Linying Huang and Jing Lan
Electronics 2024, 13(17), 3394; https://doi.org/10.3390/electronics13173394 - 26 Aug 2024
Viewed by 1323
Abstract
In response to climate change, the proportion of renewable energy penetration is increasing daily. However, there is a lack of flexible energy transfer mechanisms. The optimization effect of low-carbon economic dispatch in a single park is limited. In the context of the sharing [...] Read more.
In response to climate change, the proportion of renewable energy penetration is increasing daily. However, there is a lack of flexible energy transfer mechanisms. The optimization effect of low-carbon economic dispatch in a single park is limited. In the context of the sharing economy, this study proposes a research method for multi-park electricity sharing and benefit allocation based on carbon credit trading. Firstly, a framework for multi-park system operation is constructed, and an energy hub model is established for the electrical, cooling, and heating interconnections with various energy conversions. Secondly, a park carbon emission reduction trading model is established based on the carbon credit mechanism, further forming an optimal economic and environmental dispatch strategy for multi-park electricity sharing. Matlab+Gurobi is used for solving. Then, based on asymmetric Nash bargaining, the comprehensive contribution rate of each park is calculated by considering their energy contribution and carbon emission reduction contribution, thereby achieving a fair distribution of cooperation benefits among multiple parks. The results show that the proposed method can effectively reduce the overall operational cost of multiple parks and decrease carbon emissions, and the benefit allocation strategy used is fair and reasonable, effectively motivating the construction of new energy in parks and encouraging active participation in cooperative operations by all parks. Full article
Show Figures

Figure 1

22 pages, 14183 KiB  
Article
Microwave Bow-Tie Diodes on Bases of 2D Semiconductor Structures
by Steponas Ašmontas, Maksimas Anbinderis, Aurimas Čerškus, Jonas Gradauskas, Andžej Lučun and Algirdas Sužiedėlis
Crystals 2024, 14(8), 720; https://doi.org/10.3390/cryst14080720 - 11 Aug 2024
Cited by 2 | Viewed by 920
Abstract
Planar microwave bow-tie diodes on bases of selectively doped semiconductor structures are successfully used in the detection and imaging of electromagnetic radiation in millimeter and submillimeter wavelength ranges. Although the signal formation mechanism in these high-frequency diodes is said to be based on [...] Read more.
Planar microwave bow-tie diodes on bases of selectively doped semiconductor structures are successfully used in the detection and imaging of electromagnetic radiation in millimeter and submillimeter wavelength ranges. Although the signal formation mechanism in these high-frequency diodes is said to be based on charge-carrier heating in a semiconductor in a strong electric field, the nature of the electrical signal across the bow-tie diodes is not yet properly identified. In this research paper, we present a comprehensive study of a series of various planar bow-tie diodes, starting with a simple asymmetrically shaped submicrometer-thick n-GaAs layer and finishing with bow-tie diodes based on selectively doped GaAs/AlGaAs structures of different electrical conductivity. The planar bow-tie diodes were fabricated on two different types of high-resistivity substrates: bulky semi-insulating GaAs substrate and elastic dielectric polyimide film of micrometer thickness. The microwave diodes were investigated using DC and high-frequency probe stations, which allowed us to examine a sufficient number of diodes and collect a large amount of data to perform a statistical analysis of the electrical parameters of these diodes. The use of probe stations made it possible to analyze the properties of the bow-tie diodes and clarify the nature of the detected voltage in the dark and under white-light illumination. The investigation revealed that the properties of various bow-tie diodes are largely determined by the energy states residing in semiconductor bulk, surface, and interfaces. It is most likely that these energy states are responsible for the slow relaxation processes observed in the studied bow-tie diodes. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

22 pages, 7167 KiB  
Article
Harmonic Sequence Component Model-Based Small-Signal Stability Analysis in Synchronous Machines during Asymmetrical Faults
by Oscar C. Zevallos, Yandi A. Gallego Landera, Lesyani León Viltre and Jaime Addin Rohten Carrasco
Energies 2024, 17(15), 3634; https://doi.org/10.3390/en17153634 - 24 Jul 2024
Viewed by 1164
Abstract
Power systems are complex and often subject to faults, requiring accurate mathematical models for a thorough analysis. Traditional time-domain models are employed to evaluate the dynamic response of power system elements during transmission system faults. However, only the positive sequence components are considered [...] Read more.
Power systems are complex and often subject to faults, requiring accurate mathematical models for a thorough analysis. Traditional time-domain models are employed to evaluate the dynamic response of power system elements during transmission system faults. However, only the positive sequence components are considered for unbalanced faults, so the small-signal stability analysis is no longer accurate when assuming balanced conditions for asymmetrical faults. The dynamic phasor approach extends traditional models by representing synchronous machines with harmonic sequence components, making it suitable for an unbalanced condition analysis and revealing dynamic couplings not evident in conventional methods. By modeling electrical and mechanical equations with harmonic sequence components, the study implements an eigenvalue sensitivity analysis and participation factor analysis to identify the variable with significant participation in the critical modes and consequently in the dynamic response of synchronous machines during asymmetric faults, thereby control strategies can be proposed to improve system stability. The article validates the dynamic phasor model through simulations of a single-phase short circuit, demonstrating its accuracy and effectiveness in representing the transient and dynamic behavior of synchronous machines, and correctly identifies the harmonic sequence component with significant participation in the critical modes identified by the eigenvalue sensitivity to the rotor angular velocity and rotor angle. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

22 pages, 14186 KiB  
Article
An Efficient Pulse Circuit Design for Magnetic Stimulation with Diversified Waveforms and Adjustable Parameters
by Xiao Fang, Tao Zhang, Yaoyao Luo and Shaolong Wang
Sensors 2024, 24(12), 3839; https://doi.org/10.3390/s24123839 - 13 Jun 2024
Cited by 2 | Viewed by 1760
Abstract
As a noninvasive neuromodulation technique, transcranial magnetic stimulation (TMS) has important applications both in the exploration of mental disorder causes and the treatment of mental disorders. During the stimulation, the TMS system generates the intracranial time-varying induced E-field (E-field), which alters the membrane [...] Read more.
As a noninvasive neuromodulation technique, transcranial magnetic stimulation (TMS) has important applications both in the exploration of mental disorder causes and the treatment of mental disorders. During the stimulation, the TMS system generates the intracranial time-varying induced E-field (E-field), which alters the membrane potential of neurons and subsequently exerts neural regulatory effects. The temporal waveform of the induced E-fields is directly related to the stimulation effect. To meet the needs of scientific research on diversified stimulation waveforms and flexible adjustable stimulation parameters, a novel efficient pulse magnetic stimulation circuit (the EPMS circuit) design based on asymmetric cascaded multilevel technology is proposed in this paper. Based on the transient analysis of the discharge circuit, this circuit makes it possible to convert the physical quantity (the intracranial induced E-field) that needs to be measured after magnetic stimulation into easily analyzable electrical signals (the discharge voltage at both ends of the stimulation coil in the TMS circuit). This EPMS circuit can not only realize monophasic and biphasic cosine-shaped intracranial induced E-fields, which are widely used in the market, but also realize three types of new intracranial induced E-field stimulation waveform with optional amplitude and adjustable pulse width, including monophasic near-rectangular, biphasic near-rectangular and monophasic/biphasic ladder-shaped stimulation waveform, which breaks through the limitation of the stimulation waveform of traditional TMS systems. Among the new waveforms produced by the EPMS circuit, further research was conducted on the dynamic response characteristics of neurons under the stimulation of the biphasic four-level waveform (the BFL waveform) with controllable parameters. The relationship between TMS circuit parameters (discharge voltage level and duration) and corresponding neural response characteristics (neuron membrane potential change and neuronal polarizability ratio) was explained from a microscopic perspective. Accordingly, the biological physical quantities (neuronal membrane potential) that are difficult to measure can be transformed into easily analyzable electrical signals (the discharge voltage level and duration). Results showed that compared with monophasic and biphasic cosine induced E-fields with the same energy loss, the neuron polarization ratio is decreased by 54.5% and 87.5%, respectively, under the stimulation of BFL waveform, which could effectively enhance the neuromodulation effect and improve the stimulation selectivity. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

12 pages, 3365 KiB  
Article
Bias-Tunable Quantum Well Infrared Photodetector
by Gyana Biswal, Michael Yakimov, Vadim Tokranov, Kimberly Sablon, Sergey Tulyakov, Vladimir Mitin and Serge Oktyabrsky
Nanomaterials 2024, 14(6), 548; https://doi.org/10.3390/nano14060548 - 20 Mar 2024
Cited by 2 | Viewed by 2374
Abstract
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and [...] Read more.
With the rapid advancement of Artificial Intelligence-driven object recognition, the development of cognitive tunable imaging sensors has become a critically important field. In this paper, we demonstrate an infrared (IR) sensor with spectral tunability controlled by the applied bias between the long-wave and mid-wave IR spectral regions. The sensor is a Quantum Well Infrared Photodetector (QWIP) containing asymmetrically doped double QWs where the external electric field alters the electron population in the wells and hence spectral responsivity. The design rules are obtained by calculating the electronic transition energies for symmetric and antisymmetric double-QW states using a Schrödinger–Poisson solver. The sensor is grown and characterized aiming detection in mid-wave (~5 µm) to long-wave IR (~8 µm) spectral ranges. The structure is grown using molecular beam epitaxy (MBE) and contains 25 periods of coupled double GaAs QWs and Al0.38Ga0.62As barriers. One of the QWs in the pair is modulation-doped to provide asymmetry in potential. The QWIPs are tested with blackbody radiation and FTIR down to 77 K. As a result, the ratio of the responsivities of the two bands at about 5.5 and 8 µm is controlled over an order of magnitude demonstrating tunability between MWIR and LWIR spectral regions. Separate experiments using parameterized image transformations of wideband LWIR imagery are performed to lay the framework for utilizing tunable QWIP sensors in object recognition applications. Full article
(This article belongs to the Special Issue Graphene-Based Optoelectronic and Plasmonic Devices)
Show Figures

Figure 1

17 pages, 3284 KiB  
Article
Using Electric Stimulation of the Spinal Muscles and Electromyography during Motor Tasks for Evaluation of the Role in Development and Progression of Adolescent Idiopathic Scoliosis
by Christian Wong, Hamed Shayestehpour, Christos Koutras, Benny Dahl, Miguel A. Otaduy, John Rasmussen and Jesper Bencke
J. Clin. Med. 2024, 13(6), 1758; https://doi.org/10.3390/jcm13061758 - 19 Mar 2024
Cited by 4 | Viewed by 2840
Abstract
Introduction: The role of the spinal muscles in scoliogenesis is not fully substantiated. Do they act scoliogenic (inducing scoliosis) or counteract scoliosis in adolescent idiopathic scoliosis (AIS)? In this study, we will examine this by using selectively placed Transcutaneous Electric Stimulation (TES) [...] Read more.
Introduction: The role of the spinal muscles in scoliogenesis is not fully substantiated. Do they act scoliogenic (inducing scoliosis) or counteract scoliosis in adolescent idiopathic scoliosis (AIS)? In this study, we will examine this by using selectively placed Transcutaneous Electric Stimulation (TES) combined with a cinematic radiographic technique and by performing electromyographic (EMG) evaluations during various motor tasks. Method: This is a cross-sectional study of subjects with small-curve AIS. Using cinematic radiography, they were evaluated dynamically either under electrical stimulation or when performing motor tasks of left and right lateral bending and rotation whilst measuring the muscle activity by EMG. Results: Forty-five patients with AIS were included as subjects. Five subjects volunteered for TES and six subjects performed the motor tasks with EMG. At the initial visual evaluation, and when stimulated with TES, the frontal plane spatial positions of the vertebral bodies showed discrete changes without an apparent pattern. However, analyzing the spatial positions when calibrated, we found that the spinal muscles exert a compressive ‘response’ with a minor change in the Cobb angle (CA) in small-curve AIS (CA = 10–20°). In larger curves (CA > 20°), TES induced a ‘larger deformity’ with a relative four-fold change in the CA compared to small-curve AIS with a ratio of 0.6. When evaluating local amplitude (peak) or cumulative (mean) EMG signals, we were unable to find consistent asymmetries. However, one subject had rapid progression and one regressed to a straight spine. When adding the absolute EMG ratios for all four motor tasks, the subject with progression had almost 10-fold less summed EMG ratios, and the subject with regression had more than 3-fold higher summed EMG ratios. Discussion: Based on these findings, we suggest that the spinal muscles in small-curve AIS have a stabilizing function maintaining a straight spine and keeping it in the midline. When deformities are larger (CA > 20°), the spine muscle curve exerts a scoliogenic ‘response’. This suggests that the role of the muscles converts from counteracting AIS and stabilizing the spine to being scoliogenic for a CA of more than 20°. Moreover, we interpret higher EMG ratios as heightened asymmetric spinal muscle activity when the spinal muscles try to balance the spine to maintain or correct the deformity. When progression occurs, this is preceded or accompanied by decreased EMG ratios. These findings must be substantiated by larger studies. Full article
Show Figures

Figure 1

18 pages, 5439 KiB  
Article
Asymmetric and Flexible Ag-MXene/ANFs Composite Papers for Electromagnetic Shielding and Thermal Management
by Xiaoai Ye, Xu Zhang, Xinsheng Zhou and Guigen Wang
Nanomaterials 2023, 13(18), 2608; https://doi.org/10.3390/nano13182608 - 21 Sep 2023
Cited by 5 | Viewed by 2241
Abstract
Lightweight, flexible, and electrically conductive thin films with high electromagnetic interference (EMI) shielding effectiveness and excellent thermal management capability are ideal for portable and flexible electronic devices. Herein, the asymmetric and multilayered structure Ag-MXene/ANFs composite papers (AMAGM) were fabricated based on Ag-MXene hybrids [...] Read more.
Lightweight, flexible, and electrically conductive thin films with high electromagnetic interference (EMI) shielding effectiveness and excellent thermal management capability are ideal for portable and flexible electronic devices. Herein, the asymmetric and multilayered structure Ag-MXene/ANFs composite papers (AMAGM) were fabricated based on Ag-MXene hybrids and aramid nanofibers (ANFs) via a self-reduction and alternating vacuum-assisted filtration process. The resultant AMAGM composite papers exhibit high electrical conductivity of 248,120 S m−1, excellent mechanical properties with tensile strength of 124.21 MPa and fracture strain of 4.98%, superior EMI shielding effectiveness (62 dB), ultra-high EMI SE/t (11,923 dB cm2 g−1) and outstanding EMI SE reliability as high as 96.1% even after 5000 cycles of bending deformation benefiting from the unique structure and the 3D network at a thickness of 34 μm. Asymmetric structures play an important role in regulating reflection and absorption of electromagnetic waves. In addition, the multifunctional nanocomposite papers reveal outstanding thermal management performances such as ultrafast thermal response, high heating temperatures at low operation voltage, and high heating stability. The results indicate that the AMAGM composite papers have excellent potential for high-integration electromagnetic shielding, wearable electronics, artificial intelligence, and high-performance heating devices. Full article
(This article belongs to the Special Issue Recent Advances in Two-Dimensional Monolayer Nanomaterials)
Show Figures

Figure 1

26 pages, 30484 KiB  
Article
Investigation of the Structural Dependence of the Cyclical Thermal Aging of Low-Voltage PVC-Insulated Cables
by Semih Bal and Zoltán Ádám Tamus
Symmetry 2023, 15(6), 1186; https://doi.org/10.3390/sym15061186 - 1 Jun 2023
Cited by 9 | Viewed by 2067
Abstract
The increasing penetration of distributed generation sources in low-voltage distribution grids, electric vehicles, and new appliances from the consumer side can generate short repetitive overloads on the low-voltage cable network. This work investigates the change in the dielectric properties of low-voltage cable insulation [...] Read more.
The increasing penetration of distributed generation sources in low-voltage distribution grids, electric vehicles, and new appliances from the consumer side can generate short repetitive overloads on the low-voltage cable network. This work investigates the change in the dielectric properties of low-voltage cable insulation caused by short-term overloads, examining how the cable structure affects the dielectric characteristics of the cable specimens in the case of cyclic short-term thermal aging. PVC-insulated low-voltage cable samples were exposed to an accelerated aging test in a temperature-controlled oven after changing their structures by removing different layers. Three aging cycles, each of six hours, were applied to the samples. After each cycle, the tan δ and capacitance were measured by an Omicron DIRANA Dielectric Response Analyzer in the laboratory at room temperature 24 ± 0.5 °C. Furthermore, the polarization and depolarization currents were also studied. The results show that changing the cable structure impacts the dielectric parameters; in particular, the effect of the belting layer is significant. From the point of view of aging, the PVC belting layer protects the diffusion of the plasticizers of the inner structure. The findings of the study show that an asymmetric aging phenomenon can be observed in different polymeric components of the cables, even though the cables were aged in an air-circulated oven ensuring a homogeneous temperature distribution in the samples. Full article
Show Figures

Figure 1

21 pages, 1430 KiB  
Article
Effects of Coulomb Blockade on the Charge Transport through the Topological States of Finite Armchair Graphene Nanoribbons and Heterostructures
by David M. T. Kuo
Nanomaterials 2023, 13(11), 1757; https://doi.org/10.3390/nano13111757 - 29 May 2023
Cited by 7 | Viewed by 3007
Abstract
In this study, we investigate the charge transport properties of semiconducting armchair graphene nanoribbons (AGNRs) and heterostructures through their topological states (TSs), with a specific focus on the Coulomb blockade region. Our approach employs a two-site Hubbard model that takes into account both [...] Read more.
In this study, we investigate the charge transport properties of semiconducting armchair graphene nanoribbons (AGNRs) and heterostructures through their topological states (TSs), with a specific focus on the Coulomb blockade region. Our approach employs a two-site Hubbard model that takes into account both intra- and inter-site Coulomb interactions. Using this model, we calculate the electron thermoelectric coefficients and tunneling currents of serially coupled TSs (SCTSs). In the linear response regime, we analyze the electrical conductance (Ge), Seebeck coefficient (S), and electron thermal conductance (κe) of finite AGNRs. Our results reveal that at low temperatures, the Seebeck coefficient is more sensitive to many-body spectra than electrical conductance. Furthermore, we observe that the optimized S at high temperatures is less sensitive to electron Coulomb interactions than Ge and κe. In the nonlinear response regime, we observe a tunneling current with negative differential conductance through the SCTSs of finite AGNRs. This current is generated by electron inter-site Coulomb interactions rather than intra-site Coulomb interactions. Additionally, we observe current rectification behavior in asymmetrical junction systems of SCTSs of AGNRs. Notably, we also uncover the remarkable current rectification behavior of SCTSs of 9-7-9 AGNR heterostructure in the Pauli spin blockade configuration. Overall, our study provides valuable insights into the charge transport properties of TSs in finite AGNRs and heterostructures. We emphasize the importance of considering electron–electron interactions in understanding the behavior of these materials. Full article
(This article belongs to the Special Issue 2D Semiconductor Nanomaterials and Heterostructures)
Show Figures

Figure 1

14 pages, 818 KiB  
Article
REAC Neurobiological Modulation as a Precision Medicine Treatment for Fibromyalgia
by Analízia Silva, Ana Rita Barcessat, Rebeca Gonçalves, Cleuton Landre, Lethícia Brandão, Lucas Nunes, Hyan Feitosa, Leonardo Costa, Raquel Silva, Emanuel de Lima, Ester Suane Monteiro, Arianna Rinaldi, Vania Fontani and Salvatore Rinaldi
J. Pers. Med. 2023, 13(6), 902; https://doi.org/10.3390/jpm13060902 - 27 May 2023
Cited by 4 | Viewed by 3471
Abstract
Fibromyalgia syndrome (FS) is a disorder characterized by widespread musculoskeletal pain and psychopathological symptoms, often associated with central pain modulation failure and dysfunctional adaptive responses to environmental stress. The Radio Electric Asymmetric Conveyer (REAC) technology is a neuromodulation technology. The aim of this [...] Read more.
Fibromyalgia syndrome (FS) is a disorder characterized by widespread musculoskeletal pain and psychopathological symptoms, often associated with central pain modulation failure and dysfunctional adaptive responses to environmental stress. The Radio Electric Asymmetric Conveyer (REAC) technology is a neuromodulation technology. The aim of this study was to evaluate the effects of some REAC treatments on psychomotor responses and quality of life in 37 patients with FS. Tests were conducted before and after a single session of Neuro Postural Optimization and after a cycle of 18 sessions of Neuro Psycho Physical Optimization (NPPO), using evaluation of the functional dysmetria (FD) phenomenon, Sitting and Standing (SS), Time Up and Go (TUG) tests for motor evaluation, Fibromyalgia Impact Questionnaire (FIQ) for quality of life. The data were statistically analyzed, and the results showed a statistically significant improvement in motor response and quality of life parameters, including pain, as well as reduced FD measures in all participants. The study concludes that the neurobiological balance established by the REAC therapeutic protocols NPO and NPPO improved the dysfunctional adaptive state caused by environmental and exposomal stress in FS patients, leading to an improvement in psychomotor responses and quality of life. The findings suggest that REAC treatments could be an effective approach for FS patients, reducing the excessive use of analgesic drugs and improving daily activities. Full article
(This article belongs to the Section Epigenetic Therapy)
Show Figures

Figure 1

Back to TopTop