Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = assessment of energy radiation performance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1224 KiB  
Article
Economic Efficiency of Renewable Energy Investments in Photovoltaic Projects: A Regression Analysis
by Adem Akbulut, Marcin Niemiec, Kubilay Taşdelen, Leyla Akbulut, Monika Komorowska, Atılgan Atılgan, Ahmet Coşgun, Małgorzata Okręglicka, Kamil Wiktor, Oksana Povstyn and Maria Urbaniec
Energies 2025, 18(14), 3869; https://doi.org/10.3390/en18143869 - 21 Jul 2025
Viewed by 252
Abstract
Energy Performance Contracts (EPC) are performance-based financing mechanisms designed to improve energy efficiency and support renewable energy adoption in the public sector. This study examines the economic efficiency of a 1710.72 kWp solar power plant (SPP), implemented under an EPC at Alanya Alaaddin [...] Read more.
Energy Performance Contracts (EPC) are performance-based financing mechanisms designed to improve energy efficiency and support renewable energy adoption in the public sector. This study examines the economic efficiency of a 1710.72 kWp solar power plant (SPP), implemented under an EPC at Alanya Alaaddin Keykubat University, using a regression-based analysis. The model evaluates the effects of solar radiation, investment cost, and electricity sales price on unit production cost, and its predictions were compared with actual production data. Results show the system exceeded the EPC contract target by 16.2%, producing 2,423,472.28 kWh in its first year and preventing 1168.64 tons of CO2 emissions. The developed multiple linear regression model achieved a predictive error margin of 14.7%, confirming its validity. This study highlights the technical, economic, and environmental benefits of EPC applications in Türkiye’s public institutions and offers a practical decision-support framework for policymakers. The novelty lies in integrating a regression model with operational data and providing a comparative assessment of planned, predicted, and actual outcomes. Full article
Show Figures

Figure 1

28 pages, 3281 KiB  
Article
Comparative Study of Feature Selection Techniques for Machine Learning-Based Solar Irradiation Forecasting to Facilitate the Sustainable Development of Photovoltaics: Application to Algerian Climatic Conditions
by Said Benkaciali, Gilles Notton and Cyril Voyant
Sustainability 2025, 17(14), 6400; https://doi.org/10.3390/su17146400 - 12 Jul 2025
Viewed by 377
Abstract
Forecasting future solar power plant production is essential to continue the development of photovoltaic energy and increase its share in the energy mix for a more sustainable future. Accurate solar radiation forecasting greatly improves the balance maintenance between energy supply and demand and [...] Read more.
Forecasting future solar power plant production is essential to continue the development of photovoltaic energy and increase its share in the energy mix for a more sustainable future. Accurate solar radiation forecasting greatly improves the balance maintenance between energy supply and demand and grid management performance. This study assesses the influence of input selection on short-term global horizontal irradiance (GHI) forecasting across two contrasting Algerian climates: arid Ghardaïa and coastal Algiers. Eight feature selection methods (Pearson, Spearman, Mutual Information (MI), LASSO, SHAP (GB and RF), and RFE (GB and RF)) are evaluated using a Gradient Boosting model over horizons from one to six hours ahead. Input relevance depends on both the location and forecast horizon. At t+1, MI achieves the best results in Ghardaïa (nMAE = 6.44%), while LASSO performs best in Algiers (nMAE = 10.82%). At t+6, SHAP- and RFE-based methods yield the lowest errors in Ghardaïa (nMAE = 17.17%), and RFE-GB leads in Algiers (nMAE = 28.13%). Although performance gaps between methods remain moderate, relative improvements reach up to 30.28% in Ghardaïa and 12.86% in Algiers. These findings confirm that feature selection significantly enhances accuracy (especially at extended horizons) and suggest that simpler methods such as MI or LASSO can remain effective, depending on the climate context and forecast horizon. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

11 pages, 1751 KiB  
Article
Opportunistic Diagnostics of Dental Implants in Routine Clinical Photon-Counting CT Acquisitions
by Maurice Ruetters, Holger Gehrig, Christian Mertens, Sinan Sen, Ti-Sun Kim, Heinz-Peter Schlemmer, Christian H. Ziener, Stefan Schoenberg, Matthias Froelich, Marc Kachelrieß and Stefan Sawall
J. Imaging 2025, 11(7), 215; https://doi.org/10.3390/jimaging11070215 - 30 Jun 2025
Viewed by 335
Abstract
Two-dimensional imaging is still commonly used in dentistry, but does not provide the three-dimensional information often required for the accurate assessment of dental structures. Photon-counting computed tomography (PCCT), a new three-dimensional modality mainly used in general medicine, has shown promising potential for dental [...] Read more.
Two-dimensional imaging is still commonly used in dentistry, but does not provide the three-dimensional information often required for the accurate assessment of dental structures. Photon-counting computed tomography (PCCT), a new three-dimensional modality mainly used in general medicine, has shown promising potential for dental applications. With growing digitalization and cross-disciplinary integration, using PCCT data from other medical fields is becoming increasingly relevant. Conventional CT scans, such as those of the cervical spine, have so far lacked the resolution to reliably evaluate dental structures or implants. This study evaluates the diagnostic utility of PCCT for visualizing peri-implant structures in routine clinical photon-counting CT acquisitions and assesses the influence of metal artifact reduction (MAR) algorithms on image quality. Ten dental implants were retrospectively included in this IRB-approved study. Standard PCCT scans were reconstructed at multiple keV levels with and without MAR. Quantitative image analysis was performed with respect to contrast and image noise. Qualitative evaluation of peri-implant tissues, implant shoulder, and apex was performed independently by two experienced dental professionals using a five-point Likert scale. Inter-reader agreement was measured using intraclass correlation coefficients (ICCs). PCCT enabled high-resolution imaging of all peri-implant regions with excellent inter-reader agreement (ICC > 0.75 for all structures). Non-MAR reconstructions consistently outperformed MAR reconstructions across all evaluated regions. MAR led to reduced clarity, particularly in immediate peri-implant areas, without significant benefit from energy level adjustments. All imaging protocols were deemed diagnostically acceptable. This is the first in vivo study demonstrating the feasibility of opportunistic dental diagnostics using PCCT in a clinical setting. While MAR reduces peripheral artifacts, it adversely affects image clarity near implants. PCCT offers excellent image quality for peri-implant assessments and enables incidental detection of dental pathologies without additional radiation exposure. PCCT opens new possibilities for opportunistic, three-dimensional dental diagnostics during non-dental CT scans, potentially enabling earlier detection of clinically significant pathologies. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

23 pages, 3114 KiB  
Article
Heat Transfer Enhancement in Flue-Gas Systems with Radiation-Intensifying Inserts: An Analytical Approach
by Justina Menkeliūnienė, Rolandas Jonynas, Linas Paukštaitis, Algimantas Balčius and Kęstutis Buinevičius
Energies 2025, 18(13), 3383; https://doi.org/10.3390/en18133383 - 27 Jun 2025
Viewed by 354
Abstract
A significant portion of energy losses in industrial systems arises from the inefficient use of high-temperature exhaust gases, emphasizing the need for enhanced heat recovery strategies. This study aims to improve energy efficiency by examining the effects of radiation-intensifying inserts on combined radiative [...] Read more.
A significant portion of energy losses in industrial systems arises from the inefficient use of high-temperature exhaust gases, emphasizing the need for enhanced heat recovery strategies. This study aims to improve energy efficiency by examining the effects of radiation-intensifying inserts on combined radiative and convective heat transfer in flue-gas heated channels. A systematic literature review revealed a research gap in understanding the interaction between these mechanisms in flue-gas heat exchangers. To address this, analytical calculations were conducted for two geometries: a radiation-intensifying plate between parallel plates and the same insert in a circular pipe. The analysis covered a range of gas-flue and wall temperatures (560–1460 K and 303–393 K, respectively), flow velocities, and spectral emissivity values. Key performance metrics included Reynolds and Nusselt numbers to assess flow resistance and heat transfer. Results indicated that flue-gas temperature has the most significant effect on total rate of heat transfer, and the insert significantly enhanced radiative heat transfer by over 60%, increasing flow resistance. A local Nusselt number minimum at a length-to-diameter ratio of approximately 26 suggested transitional flow behavior. These results provide valuable insights for the design of high-temperature heat exchangers, with future work planned to validate the findings experimentally. Full article
Show Figures

Figure 1

39 pages, 6463 KiB  
Review
Solar Panel Corrosion: A Review
by Zuraiz Rana, Pedro P. Zamora, Alvaro Soliz, Denet Soler, Víctor E. Reyes Cruz, José A. Cobos-Murcia and Felipe M. Galleguillos Madrid
Int. J. Mol. Sci. 2025, 26(13), 5960; https://doi.org/10.3390/ijms26135960 - 21 Jun 2025
Viewed by 907
Abstract
The corrosion within photovoltaic (PV) systems has become a critical challenge to address, significantly affecting the efficiency of solar-to-electric energy conversion, longevity, and economic viability. This review provides a comprehensive analysis of electrochemical corrosion mechanisms affecting solar panels and environmental factors that accelerate [...] Read more.
The corrosion within photovoltaic (PV) systems has become a critical challenge to address, significantly affecting the efficiency of solar-to-electric energy conversion, longevity, and economic viability. This review provides a comprehensive analysis of electrochemical corrosion mechanisms affecting solar panels and environmental factors that accelerate material degradation, including (i) humidity, (ii) temperature fluctuations, (iii) ultraviolet radiation, and (iv) exposure to saline environments, leading to reduced performance and premature failures. The role of encapsulation materials, solder interconnections, and conductive coatings in the corrosion formation process is examined. Various electrochemical and surface characterization techniques provide insights into material degradation and corrosion mechanisms within panels. Essential parameters are presented and discussed, including materials used, geographical location of analysis, environmental considerations, and corrosion characterization techniques, to enhance the assessment of solar panels. This review emphasizes the importance of corrosion management for sustainable PV systems and proposes future research directions for developing more durable materials and advanced coatings. Full article
(This article belongs to the Special Issue Molecular Scale Research of Energy Materials)
Show Figures

Figure 1

12 pages, 3008 KiB  
Article
Structural, Thermophysical, and Radiation Shielding Properties of Lead–Bismuth Eutectic (LBE) Synthesized by Induction Melting
by Radu Cristian Gavrea, Emanoil Surducan, Răzvan Hirian, Mioara Zagrai and Vasile Rednic
Crystals 2025, 15(6), 581; https://doi.org/10.3390/cryst15060581 - 19 Jun 2025
Viewed by 305
Abstract
Lead–bismuth eutectic alloy (LBE, Pb44.5Bi55.5) has emerged as a promising candidate for use in advanced nuclear and solar energy systems due to its favorable thermophysical characteristics and radiation shielding capabilities. The aim of this research is to assess the [...] Read more.
Lead–bismuth eutectic alloy (LBE, Pb44.5Bi55.5) has emerged as a promising candidate for use in advanced nuclear and solar energy systems due to its favorable thermophysical characteristics and radiation shielding capabilities. The aim of this research is to assess the applicability of the induction melting technique to synthesize LBE. This paper presents a comprehensive evaluation of the structural, thermophysical, and radiation shielding properties of the obtained LBE sample. Various techniques were employed to investigate the solid-to-liquid eutectic transformation, phase composition, morphology, and homogeneity of the obtained material. Experimental and theoretical determinations on density, void, molar volume, thermal conductivity, heat capacity, thermal diffusivity, and electrical conductivity were performed. Radiation shielding performance over photon energies ranging from 0.015 to 15 MeV was simulated using the Phy-X/PSD program. The results revealed the eutectic structure comprising Pb7Bi3 and Bi phases with near-ideal stoichiometry and a melting point of 127.6 °C. The alloy demonstrated a small void that corresponds to a high degree of sample compaction, high specific heat capacity, moderate thermal conductivity, low thermal diffusivity, and effective radiation shielding. These findings confirm that LBE obtained by the induction melting technique possesses the necessary structural stability and functional properties for integration into nuclear reactor and solar thermal technologies. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

29 pages, 22860 KiB  
Article
Laboratory Magnetoplasmas as Stellar-like Environment for 7Be β-Decay Investigations Within the PANDORA Project
by Eugenia Naselli, Bharat Mishra, Angelo Pidatella, Alessio Galatà, Giorgio S. Mauro, Domenico Santonocito, Giuseppe Torrisi and David Mascali
Universe 2025, 11(6), 195; https://doi.org/10.3390/universe11060195 - 18 Jun 2025
Viewed by 395
Abstract
Laboratory magnetoplasmas can become an intriguing experimental environment for fundamental studies relevant to nuclear astrophysics processes. Theoretical predictions indicate that the ionization state of isotopes within the plasma can significantly alter their lifetimes, potentially due to nuclear and atomic mechanisms such as bound-state [...] Read more.
Laboratory magnetoplasmas can become an intriguing experimental environment for fundamental studies relevant to nuclear astrophysics processes. Theoretical predictions indicate that the ionization state of isotopes within the plasma can significantly alter their lifetimes, potentially due to nuclear and atomic mechanisms such as bound-state β-decay. However, only limited experimental evidence on this phenomenon has been collected. PANDORA (Plasmas for Astrophysics, Nuclear Decay Observations, and Radiation for Archaeometry) is a novel facility which proposes to investigate nuclear decays in high-energy-density plasmas mimicking some properties of stellar nucleosynthesis sites (Big Bang Nucleosynthesis, s-process nucleosynthesis, role of CosmoChronometers, etc.). This paper focuses on the case of 7Be electron capture (EC) decay into 7Li, since its in-plasma decay rate has garnered considerable attention, particularly concerning the unresolved Cosmological Lithium Problem and solar neutrino physics. Numerical simulations were conducted to assess the feasibility of this possible lifetime measurement in the plasma of PANDORA. Both the ionization and atomic excitation of the 7Be isotopes in a He buffer Electron Cyclotron Resonance (ECR) plasma within PANDORA were explored via numerical modelling in a kind of “virtual experiment” providing the expected in-plasma EC decay rate. Since the decay of 7Be provides γ-rays at 477.6 keV from the 7Li excited state, Monte-Carlo GEANT4 simulations were performed to determine the γ-detection efficiency by the HPGe detectors array of the PANDORA setup. Finally, the sensitivity of the measurement was evaluated through a virtual experimental run, starting from the simulated plasma-dependent γ-rate maps. These results indicate that laboratory ECR plasmas in compact traps provide suitable environments for β-decay studies of 7Be, with the estimated duration of experimental runs required to reach 3σ significance level being few hours, which prospectively makes PANDORA a powerful tool to investigate the decay rate under different thermodynamic conditions and related charge state distributions. Full article
(This article belongs to the Special Issue Recent Outcomes and Future Challenges in Nuclear Astrophysics)
Show Figures

Figure 1

24 pages, 3957 KiB  
Article
Steam Generation for Industry Using Linear Fresnel Solar Collectors and PV-Driven High-Temperature Heat Pumps: Techno-Economic Analysis
by Antonio Famiglietti and Ruben Abbas
Solar 2025, 5(2), 27; https://doi.org/10.3390/solar5020027 - 17 Jun 2025
Viewed by 421
Abstract
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective [...] Read more.
Steam is widely used in industry as a heat carrier for thermal processes and is primarily generated by gas-fired steam boilers. The decarbonization of industrial thermal demand relies on the capability of clean and renewable technologies to provide steam through reliable and cost-effective systems. Concentrating solar thermal technologies are attracting attention as a heat source for industrial steam generation. In addition, electricity-driven high-temperature heat pumps can provide heat using either renewable or grid electricity by upgrading ambient or waste heat to the required temperature level. In this study, linear Fresnel solar collectors and high-temperature heat pumps driven by photovoltaics are considered heat sources for steam generation in industrial processes. Energetic and economic analyses are performed across the European countries to assess and compare their performances. The results demonstrate that for a given available area for the solar field, solar thermal systems provide a higher annual energy yield in southern countries and at lower costs than heat pumps. On the other hand, heat pumps driven by photovoltaics provide higher annual energy for decreasing solar radiation conditions (central and northern Europe), although it leads to higher costs than solar thermal systems. A hybrid scheme combining the two technologies is the favorable option in central Europe, allowing a trade-off between the costs and the energy yield per unit area. Full article
Show Figures

Figure 1

23 pages, 21017 KiB  
Article
Investigating the Impact of Sensor Layout on Radiation Hardness in 25 µm Pitch Hybrid Pixel Detectors for 4th Generation Synchrotron Light Sources
by Julian Heymes, Filippo Baruffaldi, Anna Bergamaschi, Martin Brückner, Maria Carulla, Roberto Dinapoli, Simon Ebner, Khalil Ferjaoui, Erik Fröjdh, Viveka Gautam, Dominic Greiffenberg, Shqipe Hasanaj, Viktoria Hinger, Thomas King, Pawel Kozłowski, Shuqi Li, Carlos Lopez-Cuenca, Alice Mazzoleni, Davide Mezza, Konstantinos Moustakas, Aldo Mozzanica, Martin Müller, Jonathan Mulvey, Jan Navrátil, Kirsty A. Paton, Christian Ruder, Bernd Schmitt, Patrick Sieberer, Dhanya Thattil, Xiangyu Xie and Jiaguo Zhangadd Show full author list remove Hide full author list
Sensors 2025, 25(11), 3383; https://doi.org/10.3390/s25113383 - 28 May 2025
Viewed by 415
Abstract
With the evolution of synchrotron light sources to fourth generation (diffraction-limited storage rings), the brilliance is increased by several orders of magnitude compared to third generation facilities. For example, the Swiss Light Source (SLS) has been upgraded to SLS 2.0, promising a horizontal [...] Read more.
With the evolution of synchrotron light sources to fourth generation (diffraction-limited storage rings), the brilliance is increased by several orders of magnitude compared to third generation facilities. For example, the Swiss Light Source (SLS) has been upgraded to SLS 2.0, promising a horizontal emittance reduced by a factor of 40, and a brilliance up to two orders of magnitude (three at higher energies). A key challenge arising from the increased flux is the heightened accumulated dose in silicon sensors, which leads to a significant increase in radiation damage. This translates into an increase of both noise and dark current, as well as a reduction in the dynamic range for long exposure times, thus affecting the performance of the detector, in particular, for charge-integrating detectors. We have designed sensors with a 4 × 4 mm2 pixel array featuring 16 design variations of 25 µm pitch pixels with different implant and metal sizes and tested them bump-bonded to MÖNCH 0.3, a charge integrating hybrid pixel detector readout ASIC. Following a first assessment of the functionality and performance of the different pixel designs, the assembly has been irradiated with X-rays. The variation in the tested parameters was characterized at different accumulated doses up to 100 kGy at the sensor entrance window side. The annealing dynamics at room temperature have also been measured. The results show that the default pixel design is currently not optimal and can benefit from layout changes (reduction in the inter-pixel gap area with full metal coverage of the implant). Further studies on the metal coverage over large implants could be conducted. The layout changes are, however, not sufficient for future full-sized sensors, requiring improved radiation hardness and long-term stability, and additional strategies such as focusing on detector cooling and changes in sensor technologies would be required. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

30 pages, 5793 KiB  
Article
Comprehensive Simulation-Based Evaluation of Gamma Radiation Shielding Performance of Bismuth Oxide- and Tungsten Oxide-Reinforced Polymer Composites for Nuclear Medicine Occupational Safety
by Suphalak Khamruang Marshall, Poochit Kwandee, Nueafa Songphum and Jarasrawee Chuaymuang
Polymers 2025, 17(11), 1491; https://doi.org/10.3390/polym17111491 - 27 May 2025
Viewed by 2245
Abstract
This study employs simulation tools to design and evaluate lightweight, lead-free polymer composites incorporating polytetrafluoroethylene (PTFE), polyethylene (PE), and polyetherimide (PEI) for gamma radiation shielding in nuclear medicine. Targeting clinically relevant photon energies from Tc-99m (140 keV), I-131 (364 keV), and Cs-137 (662 [...] Read more.
This study employs simulation tools to design and evaluate lightweight, lead-free polymer composites incorporating polytetrafluoroethylene (PTFE), polyethylene (PE), and polyetherimide (PEI) for gamma radiation shielding in nuclear medicine. Targeting clinically relevant photon energies from Tc-99m (140 keV), I-131 (364 keV), and Cs-137 (662 keV), composites’ structural and shielding performance with Bi2O3 and WO3 was assessed using XCOM and Phy-X/PSD. PEI emerged as the most suitable polymer for load-bearing and thermally exposed applications, offering superior mechanical stability and dimensional integrity. Bi2O3-WO3 fillers for Tc-99m achieved a ~7000-fold increase in MAC, I-131 ~2063-fold, and Cs-137 ~1370-fold compared to PbO2. The PEI-75Bi2O3-25WO3 achieved a ~21-fold reduction in half-value layer (HVL) compared to lead for Tc-99m. For higher-energy isotopes of I-131 and Cs-137, HVL reductions of ~0.44-fold and ~0.08-fold, respectively, were achieved. The results demonstrate that high-Z dual filler polymer composites have an equal or enhanced attenuation properties to lead-based shielding, whilst also enhancing the polymer composites’ mechanical and thermal characteristics. As the use of ionizing radiation increases, so does the potential risks; high-Z dual filler polymer composites provide a sustainable, lightweight, non-toxic alternative to conventional lead shielding. Full article
(This article belongs to the Special Issue Simulation and Calculation of Polymer Composite Materials)
Show Figures

Figure 1

9 pages, 1603 KiB  
Article
Electron Emission as a Tool for Detecting Fracture and Surface Durability of Tensile-Loaded Epoxy Polymers Modified with SiO2 Nanoparticles
by Agnes Elizabeth Cerpa, Yuri Dekhtyar and Sanda Kronberga
Processes 2025, 13(5), 1546; https://doi.org/10.3390/pr13051546 - 17 May 2025
Viewed by 383
Abstract
Epoxy polymers modified with nanoparticles are increasingly employed due to their enhanced performance in aggressive environments, characterized by mechanical stress, radiation exposure, and extreme temperatures. The mechanical failure of these polymers is attributed to the fracturing of atomic and molecular bonds, that subsequently [...] Read more.
Epoxy polymers modified with nanoparticles are increasingly employed due to their enhanced performance in aggressive environments, characterized by mechanical stress, radiation exposure, and extreme temperatures. The mechanical failure of these polymers is attributed to the fracturing of atomic and molecular bonds, that subsequently excites electrons having the capability to be emitted from the nanolayer of the material. The present study demonstrates that the relationship between mechanical loading and electron emission over time serves as an indicator of surface loading and durability. By utilizing the Kinetic Nature of Solid Material Strength (KSMS) theory alongside near-threshold electron emission measurements, the article presents the behavior of epoxy polymers modified with SiO2 nanoparticles under tensile loading. The results indicate that as mechanical load is applied, photoelectron emission (PE) pulses emerge. Notably, the pulse spectrum highest frequency (fmax) correlates with the time of atomic fluctuations (τ), defined by τ = 1/fmax. Furthermore, ultraviolet (UV) irradiation of the nanoparticles prior to mixing with the polymer is shown to influence the parameter of KSMS responsible for local stress concentration. This suggests that PE is connected with the homogeneity of the composite too. The achieved results demonstrate that PE contactless measurements can be used to detect mechanical destruction of the epoxy polymer composite surface nanolayer, as well as to assess its durability and corresponding activation energy. The results presented in the article may contribute to the development of more reliable epoxy polymer composites and durability measurements of their mechanically loaded surface layer or nanofilms. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

32 pages, 2581 KiB  
Article
Life Cycle Cost and Environmental Performance of Electric and Gasoline Vehicles in Cold Climate and Coal-Dependent Regions: A Case Study of Heilongjiang Province, China
by Sining Ma, Amir Hamzah Sharaai, Zhijian He, Nitanan Koshy Matthew and Nazatul Syadia Zainordin
Sustainability 2025, 17(10), 4554; https://doi.org/10.3390/su17104554 - 16 May 2025
Viewed by 541
Abstract
This study conducts a comparative life cycle assessment (LCA) and life cycle cost (LCC) analysis of battery electric vehicles (BEVs) and gasoline vehicles (GVs) in Heilongjiang Province, China, under cold climate conditions and a coal dominated electricity grid. Environmental impacts were assessed using [...] Read more.
This study conducts a comparative life cycle assessment (LCA) and life cycle cost (LCC) analysis of battery electric vehicles (BEVs) and gasoline vehicles (GVs) in Heilongjiang Province, China, under cold climate conditions and a coal dominated electricity grid. Environmental impacts were assessed using SimaPro with the ReCiPe 2016 Midpoint (H) method, while cost performance was evaluated over 5-, 10-, and 15-year ownership periods. Results show that BEVs offer lower total ownership costs than GVs, even without subsidies, primarily due to reduced energy and maintenance expenses. In terms of global warming potential, BEVs show a 4.52% reduction compared to GVs. However, BEVs demonstrate higher impacts in several non-climate categories—including ionizing radiation, particulate matter formation, eutrophication, toxicity, and water use—largely due to emissions from coal-based electricity. The derived grid emission factor of 1.498 kg CO2/kWh underscores the critical role of regional energy structure. These findings suggest that while BEVs provide economic and climate benefits, their overall environmental performance is highly dependent on local grid carbon intensity and seasonal energy demand. Policy recommendations include accelerating grid decarbonization, improving cold weather efficiency, and incorporating multidimensional environmental indicators into transport planning. Full article
Show Figures

Figure 1

24 pages, 3890 KiB  
Article
Dietary Insulinogenic Amino Acid Restriction Improves Glucose Metabolism in a Neonatal Piglet Model
by Matthew W. Gorton, Parniyan Goodarzi, Xia Lei, Michael Anderson, Mohammad Habibi, Nedra Wilson and Adel Pezeshki
Nutrients 2025, 17(10), 1675; https://doi.org/10.3390/nu17101675 - 15 May 2025
Viewed by 765
Abstract
Background: Dietary consumption of insulinogenic amino acids (IAA) is known to contribute to the development of insulin resistance. It remains to be studied whether dietary IAA restriction improves glucose metabolism and insulin sensitivity and whether this improvement is related to alterations in glucose [...] Read more.
Background: Dietary consumption of insulinogenic amino acids (IAA) is known to contribute to the development of insulin resistance. It remains to be studied whether dietary IAA restriction improves glucose metabolism and insulin sensitivity and whether this improvement is related to alterations in glucose metabolism in peripheral tissues. The objective of this study was to examine the effect of IAA restriction on glucose metabolism in a piglet model. Methods: Following the acclimation period, thirty-two seven-day-old male piglets were randomly assigned into one of three groups for three weeks as follows (n = 10–11/group): (1) NR (control): basal diet without IAA restriction; (2) R50: basal diet with IAA restricted by 50%; (3) R75: basal diet with IAA restricted by 75%. IAA were alanine (Ala), arginine (Arg), isoleucine (Ile), leucine (Leu), lysine (Lys), threonine (Thr), phenylalanine (Phe), and valine (Val) as suggested by previous studies. Thermal images, body weight, and growth parameters were recorded weekly, oral glucose tolerance tests were performed on week 2 of the study, and blood and tissue samples were collected on week 3 after a meal test. Results: R75 improved glucose tolerance and, together with R50, reduced blood insulin concentration and homeostatic model assessment for insulin resistance (HOMA-IR) value, which is suggestive of improved insulin sensitivity following IAA restriction. R75 increased thermal radiation and decreased adipocyte number in white adipose tissue (WAT). R75 had a greater transcript of glucose transporter 1 (GLUT1), phosphofructokinase, liver type (PFKL), and pyruvate kinase, liver, and RBC (PKLR) in the liver and glucokinase (GCK) in WAT indicating a higher uptake of glucose in the liver and greater glycolysis in both liver and WAT. R75 increased the mRNA abundance of insulin receptor substrate 1 (IRS1) and protein kinase B (AKT1) in skeletal muscle suggestive of enhanced insulin signaling. Further, R75 had a higher mRNA of fibroblast growth factor 21 (FGF-21) in both the liver and hypothalamus and its upstream molecules such as activating transcription factor 4 (ATF4) and inhibin subunit beta E (INHBE) which may contribute to increased energy expenditure and improved glucose tolerance during IAA restriction. Conclusions: IAA restriction improves glucose tolerance and insulin sensitivity in piglets while not reducing body weight, likely through improved hepatic glycolysis and insulin signaling in skeletal muscle, and induced FGF-21 signaling in both the liver and hypothalamus. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

19 pages, 4672 KiB  
Technical Note
Probabilistic Site Adaptation for High-Accuracy Solar Radiation Datasets in the Western Sichuan Plateau
by Lianlian Ye, Mengqi Liu, Disong Fu, Hao Wu, Hongrong Shi and Chunlin Huang
Remote Sens. 2025, 17(10), 1720; https://doi.org/10.3390/rs17101720 - 14 May 2025
Viewed by 386
Abstract
Downward shortwave radiation (DSR) to the Earth’s surface is an essential renewable energy component. Accurate knowledge of solar radiation, i.e., solar energy resource assessment, is a prior requirement for the development of the solar energy industry. In the framework of solar resource assessment, [...] Read more.
Downward shortwave radiation (DSR) to the Earth’s surface is an essential renewable energy component. Accurate knowledge of solar radiation, i.e., solar energy resource assessment, is a prior requirement for the development of the solar energy industry. In the framework of solar resource assessment, site adaptation refers to leveraging short-term, high-quality ground-based observations as unbiased references to correct long-term, site-specific gridded model datasets, which has been playing an important role in this research area. This study evaluates 12 probabilistic site adaptation (PSA) methods for the correction of the hourly DSR data from multiple gridded DSR products in the Western Sichuan Plateau (WSP). Surface pyranometer observations are used as the reference to adapt predictions from two satellite products and two reanalysis products, collectively. Systematic quantification reveals inherent errors with root mean square errors (RMSEs) > 200 W/m2 across all datasets. Through a comparative evaluation of three methodological categories (benchmarking, parametric/non-parametric, and quantile combination approaches), it is demonstrated that quantile-based ensemble methods achieve superior performance. The median ensemble (MED) method delivers optimal error reduction (RMSE: 163.97 W/m2, nRMSE: 34.43%). The resulting optimal dataset, with a temporal resolution of 1 h and a spatial resolution of 0.05° × 0.05°, identifies the WSP as a region of exceptional energy potential, characterized by substantial annual total solar radiation (1593.10 kWh/m2/yr) and a stable temporal distribution (negative correlation between the total solar radiation and the coefficient of variation). This methodological framework provides actionable insights for solar resource optimization in complex terrains. Full article
Show Figures

Graphical abstract

27 pages, 7020 KiB  
Article
Heat Transfer by Transmission in a Zone with a Thermally Activated Building System: An Extension of the ISO 11855 Hourly Calculation Method. Measurement and Simulation
by Piotr Michalak
Energies 2025, 18(9), 2350; https://doi.org/10.3390/en18092350 - 4 May 2025
Viewed by 549
Abstract
Water systems with pipes embedded in the horizontal concrete core slabs can be used for efficient space heating and cooling of passive and low-energy buildings. ISO 11855-4 describes the hourly simulation method of such systems while recommending to use other simulation tools to [...] Read more.
Water systems with pipes embedded in the horizontal concrete core slabs can be used for efficient space heating and cooling of passive and low-energy buildings. ISO 11855-4 describes the hourly simulation method of such systems while recommending to use other simulation tools to assess heat flow by transmission to the ambient environment. As it plays an important role in the thermal balance of a conditioned zone, this paper presents two calculation methods to obtain heat flow through the envelope. They were integrated with a general algorithm given in ISO 11855-4 and the simulation tool was developed. To validate the presented solution measurements were performed in a passive office building during the heating (November) and cooling (July) periods. The total heat transfer coefficient by transmission was measured and compared with the theoretical design value. Both proposed simulation algorithms provided results with very good accuracy. In the first period, the mean absolute of percentage error (MAPE) of the indoor air and floor temperatures amounted to 0.65% and 0.75%, respectively. Simulations showed that heating demand was covered mainly by the floor (28.7%), internal gains (21.7%), and ceiling (18.7%), while heat loss to the environment was mainly due to external partitions (94.0%). In the second period MAE and MAPE did not exceed 0.19 °C and 0.90%, respectively. Floor and ceiling were mainly responsible for heat gains removal (61%). Solar radiation was the main source (91%) of internal gains. The results obtained confirmed the assumptions taken. The simulation programme developed does not require the use of additional tools. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

Back to TopTop