Economic Efficiency of Renewable Energy Investments in Photovoltaic Projects: A Regression Analysis
Abstract
1. Introduction
- Guaranteed savings model: The public institution finances the investment, and the contractor guarantees a predefined level of energy savings.
- Shared savings model: The contractor provides financing, and repayments are tied to the actual savings achieved.
2. Literature Review
2.1. Main Challenges in EPC Applications
2.1.1. EPC Financing Challenges and Investment Payback Times
2.1.2. Deficiencies in the Legal and Regulatory Framework
2.1.3. Measurement and Verification Problems
2.1.4. Bureaucratic Processes and Lack of Institutional Awareness
2.1.5. Technical and Operational Barriers in EPC Implementation
2.2. Solution Suggestions
2.2.1. Diversification of Financing Options
2.2.2. Strengthening the Legal Framework
2.2.3. Improving Measurement and Verification Processes
2.2.4. Increasing Public Awareness and Technical Capacity
3. Materials and Methods
3.1. Conducting Energy Audits and Collecting Data
3.2. Regression Model Development
- Unit production cost (TL/kWh)
- Annual solar radiation (kWh/m2-year)
- Solar power plant investment cost (TL/kWp)
- Electricity sales price (kr/kWh)
- Y—Unit production cost (TL/kWh)
- X1—Annual solar radiation (kWh/m2-year)
- X2—Solar power plant investment cost (TL/kWp)
- X3—Electricity sales price (kr/kWh)
- β0—Constant term
- β1, β2, β3—Coefficients of independent variables
- ε—Error term
- Variable selection was guided by pre-feasibility reports and technical analyses identifying solar radiation, investment cost, and electricity sales price as critical factors affecting unit production cost.
- Normalization of variables was not required, as the variables were measured on compatible scales.
- Multicollinearity was checked using Variance Inflation Factor (VIF) analysis, confirming that all variables were within acceptable limits (VIF < 5).
- Heteroscedasticity was tested using the Breusch–Pagan test, which indicated homoscedastic residuals at a 95% confidence level.
- R2 (Coefficient of Determination): 0.873
- F-Test Significance Level: p < 0.01
- t-tests (independent variables): p < 0.05 (significant for all variables)
- Error Rate (%) = |Estimated − Actual|/Actual × 100 = |2,778,882 − 2,423,472.28|/2,423,472.28 × 100 ≈ 14.67%
3.3. Electricity Production Estimation and Calculation Formula
- Ei—Energy expected to be produced in month i (kWh)
- Ri—solar radiation measured in the ith month (kWh/m2)
- A—Panel surface area (m2) → 3600 m2
- η —Panel efficiency → 0.18 (i.e., 18%)
4. Results
4.1. Electricity Production Estimation and Calculation Formula
4.2. Planned Production and Economic Gain
4.3. Monthly PV Performance Analysis Obtained from Inverter Remote Monitoring System
4.3.1. CO2 and Coal Savings Calculation Methodology:
4.3.2. Comparative Analysis of Production Data:
- Estimated annual production amount: 2,778,882 kWh
- Actual production amount: 2,423,472.28 kWh
- Planned production (according to EPC contract): 2,085,030.40 kWh (Figure 3)
- Gray column (Planned Production): Minimum production target under the EPC framework (2,085,030.40 kWh).
- Blue column (Actual Production): Measured field production (2,423,472.28 kWh), 16% above the contract requirement.
- Orange column (Predicted Production): Theoretical maximum production (2,778,882.00 kWh), derived from a multivariate regression model and climatic data.
- The surplus production supports the economic viability of EPC-based renewable projects in public institutions.
- The forecasting model, despite a 14.7% deviation, remains robust and reliable for future investment planning.
- Environmental benefits in terms of CO2 mitigation and coal savings further emphasize the sustainability impact.
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Energy and Natural Resources (ETKB). Energy Performance Agreements and National Energy Projects Development Report. 2022. Available online: https://enerji.gov.tr/bilgi-merkezi-enerji-verimliligi-ulusal-ve-uluslararasi-projeler-gelistirme (accessed on 20 May 2025).
- Ministry of Environment, Urbanization and Climate Change (ÇŞİDB). Savings Target and Implementation Guide in Public Buildings (2024–2030). 2023. Available online: https://kamuguclendirme.csb.gov.tr/proje-hakkinda-genel-bilgi-i-101905 (accessed on 15 July 2025).
- Akkoç, H.N.; Onaygıl, S.; Acuner, E.; Cin, R. Implementations of Energy Performance Contracts in the Energy Service Market of Turkey. Energy Sustain. Dev. 2023, 76, 101303. [Google Scholar] [CrossRef]
- Chernetska, Y.; Borychenko, O.; Yehorenko, A. Determination of Optimal Packages of Energy Efficient Measures for Public Buildings. Power Eng. Econ. Tech. Ecol. 2023, 4, 61–67. [Google Scholar] [CrossRef]
- Medved, P. EPCHC-Energy Performance Contracting (EPC) Model for Historic City Centres. Acta Innov. 2022, 47, 28–40. [Google Scholar] [CrossRef]
- Pytko, J. The Role of Public Sector Entities in Improving Energy Efficiency—Characteristics of Energy Performance Contracts. Stud. Iurid. 2023, 101, 340–357. [Google Scholar] [CrossRef]
- Baimukhamedova, A. Role of Energy Intensity and Investment in Reducing Emissions in Türkiye. Eurasian J. Econ. Bus. Stud. 2024, 68, 127–140. [Google Scholar] [CrossRef]
- Gródek-Szostak, Z.; Suder, M.; Kusa, R.; Szeląg-Sikora, A.; Duda, J.; Niemiec, M. The Limited Financing Options in Public Institutions Cause Private Sector Investments to Remain Insufficient. Energies 2020, 13, 5752. [Google Scholar] [CrossRef]
- Natividade, J.; Cruz, C.O.; Silva, C.M. Improving the Efficiency of Energy Consumption in Buildings: Simulation of Alternative EnPC Models. Sustainability 2022, 14, 4228. [Google Scholar] [CrossRef]
- Papachristos, G. A Modeling Framework for the Diffusion of Low Carbon Energy Performance Contracts. Energy Effic. 2020, 13, 767–788. [Google Scholar] [CrossRef]
- Usta, P.; Cirik, K.; Şakalak, E.; Sever, A.E. A Critical Examination of the Construction Sector in Turkey in Terms of Sustainability. Int. J. Eng. Innov. Res. 2024, 6, 179–195. [Google Scholar] [CrossRef]
- Smolina, L. Energy Saving Methods during the Life Cycle of Buildings and Structures: Energy Service Contracts. E3S Web Conf. 2024, 549, 05007. [Google Scholar] [CrossRef]
- Szeląg-Sikora, A.; Sikora, J.; Niemiec, M.; Gródek-Szostak, Z.; Suder, M.; Kuboń, M.; Borkowski, T.; Malik, G. Solar Power: Stellar Profit or Astronomic Cost? A Case Study of Photovoltaic Installations under Poland’s National Prosumer Policy in 2016–2020. Energies 2021, 14, 4233. [Google Scholar] [CrossRef]
- Biondi, A.; Caponi, P.; Cecere, C.; Sciubba, E. An Exercise-Based Analysis of the Effects of Public Incentives on the So-Called “Energy Efficiency” of the Residential Sector, with Emphasis on Primary Resource Use and Economics of Scale. Front. Sustain. 2024, 5, 1397416. [Google Scholar] [CrossRef]
- Yilmaz, D.G.; Cesur, F. A Study for the Improvement of the Energy Performance Certificate (EPC) System in Turkey. Sustainability 2023, 15, 14074. [Google Scholar] [CrossRef]
- Li, R. Energy Performance Contracting from the Perspective of the Public Sector—A Bibliometric Analysis. Business 2022, 14, 127–138. [Google Scholar] [CrossRef]
- Wacinkiewicz, D.; Słotwiński, S. The Statutory Model of Energy Performance Contracting as a Means of Improving Energy Efficiency in Public Sector Units as Seen in the Example of Polish Legal Policies. Energies 2023, 16, 5060. [Google Scholar] [CrossRef]
- Ostrynskyi, V.; Nykytchenko, N.; Sopilko, I.; Krykun, V.; Mykulets, V.Y. EPC-Contracts Using in Renewable Energy: Legal and Practical Aspect. Rev. Amazon. Investig. 2022, 11, 309–317. [Google Scholar] [CrossRef]
- Athigakunagorn, N.; Limsawasd, C.; Mano, D.; Khathawatcharakun, P.; Labi, S. Promoting Sustainable Policy in Construction: Reducing Greenhouse Gas Emissions through Performance-Variation Based Contract Clauses. J. Clean. Prod. 2024, 448, 141594. [Google Scholar] [CrossRef]
- Kiboi, A.W. Management Perception of Performance Contracting in State Corporations. Int. J. Supply Chain. Logist. 2023, 7, 1–26. [Google Scholar] [CrossRef]
- Hepbaşlı, A.; Eltez, M. A Survey on Building Energy Management Systems at Turkish Universities. In Energy and the Environment; Begell House, Inc.: New York, NY, USA, 1999; pp. 213–215. [Google Scholar] [CrossRef]
- Võsa, K.-V.; Ferrantelli, A.; Tzanev, D.; Simeonov, K.; Carnero, P.; Espigares, C.; Navarro Escudero, M.; Quiles, P.V.; Andrieu, T.; Battezzati, F.; et al. Building Performance Indicators and IEQ Assessment Procedure for the Next Generation of EPC-s. E3S Web Conf. 2021, 246, 13003. [Google Scholar] [CrossRef]
- Aslan, A. The Effect of Thermal Insulation on Building Energy Efficiency in Turkey. Proc. Inst. Civ. Eng. Energy 2022, 175, 119–139. [Google Scholar] [CrossRef]
- Koltsios, S.; Tsolakis, A.C.; Fokaides, P.; Katsifaraki, A.; Cebrat, G.; Jurelionis, A.; Contopoulos, C.; Chatzipanagiotidou, P.; Malavazos, C.; Ioannidis, D.; et al. D2EPC: Next Generation Digital and Dynamic Energy Performance Certificates. In Proceedings of the 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), Split and Bol, Croatia, 8–11 September 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
- ISO 50001:2018; Energy Management Systems—Requirements with Guidance for Use. ISO (International Organization for Standardization): Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/69426.html (accessed on 15 July 2025).
- Cin, R.; Acuner, E.; Onaygil, S. Analysis of Energy Efficiency Obligation Scheme Implementation in Turkey. Energy Effic. 2021, 14, 4. [Google Scholar] [CrossRef]
- Tzani, D.; Stavrakas, V.; Santini, M.C.; Thomas, S.; Rosenow, J.E.; Flamos, A. Pioneering a Performance-Based Future for Energy Efficiency: Lessons Learned from a Comparative Review Analysis of Pay-for-Performance Programs. Renew. Sustain. Energy Rev. 2022, 158, 112162. [Google Scholar] [CrossRef]
- Serpa, F.S.E.; Cunha, R.A.D.; Nascimento, L.A. Energy Efficiency through Analysis of the Contracted Demand, Consumption and Framework Group “A” Tariff: Case Study at IFPA Parauapebas Campus. Braz. J. Dev. 2022, 8, 65088–65098. [Google Scholar] [CrossRef]
- Guo, J.; Shen, Y.; Xia, Y. Research on the Driving Factors for the Application of Energy Performance Contracting in Public Institutions. Sustainability 2024, 16, 3883. [Google Scholar] [CrossRef]
- Garrido-Marijuan, A.; Garay-Martinez, R.; de Agustín-Camacho, P.; Eguiarte, O. Assessment of the Potential of Commercial Buildings for Energy Management in Energy Performance Contracts. In Proceedings of the International Conference; Springer: Cham, Switzerland, 2024; pp. 377–385. [Google Scholar] [CrossRef]
- Pellegrino, M.; Wernert, C.; Chartier, A. Social Housing Net-Zero Energy Renovations with Energy Performance Contract: Incorporating Occupants’ Behaviour. Urban Plan. 2022, 7, 5–19. [Google Scholar] [CrossRef]
- Sayın, S.; Augenbroe, G. Optimal Energy Design and Retrofit Recommendations for the Turkish Building Sector. J. Green Build. 2021, 16, 61–90. [Google Scholar] [CrossRef]
- Xiao, S.; Sun, Z.; Rao, Y.; Cui, J.; Zhang, R.; Guo, W.; Liu, Z. Research on Energy Performance Contracting Mode of Demand-Side Reactive Power Compensation. Highlights Sci. Eng. Technol. 2024, 90, 232–239. [Google Scholar] [CrossRef]
- Munir, Z.H.; Ludin, N.A.; Junedi, M.M.; Affandi, N.A.A.; Ibrahim, M.A.; Teridi, M.A.M. A Rational Plan of Energy Performance Contracting in an Educational Building: A Case Study. Sustainability 2023, 15, 1430. [Google Scholar] [CrossRef]
- Życzyńska, A.; Majerek, D.; Suchorab, Z.; Żelazna, A.; Kočí, V.; Černý, R. Improving the Energy Performance of Public Buildings Equipped with Individual Gas Boilers Due to Thermal Retrofitting. Energies 2021, 14, 1565. [Google Scholar] [CrossRef]
- Fu, S.; Zhou, H.; Xiao, Y. Optimum Selection of Energy Service Company Based on Intuitionistic Fuzzy Entropy and VIKOR Framework. IEEE Access 2020, 8, 186572–186584. [Google Scholar] [CrossRef]
- Tan, B. Design of Balanced Energy Savings Performance Contracts. Int. J. Prod. Res. 2020, 58, 1401–1424. [Google Scholar] [CrossRef]
- Zakaria, Z.; Othman, M.N.; Zainuddin, H.; Rosdi, M.J.; Khallawi, A.R. Systematic Review of Risks in Energy Performance Contracting (EPC) Projects. J. Adv. Res. Appl. Sci. Eng. Technol. 2024, 48, 235–250. [Google Scholar] [CrossRef]
- Zakaria, Z.; Othman, M.N.; Zainuddin, H.; Rosdi, M.J.; Khallawi, A.R.; Adip, M.A. Risks in Measurement and Verification (M&V) in Energy Performance Contracting (EPC) Projects: A Systematic Review. J. Adv. Res. Appl. Sci. Eng. Technol. 2024, 53, 147–160. [Google Scholar] [CrossRef]
- Martiniello, L.; Morea, D.; Paolone, F.; Tiscini, R. Energy Performance Contracting and Public-Private Partnership: How to Share Risks and Balance Benefits. Energies 2020, 13, 3625. [Google Scholar] [CrossRef]
- Karamov, D.; Ilyushin, P.V.; Minarchenko, I.; Filippov, S.; Suslov, K. The Role of Energy Performance Agreements in the Sustainable Development of Decentralized Energy Systems: Methodology for Determining the Equilibrium Conditions of the Contract. Energies 2023, 16, 2564. [Google Scholar] [CrossRef]
- Anarene, B. Revolutionizing Energy Efficiency in Commercial and Institutional Buildings: A Complete Analysis. Int. J. Sci. Res. Manag. 2024, 12, 7444–7468. [Google Scholar] [CrossRef]
- Niemiec, M.; Sikora, J.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Komorowska, M. Assessment of the Possibilities for the Use of Selected Waste in Terms of Biogas Yield and Further Use of Its Digestate in Agriculture. Materials 2022, 15, 988. [Google Scholar] [CrossRef] [PubMed]
- Losada-Maseda, J.J.; Castro-Santos, L.; Graña-López, M.Á.; García-Diez, A.I.; Filgueira-Vizoso, A. Analysis of Contracts to Build Energy Infrastructures to Optimize the OPEX. Sustainability 2020, 12, 7232. [Google Scholar] [CrossRef]
- Christiernsson, A.; Geijer, M.; Malafry, M. Legal Aspects on Cultural Values and Energy Efficiency in the Built Environment—A Sustainable Balance of Public Interests? Heritage 2021, 4, 3507–3522. [Google Scholar] [CrossRef]
- Aksin, F.N.; Selçuk, S.A. Energy Performance Optimization of School Buildings in Different Climates of Turkey. Front. Civ. Eng. 2021, 7, 11. [Google Scholar] [CrossRef]
- Sesana, M.M.; Salvalai, G.; Della Valle, N.; Giulia, M.; Bertoldi, P. Towards Harmonizing Energy Performance Certificate Indicators in Europe. J. Civil Eng. 2024, 95, 110323. [Google Scholar] [CrossRef]
- Zhang, X. Contract Decisions Analysis of Shared Savings Energy Performance Contracting Based on Stackelberg Game Theory. E3S Web Conf. 2023, 385, 02008. [Google Scholar] [CrossRef]
- Gatt, D.; Yousif, C.; Cellura, M.; Camilleri, L.; Guarino, F. Assessment of Building Energy Modeling Studies to Meet the Requirements of the New Energy Performance of Buildings Directive. Renew. Sustain. Energy Rev. 2020, 127, 109886. [Google Scholar] [CrossRef]
- Dogan, M. A Public Energy Policy Proposal for Turkey in the Light of Econometric Findings. J. Kırklareli Univ. Soc. Sci. Vocat. Sch. 2023, 4, 1–23. [Google Scholar] [CrossRef]
- Karakosta, C.; Mylona, Z. A Methodological Framework for Enhancing Energy Efficiency Investments in Buildings. In Proceedings of the LIMEN International Scientific-Business Conference—Leadership, Innovation, Management and Economics: Integrated Politics of Research, Budapest, Hungary, 1 December 2022. [Google Scholar] [CrossRef]
- Lee, P.; Lam, P.T.I.; Lee, W.L. Risks in Energy Performance Contracting (EPC) Projects. Energy Build. 2015, 92, 116–127. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Installed Power | 1710.72 kWp |
Panel Area | 3600 m2 |
Panel Efficiency | 18% (0.18) |
Performance Ratio | 83% |
Specific Production | 1434.9 kWh/kWp-year |
Variable | Average | Minimum | Maximum | Std. Deviation |
---|---|---|---|---|
Solar Radiation (X1) | 371.19 | 206.42 | 451.76 | 77.92 |
Investment Cost (X2) | 10,714 | 10,000 | 11,200 | 426.75 |
Electricity Sales Price (X3) | 313.82 | 310.00 | 320.00 | 3.27 |
Unit Production Cost (Y) | 0.654 | 0.605 | 0.710 | 0.033 |
Month | Radiation (kWh/m2) | Production (kWh) |
---|---|---|
April 2024 | 434.02 | 281,244.12 |
May 2024 | 451.76 | 292,741.84 |
Jun 2024 | 432.49 | 280,255.85 |
Jul 2024 | 441.30 | 285,965.51 |
Aug 2024 | 419.76 | 272,725.38 |
Sep 2024 | 375.29 | 243,133.55 |
Oct 2024 | 336.93 | 218,376.76 |
Nov 2024 | 250.46 | 162,302.06 |
Dec 2024 | 206.42 | 133,740.34 |
Jan 2025 | 249.22 | 161,487.43 |
Feb 2025 | 297.11 | 192,623.14 |
Mar 2025 | 393.63 | 254,984.71 |
TOTAL | – | 2,778,882 |
Order | Device Brand | Device Model | Serial Number | Initial Reading (kWh) | Final Reading (kWh) | Production (kWh) | Production (TL) |
---|---|---|---|---|---|---|---|
1 | Schneider | ION 7650 | MJ-2209A033-05 | 325.70 | 1,200,232.00 | 1,199,906.30 | 5,051,605.52 |
2 | Schneider | ION 7650 | MJ-2209A039-05 | 1014.02 | 1,224,580.00 | 1,223,565.98 | 5,151,212.78 |
total | 2,423,472.28 | 10,202,818.30 |
Production Type | Energy (kWh) | Value (TL) |
---|---|---|
Planned Production | 2,085,030.40 | 8,777,978.00 |
Actual Production | 2,423,472.28 | 10,202,818.30 |
Overproduction | 338,441.88 | 1,424,840.30 |
Month | Total Irradiance (kWh/m2) | PV Gain (kWh) | Specific Energy (kWh/kWp) | Performance Ratio (%) | CO2 Blocked (t) | Standard Coal Savings (t) |
---|---|---|---|---|---|---|
Mar-24 | 96.89 | 147,314.43 | 85.98 | 88.74 | 69.97 | 58.93 |
April-24 | 37.91 | 217,464.55 | 127.10 | 100.00 | 103.30 | 86.99 |
May-24 | 200.85 | 278,226.43 | 162.61 | 80.96 | 132.16 | 111.29 |
Jun-24 | 209.26 | 281,661.90 | 164.62 | 78.67 | 133.79 | 112.67 |
Jul-24 | 207.13 | 282,502.77 | 165.11 | 79.71 | 134.19 | 113.00 |
Aug-24 | 183.49 | 257,621.55 | 150.37 | 81.99 | 122.37 | 103.05 |
Sep-24 | 162.73 | 230,688.55 | 134.65 | 82.74 | 109.58 | 92.28 |
Oct-24 | 137.37 | 201,896.87 | 117.84 | 85.78 | 95.90 | 80.76 |
Nov-24 | 75.32 | 115,442.55 | 67.38 | 89.47 | 54.84 | 46.18 |
Dec-24 | 51.56 | 81,494.06 | 47.57 | 92.26 | 38.71 | 32.60 |
Jan-25 | 75.92 | 121,013.43 | 70.63 | 93.03 | 57.48 | 48.41 |
Feb-25 | 99.72 | 160,743.68 | 93.82 | 94.08 | 76.35 | 64.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbulut, A.; Niemiec, M.; Taşdelen, K.; Akbulut, L.; Komorowska, M.; Atılgan, A.; Coşgun, A.; Okręglicka, M.; Wiktor, K.; Povstyn, O.; et al. Economic Efficiency of Renewable Energy Investments in Photovoltaic Projects: A Regression Analysis. Energies 2025, 18, 3869. https://doi.org/10.3390/en18143869
Akbulut A, Niemiec M, Taşdelen K, Akbulut L, Komorowska M, Atılgan A, Coşgun A, Okręglicka M, Wiktor K, Povstyn O, et al. Economic Efficiency of Renewable Energy Investments in Photovoltaic Projects: A Regression Analysis. Energies. 2025; 18(14):3869. https://doi.org/10.3390/en18143869
Chicago/Turabian StyleAkbulut, Adem, Marcin Niemiec, Kubilay Taşdelen, Leyla Akbulut, Monika Komorowska, Atılgan Atılgan, Ahmet Coşgun, Małgorzata Okręglicka, Kamil Wiktor, Oksana Povstyn, and et al. 2025. "Economic Efficiency of Renewable Energy Investments in Photovoltaic Projects: A Regression Analysis" Energies 18, no. 14: 3869. https://doi.org/10.3390/en18143869
APA StyleAkbulut, A., Niemiec, M., Taşdelen, K., Akbulut, L., Komorowska, M., Atılgan, A., Coşgun, A., Okręglicka, M., Wiktor, K., Povstyn, O., & Urbaniec, M. (2025). Economic Efficiency of Renewable Energy Investments in Photovoltaic Projects: A Regression Analysis. Energies, 18(14), 3869. https://doi.org/10.3390/en18143869