Comprehensive Simulation-Based Evaluation of Gamma Radiation Shielding Performance of Bismuth Oxide- and Tungsten Oxide-Reinforced Polymer Composites for Nuclear Medicine Occupational Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. ANSYS Simulation of Material Behavior in Bi2O3- and WO3-Reinforced Polymer Composites
2.2.1. Heat Transfer
2.2.2. Bending Behavior
2.3. Simulation of Photon Interaction Cross-Sections in High-Z Reinforced Polymers Using XCOM for Occupational Radiation Protection
2.4. Comprehensive Phy-X/PSD Computational Analysis of Gamma Radiation Attenuation Parameters in Bi2O3- and WO3-Reinforced Polymer Composites for Enhanced Occupational Radiation Shielding in Nuclear Medicine
2.5. Statistical Analysis
3. Results
3.1. Finite Element Analysis of Heat Transfer and Bending-Induced Structural Deformation in Bismuth Oxide and Tungsten Oxide-Reinforced Polymer Composites Using ANSYS
3.1.1. Numerical Simulation of Heat Transfer and Material Performance in ANSYS
3.1.2. Bending-Induced Structural Deformation
3.2. XCOM-Based Computational Analysis of Mass Attenuation Coefficients in Bismuth Oxide and Tungsten Oxide-Reinforced Polymer Composites for Gamma Radiation Shielding
3.2.1. Incoherent Scattering
3.2.2. Photoelectric Absorption
3.2.3. Pair Production in the Nuclear Field
3.2.4. Total Attenuation Without Coherent Scattering
3.3. Advanced Computational Assessment of Gamma Photon Shielding Properties in Bi2O3- and WO3-Enhanced Polymer Composites Using Phy-X/PSD for Nuclear Medicine Safety
3.3.1. Linear Attenuation Coefficients (LAC)
3.3.2. Half-Value Layer (HVL)
3.3.3. Tenth-Value Layer (TVL)
3.3.4. Mean Free Path (MFP)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glasser, O. Wilhelm Conrad Röntgen and the Early History of the Roentgen Rays; Norman Publishing: San Francisco, CA, USA, 1993. [Google Scholar]
- Holsti, L.R. Development of Clinical Radiotherapy Since 1896. Acta Oncol. 1995, 34, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Gurung, P. A Comprehensive Review of Sensors of Radiation-induced Damage, Radiation-induced Proximal Events, and Cell Death. Immunol. Rev. 2025, 329, e13409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, X.; Gao, X.; Chen, X.; Li, L.; Li, G.; Liu, C.; Miao, Y.; Wang, R.; Hu, K. Radiopharmaceuticals and Their Applications in Medicine. Signal Transduct. Target. Ther. 2025, 10, 1. [Google Scholar] [CrossRef]
- Mentana, A.; Quaresima, V.; Kundrát, P.; Guardamagna, I.; Lonati, L.; Iaria, O.; Previtali, A.; Amantini, G.S.; Lunati, L.; Boretti, V. Mapping Neutron Biological Effectiveness for DNA Damage Induction as a Function of Incident Energy and Depth in a Human Sized Phantom. Sci. Rep. 2025, 15, 2209. [Google Scholar] [CrossRef]
- Chow, J.C. Monte Carlo Simulations in Nanomedicine: Advancing Cancer Imaging and Therapy. Nanomaterials 2025, 15, 117. [Google Scholar] [CrossRef]
- Averbeck, D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int. J. Mol. Sci. 2023, 24, 11460. [Google Scholar] [CrossRef]
- Marshall, S.K.; Hayeeabdunromae, A.; Noomad, N.; Durawee, W.; Sirieak, N.; Karnkorn, P.; Keawtong, V. Evaluation of Environmental Radiation Exposure and Algorithms for Determining the Occupational Effective Dose During 99mTc-MDP Bone Scintigraphy: A Comprehensive Analysis. Appl. Sci. 2024, 14, 11211. [Google Scholar] [CrossRef]
- Hricak, H.; Mayerhoefer, M.E.; Herrmann, K.; Lewis, J.S.; Pomper, M.G.; Hess, C.P.; Riklund, K.; Scott, A.M.; Weissleder, R. Advances and Challenges in Precision Imaging. Lancet Oncol. 2025, 26, e34–e45. [Google Scholar] [CrossRef]
- Frane, N.; Bitterman, A. Radiation Safety and Protection; StatPearls Publishing: Treaure Island, FL, USA, 2020. [Google Scholar]
- Domenech, H. Radiation Safety; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-42669-3. [Google Scholar]
- Rehani, M.M.; Yang, K.; Melick, E.R.; Heil, J.; Šalát, D.; Sensakovic, W.F.; Liu, B. Patients Undergoing Recurrent CT Scans: Assessing the Magnitude. Eur. Radiol. 2020, 30, 1828–1836. [Google Scholar] [CrossRef]
- Smith-Bindman, R.; Chu, P.W.; Firdaus, H.A.; Stewart, C.; Malekhedayat, M.; Alber, S.; Bolch, W.E.; Mahendra, M.; de González, A.B.; Miglioretti, D.L. Projected Lifetime Cancer Risks from Current Computed Tomography Imaging. JAMA Intern. Med. 2025, 5, 5. [Google Scholar] [CrossRef]
- Marshall, S.K.; Prom-On, P.; Sangkue, S.; Thiangsook, W. Assessment of Radiation Exposure in a Nuclear Medicine Department during 99mTc-MDP Bone Scintigraphy. Toxics 2023, 11, 814. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Liu, X.; Lian, Y.; Guo, W.; Zhang, L.; Chen, Y.; Lan, X.; Li, M.; Zhang, S.; Huang, W. Analysis of the Association between Long-Term Exposure to Low-Dose Ionizing Radiation and Dyslipidemia and Its Components in Medical Radiologists: The Mediating Role of Inflammatory Markers. Int. J. Cardiol. Cardiovasc. Risk Prev. 2025, 25, 200406. [Google Scholar] [CrossRef] [PubMed]
- Pappan, N.; Awosika, A.O.; Rehman, A. Dyslipidemia. In StatPearls; StatPearls Publishing: Treaure Island, FL, USA, 2024. [Google Scholar]
- Picano, E.; Vano, E. Updated Estimates of Radiation Risk for Cancer and Cardiovascular Disease: Implications for Cardiology Practice. J. Clin. Med. 2024, 13, 2066. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Xiong, Z.; Wang, M.; Liu, Q. Environmental Pollution Effect Analysis of Lead Compounds in China Based on Life Cycle. Int. J. Environ. Res. Public Health 2020, 17, 2184. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Thakur, M.; Singh, K.; Jasrotia, R.; Kumar, R.; Radziemska, M. Global Perspectives on Lead Contamination and Health Risks in Surface Water, Rice Grains, and Soils. Land Degrad. Dev. 2025, 36, 2159–2169. [Google Scholar] [CrossRef]
- Gudadhe, S.; Singh, S.K.; Ahsan, J. Cellular and Neurological Effects of Lead (Pb) Toxicity. In Lead Toxicity Mitigation: Sustainable Nexus Approaches; Kumar, N., Jha, A.K., Eds.; Environmental Contamination Remediation and Management; Springer Nature: Cham, Switzerland, 2024; pp. 125–145. ISBN 978-3-031-46145-3. [Google Scholar]
- Larsen, B.; Sánchez-Triana, E. Global Health Burden and Cost of Lead Exposure in Children and Adults: A Health Impact and Economic Modelling Analysis. Lancet Planet. Health 2023, 7, e831–e840. [Google Scholar] [CrossRef]
- Chang, Q.; Guo, S.; Zhang, X. Radiation Shielding Polymer Composites: Ray-Interaction Mechanism, Structural Design, Manufacture and Biomedical Applications. Mater. Des. 2023, 233, 112253. [Google Scholar] [CrossRef]
- Wu, S.; Bao, J.; Gao, Y.; Hu, W.; Lu, Z. Review on Flexible Radiation-Protective Clothing Materials. J. Mater. Sci. 2024, 59, 8109–8133. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric Composite Materials for Radiation Shielding: A Review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef]
- Marshall, S.K.; Chuaymuang, J.; Kwandee, P.; Songphum, N. Shielding Efficacy of Tungsten Oxide-Reinforced Polyisoprene in Attenuating Technetium-99m Gamma Radiation: An Alternative Shielding Solution for Occupational Safety in Nuclear Medicine. Appl. Sci. 2025, 15, 3892. [Google Scholar] [CrossRef]
- Marshall, S.K.; Boonpeng, K.; Buapud, N.; Chimhashat, S.; Chuaymuang, J.; Kwandee, P.; Songphum, N. Bismuth Oxide Nanoparticle-Enhanced Poly (Methyl Methacrylate) Composites for I-131 Radiation Shielding: A Combined Simulation and Experimental Investigation. Polymers 2025, 17, 590. [Google Scholar] [CrossRef] [PubMed]
- Matsson, J.E. An Introduction to ANSYS Fluent 2022; Sdc Publications: Mission, KS, USA, 2022. [Google Scholar]
- Rae, P.J.; Dattelbaum, D.M. The Properties of Poly (Tetrafluoroethylene)(PTFE) in Compression. Polymer 2004, 45, 7615–7625. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Ye, L. Effects of Thickness and Environmental Temperature on Fracture Behaviour of Polyetherimide (PEI). J. Mater. Sci. 2004, 39, 1267–1276. [Google Scholar] [CrossRef]
- D’Amore, A.; Caprino, G.; Nicolais, L.; Marino, G. Long-Term Behaviour of PEI and PEI-Based Composites Subjected to Physical Aging. Compos. Sci. Technol. 1999, 59, 1993–2003. [Google Scholar] [CrossRef]
- Kitagawa, M.; Onoda, T.; Mizutani, K. Stress-Strain Behaviour at Finite Strains for Various Strain Paths in Polyethylene. J. Mater. Sci. 1992, 27, 13–23. [Google Scholar] [CrossRef]
- Zhu, T.; Li, X.; Zhao, X.; Zhang, X.; Lu, Y.; Zhang, L. Stress-Strain Behavior and Corresponding Crystalline Structures of Four Types of Polyethylene under a Wide Range of Strain Rates. Polym. Test. 2022, 106, 107460. [Google Scholar] [CrossRef]
- Govaert, L.E.; Bastiaansen, C.W.M.; Leblans, P.J.R. Stress-Strain Analysis of Oriented Polyethylene. Polymer 1993, 34, 534–540. [Google Scholar] [CrossRef]
- Brown, D.A.; Chadwick, M.B.; Capote, R.; Kahler, A.C.; Trkov, A.; Herman, M.W.; Sonzogni, A.A.; Danon, Y.; Carlson, A.D.; Dunn, M. ENDF/B-VIII. 0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-Project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets 2018, 148, 1–142. [Google Scholar] [CrossRef]
- Berger, M.J.; Hubbell, J.H. XCOM: Photon Cross Sections on a Personal Computer; National Bureau of Standards, Center for Radiation: Washington, DC, USA, 1987. [Google Scholar]
- Gerward, L.; Guilbert, N.; Jensen, K.B.; Levring, H. X-Ray Absorption in Matter. Reengineering XCOM. Radiat. Phys. Chem. 2001, 60, 23–24. [Google Scholar] [CrossRef]
- Şakar, E.; Özpolat, Ö.F.; Alım, B.; Sayyed, M.I.; Kurudirek, M. Phy-X/PSD: Development of a User Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. [Google Scholar] [CrossRef]
- Sayyed, M.I. Investigation of Shielding Parameters for Smart Polymers. Chin. J. Phys. 2016, 54, 408–415. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J. Radiation-Induced Grafting of Polyethyleneimine onto Cellulose Triacetate Membrane for Separation of Cesium Ions from Aqueous Solution. Radiat. Phys. Chem. 2024, 222, 111832. [Google Scholar] [CrossRef]
- Yuan, Y.; Geng, B.; Sun, T.; Yu, Q.; Wang, H. Impact-Induced Reaction Characteristic and the Enhanced Sensitivity of PTFE/Al/Bi2O3 Composites. Polymers 2019, 11, 2049. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Yang, F.; Lee, S. Effect of Gamma Irradiation on High Temperature Hardness of Low-Density Polyethylene. Philos. Mag. 2015, 95, 3486–3496. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, Z.-K.; Zhang, Y.-Y.; Li, Y.-Q.; Fu, Y.-Q.; Sun, B.-G.; Shi, H.-Q.; Huang, P.; Hu, N.; Fu, S.-Y. Mechanical, Tribological and Thermal Properties of Injection Molded Short Carbon Fiber/Expanded Graphite/Polyetherimide Composites. Compos. Sci. Technol. 2021, 201, 108498. [Google Scholar] [CrossRef]
- Harito, C.; Bavykin, D.V.; Yuliarto, B.; Dipojono, H.K.; Walsh, F.C. Polymer Nanocomposites Having a High Filler Content: Synthesis, Structures, Properties, and Applications. Nanoscale 2019, 11, 4653–4682. [Google Scholar] [CrossRef]
- Mohammed, M.M.; Rasidi, M.; Mohammed, A.M.; Rahman, R.B.; Osman, A.F.; Adam, T.; Betar, B.O.; Dahham, O.S. Interfacial Bonding Mechanisms of Natural Fibre-Matrix Composites: An Overview. BioResources 2022, 17, 7031. [Google Scholar] [CrossRef]
- Mazur, K.; Gądek-Moszczak, A.; Liber-Kneć, A.; Kuciel, S. Mechanical Behavior and Morphological Study of Polytetrafluoroethylene (PTFE) Composites under Static and Cyclic Loading Condition. Materials 2021, 14, 1712. [Google Scholar] [CrossRef]
- Jordan, J.L.; Siviour, C.R.; Foley, J.R.; Brown, E.N. Compressive Properties of Extruded Polytetrafluoroethylene. Polymer 2007, 48, 4184–4195. [Google Scholar] [CrossRef]
- Prabhu, S.; Bubbly, S.G.; Gudennavar, S.B. X-Ray and γ-Ray Shielding Efficiency of Polymer Composites: Choice of Fillers, Effect of Loading and Filler Size, Photon Energy and Multifunctionality. Polym. Rev. 2023, 63, 246–288. [Google Scholar] [CrossRef]
- Muthamma, M.V.; Prabhu, S.; Bubbly, S.G.; Gudennavar, S.B. Micro and Nano Bi2O3 Filled Epoxy Composites: Thermal, Mechanical and γ-Ray Attenuation Properties. Appl. Radiat. Isot. 2021, 174, 109780. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Abdalla, A.; Qurashi, A. Synthesis of Hierarchical WO3 and Bi2O3/WO3 Nanocomposite for Solar-Driven Water Splitting Applications. Int. J. Hydrogen Energy 2017, 42, 3431–3439. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Y.; Xi, X.; Shen, Y.; Wang, J.; Liu, Y.; Nie, Z. Bi/Bi2O3/WO3 Composite: A Bifunctional Plasmonic Heterostructure for Detection and Degradation Pollutions in Wastewater. J. Environ. Chem. Eng. 2022, 10, 107643. [Google Scholar] [CrossRef]
- Ling, C.D.; Withers, R.L.; Schmid, S.; Thompson, J.G. A Review of Bismuth-Rich Binary Oxides in the Systems Bi2O3–Nb2O5, Bi2O3–Ta2O5, Bi2O3–MoO3, and Bi2O3–WO3. J. Solid State Chem. 1998, 137, 42–61. [Google Scholar] [CrossRef]
- Feng, J.; Jiang, T.; Han, Y.; Okoth, O.K.; Cheng, L.; Zhang, J. Construction of Dual Z-Scheme Bi2S3/Bi2O3/WO3 Ternary Film with Enhanced Visible Light Photoelectrocatalytic Performance. Appl. Surf. Sci. 2020, 505, 144632. [Google Scholar] [CrossRef]
- Alsaab, A.H.; Zeghib, S. Study of Prepared Lead-Free Polymer Nanocomposites for X-and Gamma-Ray Shielding in Healthcare Applications. Polymers 2023, 15, 2142. [Google Scholar] [CrossRef]
- Toyen, D.; Rittirong, A.; Poltabtim, W.; Saenboonruang, K. Flexible, Lead-Free, Gamma-Shielding Materials Based on Natural Rubber/Metal Oxide Composites. Iran. Polym. J. 2018, 27, 33–41. [Google Scholar] [CrossRef]
- Akkurt, I.; El-Khayatt, A.M. The Effect of Barite Proportion on Neutron and Gamma-Ray Shielding. Ann. Nucl. Energy 2013, 51, 5–9. [Google Scholar] [CrossRef]
- Alzahrani, J.S.; Sriwunkum, C.; Tonguc, B.T.; Alothman, M.A.; Olarinoye, I.O.; Al-Buriahi, M.S. Lead-Free Bismuth Glass System towards Eco-Friendly Radiation Shielding Applications. Results Phys. 2023, 53, 106987. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Issa, S.A.; Tekin, H.O.; Saddeek, Y.B. Comparative Study of Gamma-Ray Shielding and Elastic Properties of BaO–Bi2O3–B2O3 and ZnO–Bi2O3–B2O3 Glass Systems. Mater. Chem. Phys. 2018, 217, 11–22. [Google Scholar] [CrossRef]
- Hubbell, J.H. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1996. [Google Scholar]
- Stalin, S.; Gaikwad, D.K.; Al-Buriahi, M.S.; Srinivasu, C.; Ahmed, S.A.; Tekin, H.O.; Rahman, S. Influence of Bi2O3/WO3 Substitution on the Optical, Mechanical, Chemical Durability and Gamma Ray Shielding Properties of Lithium-Borate Glasses. Ceram. Int. 2021, 47, 5286–5299. [Google Scholar] [CrossRef]
- Elsafi, M.; Sayyed, M.I.; Almuqrin, A.H.; Gouda, M.M.; El-Khatib, A.M. Analysis of Particle Size on Mass Dependent Attenuation Capability of Bulk and Nanoparticle PbO Radiation Shields. Results Phys. 2021, 26, 104458. [Google Scholar] [CrossRef]
- Kassim, H.; Asemi, N.N.; Aldawood, S. Gamma-Ray Shielding Enhancement Using Glycidyl Methacrylate Polymer Composites Reinforced by Titanium Alloy and Bismuth Oxide Nanoparticles. J. Radiat. Res. Appl. Sci. 2025, 18, 101202. [Google Scholar] [CrossRef]
- Hedaya, A.; Elsafi, M.; Al-Saleh, W.M.; Saleh, I.H. Effect of Bi2O3 Particle Size on the Radiation-Shielding Performance of Free-Lead Epoxide Materials against Ionizing Radiation. Polymers 2024, 16, 2125. [Google Scholar] [CrossRef]
- Li, W.; Peng, M.; Zhao, X.; Chen, S. Properties of Bi2O3/Epoxy Resin–Coated Composites for Protection against Gamma Rays. J. Ind. Text. 2022, 51, 7545S–7568S. [Google Scholar] [CrossRef]
- Yılmaz, E.; Baltas, H.; Kırıs, E.; Ustabas, İ.; Çevik, U.; El-Khayatt, A.M. Gamma Ray and Neutron Shielding Properties of Some Concrete Materials. Ann. Nucl. Energy 2011, 38, 2204–2212. [Google Scholar] [CrossRef]
- Singh, V.P.; Badiger, N.M. Gamma Ray and Neutron Shielding Properties of Some Alloy Materials. Ann. Nucl. Energy 2014, 64, 301–310. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Dong, M.G.; Tekin, H.O.; Lakshminarayana, G.; Mahdi, M.A. Comparative Investigations of Gamma and Neutron Radiation Shielding Parameters for Different Borate and Tellurite Glass Systems Using WinXCom Program and MCNPX Code. Mater. Chem. Phys. 2018, 215, 183–202. [Google Scholar] [CrossRef]
- Al-Hasnawy, R.S.; Kadhim, R.O. Gamma-Ray Shielding Parameters Analysis for Some Polymers Using Phy-X/PSD and WinXCom. E3S Web Conf. EDP Sci. 2024, 583, 04012. [Google Scholar] [CrossRef]
- Poltabtim, W.; Toyen, D.; Saenboonruang, K. Theoretical Determination of High-Energy Photon Attenuation and Recommended Protective Filler Contents for Flexible and Enhanced Dimensionally Stable Wood/NR and NR Composites. Polymers 2021, 13, 869. [Google Scholar] [CrossRef]
- Groudev, P.; Andreeva, M.; Pavlova, M. Investigation of Main Coolant Pump Trip Problem in Case of SB LOCA for Kozloduy Nuclear Power Plant, WWER-440/V230. Ann. Nucl. Energy 2015, 76, 137–145. [Google Scholar] [CrossRef]
- Alajerami, Y.S.; Mhareb, M.H.A.; Sayyed, M.I.; Hamad, M.K.; Kodeh, F.; Rashad, M.; Mitwalli, M. Comprehensive Study for Radiation Shielding Features for Bi2O3–B2O3–ZnO Composite Using Computational Radioanalytical Phy-X/PSD, MCNP5, and SRIM Software. Sci. Rep. 2024, 14, 17700. [Google Scholar] [CrossRef] [PubMed]
- Hauptmann, M.; Byrnes, G.; Cardis, E.; Bernier, M.-O.; Blettner, M.; Dabin, J.; Engels, H.; Istad, T.S.; Johansen, C.; Kaijser, M. Brain Cancer after Radiation Exposure from CT Examinations of Children and Young Adults: Results from the EPI-CT Cohort Study. Lancet Oncol. 2023, 24, 45–53. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marshall, S.K.; Kwandee, P.; Songphum, N.; Chuaymuang, J. Comprehensive Simulation-Based Evaluation of Gamma Radiation Shielding Performance of Bismuth Oxide- and Tungsten Oxide-Reinforced Polymer Composites for Nuclear Medicine Occupational Safety. Polymers 2025, 17, 1491. https://doi.org/10.3390/polym17111491
Marshall SK, Kwandee P, Songphum N, Chuaymuang J. Comprehensive Simulation-Based Evaluation of Gamma Radiation Shielding Performance of Bismuth Oxide- and Tungsten Oxide-Reinforced Polymer Composites for Nuclear Medicine Occupational Safety. Polymers. 2025; 17(11):1491. https://doi.org/10.3390/polym17111491
Chicago/Turabian StyleMarshall, Suphalak Khamruang, Poochit Kwandee, Nueafa Songphum, and Jarasrawee Chuaymuang. 2025. "Comprehensive Simulation-Based Evaluation of Gamma Radiation Shielding Performance of Bismuth Oxide- and Tungsten Oxide-Reinforced Polymer Composites for Nuclear Medicine Occupational Safety" Polymers 17, no. 11: 1491. https://doi.org/10.3390/polym17111491
APA StyleMarshall, S. K., Kwandee, P., Songphum, N., & Chuaymuang, J. (2025). Comprehensive Simulation-Based Evaluation of Gamma Radiation Shielding Performance of Bismuth Oxide- and Tungsten Oxide-Reinforced Polymer Composites for Nuclear Medicine Occupational Safety. Polymers, 17(11), 1491. https://doi.org/10.3390/polym17111491