Chemical Composition and In Vitro Nutritive Evaluation of Pomegranate and Artichoke Fractions as Ruminant Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pomegranate and Artichoke Samples
2.2. Animals, Feeding and Ruminal Fluid
2.3. In Vitro Incubations: Experimental Design and Sampling
2.4. Analyses of Chemical Composition
2.5. Calculations and Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Pomegranate and Artichoke Wastes
3.2. In Vitro Fermentation of Pomegranate Wastes
3.3. In Vitro Fermentation of Artichoke Wastes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Food Losses and Food Waste-Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global food losses and food waste. In Proceedings of the Save Food Congress, Düsseldorf, Germany, 16 May 2011. [Google Scholar]
- Marcos, C.N.; de Evan, T.; Molina-Alcaide, E.; Carro, M.D. Nutritive value of tomato pomace for ruminants and its influence on in vitro methane production. Animals 2019, 9, 343. [Google Scholar] [CrossRef]
- Kahramanoglu, I. Trends in pomegranate sector: Production, postharvest handling and marketing. Int. J. Agric. For. Life Sci. 2019, 3, 239–246. [Google Scholar]
- Safari, M.; Ghasemi, E.; Alikhani, M.; Ansari-Mahyari, S. Supplementation effects of pomegranate by-products on oxidative status, metabolic profile, and performance in transition dairy cows. J. Dairy Sci. 2018, 101, 11297–11309. [Google Scholar] [CrossRef]
- Shabtay, A.; Eitam, H.; Tadmor, Y.; Orlov, A.; Meir, A.; Weinberg, P.; Weinberg, Z.G.; Chen, Y.; Brosh, A.; Izhaki, I.; et al. Nutritive and antioxidative potential of fresh and stored pomegranate industrial byproduct as a novel beef cattle feed. J. Agric. Food Chem. 2008, 56, 10063–10070. [Google Scholar] [CrossRef]
- Omer, H.A.; Abdel-Magid, S.S.; Awadalla, I.M. Nutritional and chemical evaluation of dried pomegranate (Punica granatum L.) peels and studying the impact of level of inclusion in ration formulation on productive performance of growing Ossimi lambs. Bull. Natl. Res. Cent. 2019, 43, 182. [Google Scholar] [CrossRef]
- Natalello, A.; Hervás, G.; Toral, P.G.; Luciano, G.; Valenti, B.; Mendoza, A.G.; Pauselli, M.; Priolo, A.; Frutos, P. Bioactive compounds from pomegranate by-products increase the in vitro ruminal accumulation of potentially health promoting fatty acids. Anim. Feed Sci. Technol. 2020, 259, 114355. [Google Scholar] [CrossRef]
- FAOSTAT, 2021. Data Base. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 16 October 2023).
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Nutritional and functional properties of Cynara crops (globe artichoke and cardoon) and their potential applications: A review. Int. J. Appl. Sci. Technol. 2012, 2, 64–70. [Google Scholar]
- Meneses, M.; Megías, M.D.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Oliva, J. Evaluation of the phytosanitary, fermentative and nutritive characteristics of the silage made from crude artichoke (Cynara scolymus L.) by-product feeding for ruminants. Small Rumin. Res. 2007, 70, 292–296. [Google Scholar] [CrossRef]
- Meneses, M.; Martínez-Marín, A.L.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Megías, M.D. Ensilability, in vitro and in vivo values of the agro-industrial by-products of artichoke and broccoli. Environ. Sci. Pollut. R. 2020, 27, 2919–2925. [Google Scholar] [CrossRef]
- Jaramillo, D.P.; Buffa, M.N.; Rodríguez, M.; Pérez-Baena, I.; Guamis, B.; Trujillo, A.J. Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. J. Dairy Sci. 2010, 93, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Monllor, P.; Romero, G.; Sendra, E.; Atzori, A.S.; Díaz, J.R. Short-Term Effect of the Inclusion of Silage Artichoke By-Products in Diets of Dairy Goats on Milk Quality. Animals 2020, 10, 339. [Google Scholar] [CrossRef]
- De Evan, T.; Vintimilla, A.; Marcos, C.N.; Ranilla, M.J.; Carro, M.D. Evaluation of Brassica vegetables as potential feed for ruminants. Animals 2019, 9, 588. [Google Scholar] [CrossRef]
- Goering, M.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). In Agricultural Handbook; Agriculture Handbook Nº 379; Agricultural Research Services: Washington, DC, USA, 1970. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; ISBN 0-935584-77-3. [Google Scholar]
- SAS Institute. SAS/STAT® Users Guide, Version 9.3; SAS Inst. Inc.: Cary, NC, USA, 2017. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of energetic feed value obtained from chemical analysis and in vitro gas production. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Sauvant, D.; Delaby, L.; Noziere, P. (Eds.) INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017. [Google Scholar]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy of Sciences: Washington, DC, USA, 2001. [Google Scholar]
- Heuzé, V.; Tran, G.; Hassoun, P.; Lebas, F. Citrus Pulp, Dried. Feedipedia, a Programme by INRAE, CIRAD, AFZ and FAO. 2018. Available online: https://www.feedipedia.org/node/680 (accessed on 24 September 2023).
- Mirzaei-Aghsaghali, A.; Maheri-Sis, N.; Mansouri, H.; Razeghi, M.E.; Mirza-Aghazadeh, A.; Cheraghi, H.; Aghajanzadeh-Golshani, A. Evaluating potential nutritive value of pomegranate processing by-products for ruminants using in vitro gas production technique. ARPN J. Agric. Biol. Sci. 2011, 6, 45–51. [Google Scholar]
- Delavar, M.H.; Tahmasbi, A.M.; Danesh-Mesgaran, M.; Valizadeh, R. In vitro rumen fermentation and gas production: Influence of different by-product feedstuffs. Annu. Res. Rev. Biol. 2013, 1121–1128. [Google Scholar] [CrossRef]
- Kara, K. The in vitro digestion of neutral detergent fibre and other ruminal fermentation parameters of some fibrous feedstuffs in Damascus goat (Capra aegagrus hircus). J. Anim. Feed Sci. 2019, 28, 159–168. [Google Scholar] [CrossRef]
- Aboul-Fotouh, G.E.; Kholif, A.M.; Abd El-Mola, A.M.; Hassan, O.G.A. In vitro Rumen-fermentation and Gas Production of Pomegranate Peel with or without Polyethylene Glycol. J. Biol. Sci. 2020, 20, 73–79. [Google Scholar] [CrossRef]
- Gasa, J.; Castrillo, C.; Baucells, M.D.; Guada, J.A. By-products from the canning industry as feedstuff for ruminants: Digestibility and its prediction from chemical composition and laboratory bioassays. Anim. Feed Sci. Technol. 1989, 25, 67–77. [Google Scholar] [CrossRef]
- Dabbou, S.; Peiretti, P.G.; Gai, F.; Dabbou Fekih, S.; Rotolo, L.; Helal, A.N.; Zoccarato, I.; Gasco, L. Dried artichoke bracts in rabbit nutrition: Effects on performance and apparent digestibility. J. Food Agric. Environ. 2014, 12, 443–446. [Google Scholar]
- Attia, R.S.; Nasser, M.E.; Massoud, M. Evaluation of artichoke bracts as a potential source of bioactive compounds, bio-ethanol production and livestock feeding. Alex. J. Food Sci. Technol. 2016, 13, 51–62. [Google Scholar]
- Sallam, S.M.A. Nutritive value assessment of the alternative feed resources by gas production and rumen fermentation in vitro. Res. J. Agric. Biol. Sci. 2005, 1, 200–209. [Google Scholar]
- Taher-Maddah, M.; Maheri-Sis, N.; Salamatdoustnobar, R.; Ahmadzadeh, A. Estimating fermentation characteristics and nutritive value of ensiled and dried pomegranate seeds for ruminants using in vitro gas production technique. Open Vet. J. 2012, 2, 40–45. [Google Scholar] [CrossRef]
- García-Rodríguez, J.; Saro, C.; Mateos, I.; González, J.S.; Carro, M.D.; Ranilla, M.J. Effects of Replacing Extruded Maize by Dried Citrus Pulp in a Mixed Diet on Ruminal Fermentation, Methane Production, and Microbial Populations in Rusitec Fermenters. Animals 2020, 10, 1316. [Google Scholar] [CrossRef]
- Madrid, J.; Megías, M.D.; Hernández, F. In vitro determination of ruminal dry matter and cell wall degradation, and production of fermentation end-products of various by-products. Anim. Res. 2002, 51, 189–199. [Google Scholar] [CrossRef]
- Kamel, C.; Greathead, H.M.R.; Tejido, M.L.; Ranilla, M.J.; Carro, M.D. Effects of allicin and diallyl disulfide on in vitro rumen fermentation of a mixed diet. Anim. Feed Sci. Technol. 2008, 145, 351–363. [Google Scholar] [CrossRef]
Pomegranate | Artichoke | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | Peels | Seeds | SEM 1 | p = | DOP | Hearts | Stems | SEM 1 | p = | Tomato Pomace |
Dry matter (g/100 g) | 32.4 | 20.0 | 2.57 | 0.027 | 91.1 | 11.9 | 7.02 | 0.386 | 0.001 | 26.0 |
Ash | 3.59 | 2.47 | 0.152 | 0.007 | 3.11 | 9.70 | 9.05 | 0.252 | 0.140 | 3.70 |
Crude protein (CP) | 3.80 | 7.17 | 0.474 | 0.008 | 5.84 | 24.0 | 18.6 | 0.65 | 0.004 | 17.3 |
Ether extract | 1.60 | 1.55 | 0.186 | 0.872 | 4.90 | 2.31 | 1.55 | 0.231 | 0.083 | 10.7 |
Total sugars | 42.6 | 75.3 | 1.4 | <0.001 | 46.5 | 9.09 | 6.90 | 0.858 | 0.145 | 12.3 |
Neutral detergent fiber (NDF) | 26.7 | 12.8 | 0.90 | <0.001 | 16.3 | 36.2 | 51.2 | 2.05 | 0.007 | 54.1 |
Acid detergent fiber | 18.6 | 8.64 | 1.10 | 0.003 | 9.73 | 23.7 | 34.8 | 1.52 | 0.007 | 40.8 |
Lignin | 6.80 | 3.90 | 1.255 | 0.178 | 0.81 | 7.45 | 6.57 | 0.872 | 0.514 | 21.7 |
NDICP (% CP) 2 | 28.1 | 4.97 | 1.49 | <0.001 | 5.11 | 26.5 | 24.2 | 3.18 | 0.629 | 12.8 |
Lignin (% NDF) | 25.1 | 30.2 | 4.25 | 0.444 | 4.97 | 20.4 | 12.9 | 2.01 | 0.056 | 40.1 |
Gas Production Parameters | ||||||
---|---|---|---|---|---|---|
Sample | A (mL/g) | c (%/h) | Lag (h) | AGPR (mL/h) | DMED (%) | ME 2 (MJ/kg DM) |
Pomegranate peels | 147 | 4.23 | 0.053 | 4.49 | 36.0 | 7.43 |
Pomegranate seeds | 244 | 7.83 | 1.788 | 11.4 | 53.2 | 11.0 |
SEM 3 | 1.6 | 0.171 | 0.1422 | 0.127 | 0.58 | 0.044 |
p = | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Reference feed | ||||||
Dried orange pulp | 360 | 8.61 | 0.306 | 20.7 | 61.7 | 12.5 |
Sample | ||||||
Artichoke hearts | 188 | 3.71 | 2.63 | 4.40 | 33.2 | 9.50 |
Artichoke stems | 206 | 2.78 | 3.37 | 3.61 | 23.1 | 7.25 |
SEM | 1.9 | 0.061 | 0.193 | 0.071 | 0.64 | 0.119 |
p = | <0.001 | <0.001 | 0.014 | <0.001 | <0.001 | <0.001 |
Reference feed | ||||||
Tomato pomace | 199 | 7.28 | 2.33 | 8.28 | 31.5 | 11.1 |
Molar Proportions (mol/100 mol) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sample | Gas (mL/g DM) | pH | Total VFA (µmol/g DM) | Acetate (Ac) | Propionate (Pr) | Butyrate (Bt) | Minor VFA | Ac/Pr (mol/mol) | NH3-N (mg/L) |
Pomegranate peels | 96.3 | 6.76 | 4.48 | 57.5 | 28.6 | 11.8 | 2.13 | 2.02 | 61.6 |
Pomegranate seeds | 210 | 6.46 | 8.46 | 52.3 | 34.7 | 10.4 | 2.61 | 1.52 | 79.2 |
SEM 2 | 1.60 | 0.010 | 0.092 | 0.43 | 0.49 | 0.56 | 0.160 | 0.040 | 1.95 |
p = | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.105 | 0.048 | <0.001 | <0.001 |
Reference feed | |||||||||
Dried orange pulp | 235 | 6.44 | 8.90 | 64.8 | 21.0 | 10.9 | 3.30 | 3.09 | 87.8 |
Sample | |||||||||
Artichoke hearts | 109 | 6.72 | 6.57 | 62.0 | 25.7 | 7.57 | 4.64 | 2.42 | 182 |
Artichoke stems | 97.7 | 6.79 | 6.15 | 64.5 | 24.1 | 6.88 | 4.57 | 2.68 | 162 |
SEM 2 | 1.70 | 0.037 | 0.810 | 0.27 | 0.30 | 0.103 | 0.066 | 0.039 | 2.5 |
p = | 0.025 | 0.217 | 0.003 | <0.001 | <0.001 | <0.001 | 0.482 | <0.001 | <0.001 |
Reference feed | |||||||||
Tomato pomace | 135 | 6.80 | 6.28 | 66.0 | 23.2 | 7.32 | 3.48 | 2.84 | 162 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Evan, T.; Marcos, C.N.; Carro, M.D. Chemical Composition and In Vitro Nutritive Evaluation of Pomegranate and Artichoke Fractions as Ruminant Feed. Ruminants 2024, 4, 1-9. https://doi.org/10.3390/ruminants4010001
de Evan T, Marcos CN, Carro MD. Chemical Composition and In Vitro Nutritive Evaluation of Pomegranate and Artichoke Fractions as Ruminant Feed. Ruminants. 2024; 4(1):1-9. https://doi.org/10.3390/ruminants4010001
Chicago/Turabian Stylede Evan, Trinidad, Carlos N. Marcos, and María Dolores Carro. 2024. "Chemical Composition and In Vitro Nutritive Evaluation of Pomegranate and Artichoke Fractions as Ruminant Feed" Ruminants 4, no. 1: 1-9. https://doi.org/10.3390/ruminants4010001
APA Stylede Evan, T., Marcos, C. N., & Carro, M. D. (2024). Chemical Composition and In Vitro Nutritive Evaluation of Pomegranate and Artichoke Fractions as Ruminant Feed. Ruminants, 4(1), 1-9. https://doi.org/10.3390/ruminants4010001