Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = artichoke fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1103 KiB  
Article
Effect of Artichoke Outer Bract Powder Addition on the Nutritional Profile of Gluten-Free Rusks
by Valentina Melini, Francesca Melini, Alessandro Salvati, Francesca Luziatelli and Maurizio Ruzzi
Foods 2025, 14(13), 2395; https://doi.org/10.3390/foods14132395 - 7 Jul 2025
Viewed by 395
Abstract
This study investigates the effect of incorporating outer bract powder on the bioactive compound content of gluten-free (GF) rusks, in terms of undigestible carbohydrates and phenolic compound content. The production of the artichoke powder as a functional ingredient was optimized by evaluating two [...] Read more.
This study investigates the effect of incorporating outer bract powder on the bioactive compound content of gluten-free (GF) rusks, in terms of undigestible carbohydrates and phenolic compound content. The production of the artichoke powder as a functional ingredient was optimized by evaluating two key processing variables: drying time and pre-treatment of artichoke bracts with food-grade citric acid. Two distinct composite GF flour blends were used to formulate the GF rusks, and the nutritional quality thereof was systematically assessed. Results demonstrated that pre-treating the artichoke outer bracts with citric acid, followed by drying at 40 °C for 20 h, allowed for the production of a powder characterized by a lighter and reddish appearance, low fat content, and high dietary fiber level. The formulated rusks were rich in dietary fiber, whose intake is generally a deficiency in the diet of coeliac subjects. Furthermore, the enrichment with artichoke powder contributed to the production of a low-fat snack, in contrast with the GF snacks available on the market. The artichoke powder also showed a high content of free phenolic compounds, suggesting an enhanced dietary intake of antioxidants for consumers. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

25 pages, 845 KiB  
Review
Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks
by Rafał Wiśniewski, Ewa Pejcz and Joanna Harasym
Molecules 2025, 30(13), 2838; https://doi.org/10.3390/molecules30132838 - 2 Jul 2025
Viewed by 498
Abstract
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their [...] Read more.
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their nutritional value but also for their richness in bioactive compounds, including polyphenols, dietary fiber, resistant starch, and prebiotic carbohydrates that exhibit varying levels of antioxidant, anti-inflammatory, and glycemic-regulating properties. Incorporating these vegetables into baked goods offers both functional and technological benefits, such as improved moisture retention, reduced acrylamide formation, and suitability for gluten-free formulations. The processing conditions can significantly influence the stability and bioavailability of these bioactive components, while the presence of antinutritional factors—such as phytates, cyanogenic glycosides, and FODMAPs (fermentable oligo-, di-, monosaccharides, and polyols)—needs careful optimization. The structured narrative literature review approach allowed collecting studies that examine both the beneficial and potential drawbacks of tuber-based ingredients. This review provides a comprehensive overview of the chemical composition, health-promoting effects, and technological roles of edible tubers in bakery applications, also addressing current challenges related to processing, formulation, and consumer acceptance. Special emphasis is placed on the valorization of tuber by-products, enhancement of functional properties, and the promotion of sustainable food systems using zero-waste strategies. Full article
(This article belongs to the Special Issue Food Bioactive Components in Functional Foods and Nutraceuticals)
Show Figures

Graphical abstract

18 pages, 1097 KiB  
Article
Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.)
by Marco Zuccolo, Angela Bassoli, Annamaria Giorgi, Luca Giupponi, Stefania Mazzini and Gigliola Borgonovo
Molecules 2025, 30(12), 2649; https://doi.org/10.3390/molecules30122649 - 19 Jun 2025
Viewed by 434
Abstract
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization [...] Read more.
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization of the residual leaves of Carciofo di Malegno, an Alpine artichoke landrace. Comparative analysis was conducted against leaves from two commercial cultivars and a commercial herbal tea product. HPLC analysis revealed that Carciofo di Malegno exhibited the lowest levels of secondary metabolites. Cynaropicrin content was 0.52 ± 0.03 mg/g, lower than in the commercial samples, while the phenolic compounds were below the quantification limit. Proximate analysis indicated a distinctive nutritional profile, with significantly higher ash (8.01 ± 0.04%) and crude fiber (35.75 ± 0.29%) contents compared to all reference samples. These findings highlight the potential of Carciofo di Malegno residual leaves as a sustainable source of nutrients for functional food and nutraceutical applications. Their low content of bitter sesquiterpene lactones may enhance palatability, supporting their valorisation within circular economy frameworks. Moreover, their use may contribute to the in situ conservation of this landrace, reinforcing the link between agrobiodiversity preservation and the sustainable exploitation of agricultural by-products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

22 pages, 874 KiB  
Article
Functional Fruit Snacks Enriched with Natural Sources of Fructooligosaccharides: Composition, Bioactive Compounds, Biological Activity, and Consumer Acceptance
by Paulina Nowicka, Michalina Marcińczak, Martyna Szydłowska and Aneta Wojdyło
Molecules 2025, 30(12), 2507; https://doi.org/10.3390/molecules30122507 - 7 Jun 2025
Viewed by 506
Abstract
This study aimed to develop innovative fruit leather with programmed health-promoting properties, enriched with fructooligosaccharides (FOS) from chicory and Jerusalem artichoke. Their physicochemical properties were assessed, including the profile of polyphenolic compounds, pro-health effects, and sensory characteristics. The products contained various fruits (including [...] Read more.
This study aimed to develop innovative fruit leather with programmed health-promoting properties, enriched with fructooligosaccharides (FOS) from chicory and Jerusalem artichoke. Their physicochemical properties were assessed, including the profile of polyphenolic compounds, pro-health effects, and sensory characteristics. The products contained various fruits (including pear, red currant, peach, and haskap berry) and 10% FOS powders. It was shown that the addition of FOS reduced acidity and total sugar content while increasing fiber content—especially fructans—and selected minerals (K, Mg, Zn). The addition of FOS also modulated the profile of polyphenolic compounds, whereas fruit leather without FOS was characterized by a higher concentration of these compounds. It was shown that the addition of chicory significantly modulates the ability to inhibit α-glucosidase. At the same time, in the case of the Jerusalem artichoke, the inhibition efficiency depends on the type of fruit matrix. Sensory-wise, the highest scores were given to recipes without FOS additives, with Jerusalem artichoke being better accepted than chicory. The results indicate the potential of using FOS as a functional additive, but their effects on taste and texture require further optimization. Full article
(This article belongs to the Special Issue Functional Foods Enriched with Natural Bioactive Compounds)
Show Figures

Figure 1

30 pages, 1623 KiB  
Article
The Role of Extracts of Edible Parts and Production Wastes of Globe Artichoke (Cynara cardunculus L. var. scolymus (L.)) in Counteracting Oxidative Stress
by Valentina Laghezza Masci, Irene Mezzani, Enrica Alicandri, William Tomassi, Anna Rita Paolacci, Stefano Covino, Vittorio Vinciguerra, Elisabetta Catalani, Davide Cervia, Mario Ciaffi, Stefania Garzoli and Elisa Ovidi
Antioxidants 2025, 14(1), 116; https://doi.org/10.3390/antiox14010116 - 20 Jan 2025
Cited by 3 | Viewed by 1437
Abstract
In addition to the immature edible flower heads, the cultivation of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori) generates substantial quantities of by-products, including leaves, stems, and roots, which constitute potential sources of bioactive compounds and prebiotic dietary fiber. Preserving [...] Read more.
In addition to the immature edible flower heads, the cultivation of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori) generates substantial quantities of by-products, including leaves, stems, and roots, which constitute potential sources of bioactive compounds and prebiotic dietary fiber. Preserving agricultural biodiversity and promoting socioeconomic development are essential for enhancing domestic production and fostering innovation. In the search for new biomolecules with antioxidant properties, this research focused on a globe artichoke landrace at risk of genetic erosion, still cultivated in the northern part of the Lazio region, known as the “Carciofo Ortano”. To investigate the antioxidant properties of various globe artichoke tissues from the “Carciofo Ortano” landrace, methanolic extracts were prepared from the immature main and secondary flower heads, stems, and leaves of representative genotypes of this landrace. Additionally, extracts were obtained from the same tissues of four landraces/clones included in the varietal platform of the PGI “Carciofo Romanesco del Lazio”, which served as reference genotypes: Campagnano, Castellammare, C3, and Grato 1. The antioxidant properties of these extracts were assessed using FRAP, ABTS, DPPH assays, and total phenolic content (TPC). The stem and secondary flower head extracts of two representative “Carciofo Ortano” genotypes and the Grato 1 clone, which have higher phenolic content, demonstrated the highest antioxidant activity. These extracts were therefore studied for their chemical profile using HPLC-DAD and SPME-GC/MS analysis. Additionally, the same extracts were investigated in vitro for their antioxidant capacity in differentiated SH-SY5Y cells, assessing their effects on ROS levels and the restoration of GSH levels. Furthermore, the in vivo beneficial effects of counteracting oxidative stress were evaluated in high sucrose-fed Drosophila melanogaster, as oxidative stress is a typical hallmark of hyperglycemic status. Overall, the results indicated that the edible immature inflorescences of the “Carciofo Ortano” landrace, along with the byproducts of its cultivation, are sources of raw materials containing biomolecules whose properties can be exploited for further applications in the pharmaceutical and medical sectors. Full article
(This article belongs to the Special Issue Antioxidant Activities of Phytochemicals in Fruits and Vegetables)
Show Figures

Figure 1

16 pages, 948 KiB  
Article
Broccoli, Artichoke, Carob and Apple By-Products as a Source of Soluble Fiber: How It Can Be Affected by Enzymatic Treatment with Pectinex® Ultra SP-L, Viscozyme® L and Celluclast® 1.5 L
by Pablo Ayuso, Rocío Peñalver, Jhazmin Quizhpe, María de los Ángeles Rosell and Gema Nieto
Foods 2025, 14(1), 10; https://doi.org/10.3390/foods14010010 - 25 Dec 2024
Cited by 3 | Viewed by 1692
Abstract
Dietary fiber (DF), and especially soluble dietary fiber (SDF), is a nutrient of particular interest today because of its anti-inflammatory role and its ability to reduce cardiovascular risk. Therefore, the enhancement of SDF in foods using different techniques has become a promising field [...] Read more.
Dietary fiber (DF), and especially soluble dietary fiber (SDF), is a nutrient of particular interest today because of its anti-inflammatory role and its ability to reduce cardiovascular risk. Therefore, the enhancement of SDF in foods using different techniques has become a promising field of research. In order to prove the possibility of increasing this SDF content, the effects of different commercial enzymes (Pectinex® Ultra SP-L, Viscozyme® L and Celluclast® 1.5 L) were tested on a variety of carob (CE), artichoke (ARE), apple (APE) and broccoli (BE) by-product extracts. Enzymatic treatment significantly affected SDF content in all by-products, showing the greatest increases for CE, ARE and APE using Celluclast® 1.5 L, while Viscozyme® L obtained the best results after application in BE. On the other hand, positive results were reported in the solubility, WHC and FAC of the by-products due to the enzymatic treatment, being increased in all extracts analyzed. Moreover, a general increase in antioxidant capacity (FRAP, ABTS and DPPH) was observed after enzymatic treatment. Finally, high yields were obtained after the application of the enzymatic processes, reaching values of 80–85% for each food by-product. These results evidenced a potential revalorization of carob, artichoke, apple and broccoli by-products after enzymatic treatment, improving its nutritional and physicochemical properties, revealing a possible application as a higher value-added ingredient. Full article
Show Figures

Figure 1

14 pages, 961 KiB  
Article
The Quality of Jerusalem Artichoke Biomass Harvested Twice during the Growing Season in North-Eastern Poland
by Bożena Bogucka and Bogdan Dubis
Energies 2024, 17(16), 4008; https://doi.org/10.3390/en17164008 - 13 Aug 2024
Viewed by 1341
Abstract
Jerusalem artichoke (JA) (Helianthus tuberosus L., family Asteraceae) is an important feedstock for biofuel production due to its high biomass yield per unit area and the low costs associated with plantation establishment and cultivation technology. The chemical composition of the aerial [...] Read more.
Jerusalem artichoke (JA) (Helianthus tuberosus L., family Asteraceae) is an important feedstock for biofuel production due to its high biomass yield per unit area and the low costs associated with plantation establishment and cultivation technology. The chemical composition of the aerial biomass of JA grown in a perennial cycle and harvested once or twice during the growing season was determined, to assess the potential of JA for energy production. The experiment was conducted in 2018–2020 in north-eastern Poland. The study demonstrated that the crude ash (CA) content of the biomass was significantly (by 24.1%) higher when JA was harvested twice rather than once during the growing season, making it less suitable for energy purposes. However, double cutting induced an increase in the content of crude fiber (CFR), cellulose, and hemicellulose (by 87%, 41%, and 52%, respectively) in JA biomass compared with single cutting. In addition, twice-harvested JA biomass was also characterized by higher concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) (by 40.7%, 38.9%, and 30.3%, respectively), and a lower (by 29.3%) concentration of water-soluble carbohydrates (WSC). These results indicate that the chemical composition of a JA biomass can be modified by selecting the appropriate harvest strategy, which is an important consideration for end users. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

17 pages, 5731 KiB  
Review
Chinese Artichoke (Stachys affinis Bunge): The Nutritional Profile, Bioactive Profile and Food Applications—A Review
by Rafał Wiśniewski and Joanna Harasym
Molecules 2024, 29(15), 3525; https://doi.org/10.3390/molecules29153525 - 26 Jul 2024
Cited by 1 | Viewed by 2038
Abstract
Stachys affinis Bunge, known as Chinese artichoke, is a perennial plant originating from China, which has uprising scientific interest due to its complex and beneficial content. Chinese artichoke is rich in bioactive compounds useful for human health, including antioxidants, polyphenols, and prebiotics, and its [...] Read more.
Stachys affinis Bunge, known as Chinese artichoke, is a perennial plant originating from China, which has uprising scientific interest due to its complex and beneficial content. Chinese artichoke is rich in bioactive compounds useful for human health, including antioxidants, polyphenols, and prebiotics, and its edible tubers are high in essential nutrients and dietary fiber. Studies show its potential as a functional food ingredient in various products like rice bars, bread, and chocolate, enhancing their nutritional and sensory properties. Additionally, Chinese artichoke exhibits significant anti-inflammatory, neuroprotective, and antibacterial activities, warranting further research and utilization in the food industry. This review aims to summarize the existing knowledge of the S. affinis Bunge plant, focusing on its health-promoting aspects. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Graphical abstract

26 pages, 3626 KiB  
Review
Bioactive Compounds, Health Benefits and Food Applications of Artichoke (Cynara scolymus L.) and Artichoke By-Products: A Review
by Pablo Ayuso, Jhazmin Quizhpe, María de los Ángeles Rosell, Rocío Peñalver and Gema Nieto
Appl. Sci. 2024, 14(11), 4940; https://doi.org/10.3390/app14114940 - 6 Jun 2024
Cited by 17 | Viewed by 9166
Abstract
Cynara scolymus L. is an herbaceous plant originally from the western Mediterranean area, with Italy, Spain and France the main being producers. Both the edible flowering head and the by-products generated during processing (outer bracts, leaves and stem) are characterized by a high [...] Read more.
Cynara scolymus L. is an herbaceous plant originally from the western Mediterranean area, with Italy, Spain and France the main being producers. Both the edible flowering head and the by-products generated during processing (outer bracts, leaves and stem) are characterized by a high content of essential vitamins, minerals and bioactive compounds. In particular, the leaves represent a great source of phenolic acids derived from caffeoylquinic acid or flavonoids such as luteonin and apigenin, while the head and stem contain a high content of soluble and insoluble dietary fiber, especially inulin and pectins. Its high content of bioactive compounds provides artichoke a high antioxidant power due to the modulation effect of the transcription factor Nrf2, which may lead to protection against cardiovascular, hepatic and neurological disorders. The potential use of artichoke as a functional ingredient in the food industry may be promising in terms of improving the nutritional value of products, as well as preventing oxidation and extending the shelf-life of processed foods due to its antimicrobial activity. This review aims to provide an overview of the nutritional qualities of Cynara scolymus L. and its by-products, focusing on the possible health effects and potential applications in food products as a higher-value-added alternative ingredient. Full article
(This article belongs to the Special Issue Antioxidant Compounds in Food Processing)
Show Figures

Figure 1

19 pages, 1016 KiB  
Article
Cynara cardunculus L. var. scolymus L. Landrace “Carciofo Ortano” as a Source of Bioactive Compounds
by Valentina Laghezza Masci, Enrica Alicandri, Chiara Antonelli, Anna Rita Paolacci, Rosita Marabottini, William Tomassi, Giuseppe Scarascia Mugnozza, Antonio Tiezzi, Stefania Garzoli, Vittorio Vinciguerra, Anna Maria Vettraino, Elisa Ovidi and Mario Ciaffi
Plants 2024, 13(6), 761; https://doi.org/10.3390/plants13060761 - 7 Mar 2024
Cited by 5 | Viewed by 2443
Abstract
The preservation of agricultural biodiversity and socioeconomic development are relevant both to enhance domestic production and to support innovation. In the search for new biomolecules, we have focused on the “Carciofo Ortano” landrace, growth in the northern part of the Lazio region. Artichoke [...] Read more.
The preservation of agricultural biodiversity and socioeconomic development are relevant both to enhance domestic production and to support innovation. In the search for new biomolecules, we have focused on the “Carciofo Ortano” landrace, growth in the northern part of the Lazio region. Artichoke cultivation generates substantial by-products, including leaves, stems, and roots, which could serve as valuable sources of biomolecules and prebiotic dietary fiber. To valorize the leaf waste of the “Carciofo Ortano” landrace, a multidisciplinary approach was applied. Chemical analysis using HPLC-DAD identified mono-O- and di-O-caffeoylquinic acids and the sesquiterpene cynaropicrin in all artichoke leaf extracts. SPME-GC/MS analyses detected aliphatic alcohols in the fresh leaf samples. Antiproliferative and cytotoxic studies on cancer (SH-SY5Y, MCF-7, MDA) and normal (MCF-10A) human cell lines revealed that leaf extracts induced a selective dose and time-dependent biological effect. While showing slight activity against environmental bacterial strains, artichoke leaf extracts exhibited significant antifungal activity against the phytopathogenic fungus Alternaria alternata. Overall, the results highlight the potential of “Carciofo Ortano” cultivation by-products as a rich source of biomolecules with versatile applications in humans, animals, and the environment. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 1044 KiB  
Review
An Overview of the Versatility of the Parts of the Globe Artichoke (Cynara scolymus L.), Its By-Products and Dietary Supplements
by Beata Olas
Nutrients 2024, 16(5), 599; https://doi.org/10.3390/nu16050599 - 22 Feb 2024
Cited by 13 | Viewed by 6212
Abstract
Cynara scolymus, also known as the globe artichoke or artichoke, is grown as a food, mainly in the Mediterranean, Canary Islands, and Egypt, as well as in Asia and South America. It has also been associated with various health benefits and is [...] Read more.
Cynara scolymus, also known as the globe artichoke or artichoke, is grown as a food, mainly in the Mediterranean, Canary Islands, and Egypt, as well as in Asia and South America. It has also been associated with various health benefits and is used in plant-based dietary supplements and herbal infusions. Its edible parts, consisting of the head or capitula, flower, and leaves, have shown various biological activities, including anti-cancer, hepatoprotective and antimicrobial potential. The leaves are mainly used in infusions and extracts for their health-promoting properties, although all their edible parts may also be consumed as fresh, frozen, or canned foods. However, its primary health-promoting activity is associated with its antioxidant potential, which has been linked to its chemical composition, particularly its phenolic compounds (representing 96 mg of gallic acid equivalent per 100 g of raw plant material) and dietary fiber. The main phenolic compounds in the heads and leaves are caffeic acid derivatives, while the flavonoids luteolin and apigenin (both present as glucosides and rutinosides) have also been identified. In addition, heat-treated artichokes (i.e., boiled, steamed or fried), their extracts, and waste from artichoke processing also have antioxidant activity. The present paper reviews the current literature concerning the biological properties of different parts of C. scolymus, its by-products and dietary supplements, as well as their chemical content and toxicity. The literature was obtained by a search of PubMed/Medline, Google Scholar, Web of Knowledge, ScienceDirect, and Scopus, with extra papers being identified by manually reviewing the references. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

2 pages, 144 KiB  
Abstract
Potencies of Green Extraction Techniques in the Production of High-Yield Inulin Powder from Jerusalem Artichoke
by Kardelen Demirci, Ahmet Görgüç, Beyzanur Bayraktar and Fatih Mehmet Yılmaz
Proceedings 2023, 91(1), 348; https://doi.org/10.3390/proceedings2023091348 - 20 Feb 2024
Viewed by 1472
Abstract
Inulin is a polysaccharide rich in dietary fiber and is widely used in functional foods due to its health-promoting properties. It has an important place in the current market, with the increasing demand for innovative formulations in the food and pharmaceutical industries. Jerusalem [...] Read more.
Inulin is a polysaccharide rich in dietary fiber and is widely used in functional foods due to its health-promoting properties. It has an important place in the current market, with the increasing demand for innovative formulations in the food and pharmaceutical industries. Jerusalem artichoke (Helianthus tuberosus) tubers are an important source of inulin, and this polysaccharide can be extracted for industrial use. Green solvent extraction systems have been used in recent years due to advantages such as non- toxic and environmentally friendly properties, as well as reducing solvent usage compared to traditional methods. In this study, inulin powder production from Jerusalem artichoke was carried out by conventional (C), hydrotropic solvent (HS) and deep eutectic solvent (DES) extraction methods, according to the experimental plans created by the response surface methodology (RSM). The effects of independent parameters such as temperature, time and solvent ratio on inulin yield were investigated. Also, the combined effects of extraction parameters were examined using three-dimensional response surface plots. The optimum process conditions were determined as 79 °C process temperature, 36 min process time, 78 mL/g solvent ratio for C; 68 °C, 53 min, 59 mL/g for HS; and 79 °C, 51 min, 61 mL/g for DES. Among the extraction methods, HS provided the highest inulin yield (88.9%), followed by C (81.9%) and DES (81.5%). Inulin extracts produced under optimum conditions were purified by an ultrafiltration system and freeze-dried with a lyophilization process to obtain inulin powder. Viscosity and solubility values were also determined for each inulin powder sample. The solubility of inulin powders prepared by C, HS and DES extraction techniques were 91.5, 82.6 and 84.1%, respectively. The viscosity values of inulin powders within aqueous solutions (5 g/100 mL) were found to be 28.2, 17.1 and 8.1 mPa·s for C, HS and DES, respectively. The results depict that the highest inulin yield could be obtained by the hydrotropic solvent extraction system, but the solubility and viscosity values were found to be the highest using the conventional extraction technique. Full article
(This article belongs to the Proceedings of The 14th European Nutrition Conference FENS 2023)
9 pages, 266 KiB  
Communication
Chemical Composition and In Vitro Nutritive Evaluation of Pomegranate and Artichoke Fractions as Ruminant Feed
by Trinidad de Evan, Carlos N. Marcos and María Dolores Carro
Ruminants 2024, 4(1), 1-9; https://doi.org/10.3390/ruminants4010001 - 2 Jan 2024
Cited by 2 | Viewed by 2583
Abstract
The aim of this work was to assess the chemical composition and in vitro ruminal fermentation of samples (n = 3) of pomegranate (peels (PPs) and seeds (PSs)) and artichoke (hearts (AHs) and stems (ASs)) wastes. Dried orange pulp (DOP) and tomato pomace [...] Read more.
The aim of this work was to assess the chemical composition and in vitro ruminal fermentation of samples (n = 3) of pomegranate (peels (PPs) and seeds (PSs)) and artichoke (hearts (AHs) and stems (ASs)) wastes. Dried orange pulp (DOP) and tomato pomace (TP) were used as reference feeds. All wastes had low dry matter (DM; lower than 33.0 and 12.0% for pomegranate and artichoke, respectively). The DM of pomegranate fractions was rich in sugars (>42.0%) and contained low protein (<8.0%) and neutral detergent fiber (NDF; <27.0%), whereas that of both artichoke fractions had high protein (>18.0%) and NDF (>36.0%) and low sugars content (<9.2%). Pomegranate seeds were more rapidly and extensively fermented in vitro than PPs, but both were less degradable and contained less metabolizable energy (ME) than DOP (7.43, 11.0 and 12.5 MJ ME/kg DM, respectively). Although AHs were more rapidly fermented and produced more volatile fatty acids (VFAs) than ASs, both had lower ME content than TP (9.50, 7.25 and 12.5 MJ ME/kg DM). The analyzed wastes had lower ME content than other by-products, but they were extensively fermented by ruminal microorganisms and could be used as ruminant feeds. Full article
19 pages, 8923 KiB  
Article
Variation, during Shelf Life, of Functional Properties of Biscuits Enriched with Fibers Extracted from Artichoke (Cynara scolymus L.)
by Francisco José San José, Montserrat Collado-Fernández and Pino P. Álvarez-Castellanos
Nutrients 2023, 15(15), 3329; https://doi.org/10.3390/nu15153329 - 26 Jul 2023
Cited by 6 | Viewed by 2296
Abstract
To boost revaluation of industrial by-products of artichoke, this research tries to determine the stability throughout storage of phenolic compounds and their antioxidant activity in biscuits enriched with fiber-rich powders extracted from b y-products of artichokes (FRPA). To determine the most stable extraction [...] Read more.
To boost revaluation of industrial by-products of artichoke, this research tries to determine the stability throughout storage of phenolic compounds and their antioxidant activity in biscuits enriched with fiber-rich powders extracted from b y-products of artichokes (FRPA). To determine the most stable extraction method, biscuits were formulated with FRPA extracted by two different environmentally friendly extraction solvents: water (W) and a solution of 1% CaCl2∙5H2O (CA) and compared with biscuits made with pea fiber (P) and control biscuits (B) without fiber added. Initially and during storage, the biscuits enriched with FRPA (W, CA) showed a higher content of bioavailable polyphenols and antioxidant activity compared to the control biscuits (B) and the reference fiber (P, pea fiber). In conclusion, FRPA are an excellent source of bioavailable fiber with antioxidant activity, but especially the FRPA extracted with 1% CaCl2∙5H2O (CA), and they could present a good alternative to the use of pea fiber. Full article
Show Figures

Figure 1

16 pages, 678 KiB  
Article
Ensiling Characteristics, In Vitro Rumen Fermentation Patterns, Feed Degradability, and Methane and Ammonia Production of Berseem (Trifolium alexandrinum L.) Co-Ensiled with Artichoke Bracts (Cynara cardunculus L.)
by Mariam G. Ahmed, Adham A. Al-Sagheer, Ahmed M. El-Waziry, Samir Z. El-Zarkouny and Eman A. Elwakeel
Animals 2023, 13(9), 1543; https://doi.org/10.3390/ani13091543 - 4 May 2023
Cited by 6 | Viewed by 2394
Abstract
This study investigated the effect of co-ensiling increasing levels of artichoke bracts (Cynara cardunculus L.) with berseem (Trifolium alexandrinum L.) (100:0, 75:25, 50:50, 25:75, and 0:100, respectively) on silage quality after 0, 30, 60, and 120 days. Moreover, the in vitro [...] Read more.
This study investigated the effect of co-ensiling increasing levels of artichoke bracts (Cynara cardunculus L.) with berseem (Trifolium alexandrinum L.) (100:0, 75:25, 50:50, 25:75, and 0:100, respectively) on silage quality after 0, 30, 60, and 120 days. Moreover, the in vitro rumen fermentation characteristics and methane (CH4) and ammonia (NH3-N) production were evaluated using a buffalo inoculum source. The results showed that pH of the silage and the concentration of acetic, propionic, butyric acid, and NH3-N significantly decreased (L; p < 0.01) with the increasing amounts of artichoke bracts in the mixture. At 30 and 60 days of ensiling, the highest lactic acid concentration was observed at intermediate proportions of artichoke bracts (p < 0.01). Cumulative gas production was higher in artichoke bracts than in the berseem silage. After 24 h of incubation, the highest value (p < 0.05) of truly dry matter, organic matter, natural detergent fiber degradability, and NH3-N concentration was recorded with 500 g/kg of forage mixtures. As the artichoke bract concentration increased, the partitioning factor and ruminal pH declined linearly (p ≤ 0.05). No significant differences were observed for total volatile fatty acids and volatile fatty acids molar proportions. In summary, co-ensiling artichoke bracts with berseem at a ratio of 1:1 might be a promising and easy method for the production of high-quality silage from legume forage with positively manipulating rumen fermentation. Full article
Show Figures

Figure 1

Back to TopTop