Variation, during Shelf Life, of Functional Properties of Biscuits Enriched with Fibers Extracted from Artichoke (Cynara scolymus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Storage
2.3. Determination of Moisture
2.4. Determination of the Functional Properties of the Biscuits
2.4.1. Model of Human Digestion
2.4.2. Extraction of Polyphenolic Compounds from a Food Matrix
2.4.3. Polyphenols
2.4.4. Antioxidant Activity
ABTS.+ Assay
DPPH Assay
FRAP Assay
2.5. Statistical Analysis
3. Results
3.1. Moisture
3.2. Phenolic Content and Bioavailability and Antioxidant Activity of the Biscuits Studied
3.3. Antioxidant Activity
3.3.1. ABTS.+
3.3.2. DPPH
3.3.3. FRAP
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godoy-Izquierdo, D.; Ogallar, A.; Lara, R.; Rodríguez-Tadeo, A.; Arbinaga, F. Association of a Mediterranean Diet and Fruit and Vegetable Consumption with Subjective Well-Being among Adults with Overweight and Obesity. Nutrients 2021, 13, 1342. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L. Dietary fibre and body weight. Nutrition 2005, 21, 411–418. [Google Scholar] [CrossRef]
- Guillon, F.; Champ, M.; Thibault, J.F.; Saulnie, L. 24-Dietary fibre functional products. In Functional Foods, 2nd ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 582–622. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Li, Y.; Xue, K.; Kan, J. Dietary. Use of Dietary Fibers in Reducing the Risk of Several Cancer Types: An Umbrella Review. Nutrients 2023, 15, 2545. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, C.T.; Woodside, J.V. Chapter 26—Mediterranean Diet for Prevention of Cardiovascular Disease and Type 2 Diabetes. In Glucose Intake and Utilisation in Pre-Diabetes and Diabetes, Part II; Elsevier: Amsterdam, The Netherlands, 2015; pp. 327–339. [Google Scholar] [CrossRef]
- Brownlee, I.A. The physiological roles of dietary fibre. Food Hydrocoll. 2011, 25, 238–250. [Google Scholar] [CrossRef]
- Fernández-Navarro, T.; Salazar, N.; Gutiérrez-Díaz, I.; De los Reyes-Gavilán, C.G.; Gueimonde, M.; González, S. Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients 2017, 9, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lie, L.; Laquita Brown, L.; Forrester, T.E.; Plange-Rhule, J.; Bovet, P.; Lambert, E.V.; Layden, B.T.; Luke, A.; Dugas, L.R. The Association of Dietary Fiber Intake with Cardiometabolic Risk in Four Countries across the Epidemiologic Transition. Nutrients 2018, 10, 628. [Google Scholar] [CrossRef] [Green Version]
- Cantero, I.; Abete, I.; Monreal, J.I.; Martinez, J.A.; Zulet, M.A. Fruit Fiber Consumption Specifically Improves Liver Health Status in Obese Subjects under Energy Restriction. Nutrients 2017, 9, 667. [Google Scholar] [CrossRef] [Green Version]
- Healey, G.R.; Celiberto, L.S.; Lee, S.M.; Jacobson, K. Fiber and Prebiotic Interventions in Pediatric Inflammatory Bowel Disease: What Role Does the Gut Microbiome Play? Nutrients 2020, 12, 3204. [Google Scholar] [CrossRef]
- Talbot, G. Oxidation of confectionery products and biscuits. In Oxidation in Foods and Beverages and Antioxidant Applications; Woodhead Publishing: Sawston, UK, 2010; pp. 344–368. [Google Scholar] [CrossRef]
- Vaz, A.A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Martín-Belloso, O. Physicochemical Properties and Bioaccessibility of Phenolic Compounds of Dietary Fibre Concentrates from Vegetable By-Products. Foods 2022, 11, 2578. [Google Scholar] [CrossRef]
- Pop, C.; Suharoschi, R.; Pop, O.L. Dietary Fiber and Prebiotic Compounds in Fruits and Vegetables Food Waste. Sustainability 2021, 13, 7219. [Google Scholar] [CrossRef]
- Chantaro, P.; Devahastin, S.; Chiewchan, N. Production of antioxidant high dietary fibre powder from carrot peels. LWT—Food Sci. Technol. 2008, 41, 1987–1994. [Google Scholar] [CrossRef]
- Nilnakara, S.; Chiewchan, N.; Devahastin, S. Production of antioxidant dietary fibre powder from outer cabbage leaves. Food Bioprod. Process 2009, 87, 301–307. [Google Scholar] [CrossRef]
- Lecumberri, E.; Mateos, R.; Izquierdo-Pulido, M.; Rupérez, P.; Goya, L.; Bravo, L. Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chem. 2007, 104, 948–954. [Google Scholar] [CrossRef]
- Pérez Jiménez, J.; Serrano, J.; Tabernero, M.; Arranz, S.; Díaz-Rubio, M.E.; García-Diz, L.; Goñi, I.; Saura-Calixto, F. Effects of grape antioxidant dietary fibre in cardiovascular disease risk factors. Nutrition 2008, 24, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Du, B.; Zheng, L.; Li, J. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chem. 2015, 186, 207–212. [Google Scholar] [CrossRef]
- Nandi, I.; Ghosh, M. Studies on the functional and antioxidant property of dietary fibre extracted from defatted sesame husk, rice bran and flaxseed. Bioact. Carbohydr. Diet. Fibre. 2015, 5, 129–136. [Google Scholar] [CrossRef]
- Fuentes-Alventosa, J.M.; Rodríguez-Gutiérrez, G.; Jaramillo-Carmona, S.; Espejo-Calvo, J.A.; Rodríguez-Arcos, R.; Fernández-Bolaños, J.; Guillén-Bejarano, R.; Jiménez-Araujo, A. Effect of extraction method on chemical composition and functional characteristics of high dietary fibre powders obtained from asparagus by-products. Food Chem. 2009, 113, 665–671. [Google Scholar] [CrossRef]
- Fărcas, A.; Dreţcanu, G.; Daria Pop, T.; Enaru, B.; Socaci, S.; Diaconeasa, Z. Cereal Processing By-Products as Rich Sources of Phenolic Compounds and Their Potential Bioactivities. Nutrients 2021, 13, 3934. [Google Scholar] [CrossRef]
- Colantuonoa, A.; Vitaglionea, P.; Ferracanea, R.; Campanellab, O.H.; Hamakerb, B.R. Development and functional characterization of new antioxidant dietary fibers from pomegranate, olive, and artichoke by-products. Food Res. Int. 2017, 101, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Quintero Ruiz, N.A.; Paolucci, M.; Siano, F.; Mamone, G.; Picariello, G.; Puppo, M.C.; Cascone, G.; Volpe, M.G. Characterization of soluble and insoluble fibers in artichoke by-products by ATR-FTIR spectroscopy coupled with chemometrics. Int. J. Food Prop. 2021, 24, 1693–1704. [Google Scholar] [CrossRef]
- Borsini, A.A.; Llavata, B.; Umaña, M.; Cárcel, J.A. Artichoke by Products as a Source of Antioxidant and Fiber: How It Can Be Affected by Drying Temperature. Foods 2021, 10, 459. [Google Scholar] [CrossRef]
- Manley, D. Emulsifiers (surfactants) and antioxidants as biscuit ingredients. In Manley’s Technology of Biscuits, Crackers and Cookies, 4th ed.; Woodhead Publishing: Sawston, UK, 2011; pp. 181–190. [Google Scholar] [CrossRef]
- Reddy, V.; Urooj, A.; Kumar, A. Evaluation of antioxidant activity of some plant extracts and their application in biscuits. Food Chem. 2005, 90, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Zhou, W. A stability study of green tea catechins during the biscuit making process. Food Chem. 2012, 126, 568–573. [Google Scholar] [CrossRef]
- Frutos, M.J.; Guilabert-Antón, L.; Tomás-Bellido, A.; Hernández-Herrero, J.A. Effect of Artichoke (Cynara scolymus L.) Fiber on Textural and Sensory Qualities of Wheat Bread. Food Sci. Tech. Int. 2008, 14, 49–55. [Google Scholar] [CrossRef]
- Boubaker, M.; EL Omri, A.; Blecker, C.; Bouzouita, N. Fibre concentrate from artichoke (Cynara scolymus L.) stem by-products: Characterization and application as a bakery product ingredient. Food Sci. Tech. Int. 2016, 22, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Vitali, D.; Vedrina Dragojević, I.; Šebečić, B. Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chem. 2009, 114, 1462–1469. [Google Scholar] [CrossRef]
- Ajila, C.M.; Leelavathi, K.; Prasada Rao, U.J.S. Improvement of dietary fibre content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2007, 48, 319–326. [Google Scholar] [CrossRef]
- Raymundo, A.; Fradinho, P.; Nunes, M.C. Effect of Psyllium fibre content on the textural and rheological characteristics of biscuit and biscuit dough. Bioact. Carbohydr. Diet. Fibre 2014, 3, 96–105. [Google Scholar] [CrossRef]
- Ruiz-Cano, D.; Pérez-Llamas, F.; Frutos, M.J.; Arnao, M.B.; Espinosa, C.; López-Jiménez, J.A.; Castillo, J.; Zamora, S. Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing. Food Chem. 2014, 160, 134–140. [Google Scholar] [CrossRef]
- Whitley, P.R. Biscuit Manufacturer; Applied Science Publisher Limited: London, UK, 1970. [Google Scholar]
- Fuentes-Alventosa, J.M.; Jaramillo-Carmona, S.; Rodríguez-Gutiérrez, G.; Rodríguez-Arcosa, R.; Fernández-Bolañosa, J.; Guillén-Bejaranoa, R.; Espejo-Calvo, J.A.; Jiménez-Araujoa, A. Effect of the extraction method on phytochemical composition and antioxidant activity of high dietary fibre powders obtained from asparagus by-products. Food Chem. 2009, 116, 484–490. [Google Scholar] [CrossRef]
- San José, F.J.; Collado-Fernández, M. Evolution of By-Product of Vegetal Canning Industry, Obtaining Fibre of Artichoke and Development of Digestive Type Biscuit. Ph.D. Thesis, University of Burgos, Burgos, Spain, 2018. Available online: https://riubu.ubu.es/bitstream/handle/10259/5180/San_Jose_Barrero.pdf?sequence=1 (accessed on 12 June 2023).
- Yang, N.; Hort, J.; Linforth, R.; Brown, K.; Walsh, S.; Fisk, I.D. Impact of flavour solvent (propylene glycol or triacetin) on vanillin, 5-(hydroxymethyl) furfural, 2,4-decadienal, 2,4-heptadienal, structural parameters and sensory perception of shortcake biscuits over accelerated shelf-life testing. Food Chem. 2013, 141, 1354–1360. [Google Scholar] [CrossRef]
- Nollet, L.M.L. Handbook of Food Analysis, 3rd ed.; M. Dekker: New York, NY, USA, 1996. [Google Scholar]
- Glahn, R.P.; Rassier, M.; Goldman, M.I.; Lee, O.A.; Cha, J. A comparison of iron availability from iron preparations using an in vitro digestion/caco-2 cell culture model. J. Nutr. Biochem. 2000, 11, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Habicht, J.P.; Miller, D.D.; Glahn, R.P. An In Vitro Digestion/Caco-2 Cell Culture System Accurately Predicts the Effects of Ascorbic Acid and Polyphenolic Compounds on Iron Bioavailability in Humans. J. Nutr. 2004, 134, 2717–2721. [Google Scholar] [CrossRef] [Green Version]
- Kosińska-Cagnazzo, A.; Diering, S.; Prim, D.; Andlauer, W. Identification of bioaccessible and uptaken phenolic compounds from strawberry fruits in in vitro digestion/Caco-2 absorption model. Food Chem. 2015, 170, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Garrett, D.; Failla, M.; Sarama, R. Estimation of carotenoid bioavailability from fresh stir-fried vegetables using an in vitro digestion/Caco-2cell culture model. J. Nutr. Biochem. 2000, 11, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Hartzfeld, P.W.; Forkner, R.; Hunter, D.M.; Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellafitannins) after reaction with potassium iodate. J. Agric. Food Chem. 2002, 50, 1785–1790. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Tech. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Iris Benzie, F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of Antioxidant Power: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Jamiréz, J.; Saura-Calixto, F. Literature data may underestimate the actual antioxidant capacity of cereals. J. Agri. Food Chem. 2005, 53, 5036–5040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef] [Green Version]
- D’Antuonoa, I.; Garbettaa, A.; Linsalataa, V.; Minervinia, F.; Cardinalia, A. Polyphenols from artichoke heads (Cynara cardunculus L.) subsp. scolymus Hayek): In vitro bio accessibility, intestinal uptake and bioavailability. Food Funct. 2015, 6, 1268–1277. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fibre and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Doğan, E.; Gökmen, V. Mechanism of the interaction between insoluble wheat bran and polyphenols leading to increased antioxidant capacity. Food Res. Int. 2015, 69, 189–193. [Google Scholar] [CrossRef]
- Saeed, S.M.G.; Ali, S.A.; Faheem, K.; Ali, R.; Giuffrè, A.M. The Impact of Innovative Plant Sources (Cordia myxa L. Fruit (Assyrian Plum) and Phoenix dactylifera L. Biowaste (Date Pit)) on the Physicochemical, Microstructural, Nutritional, and Sensorial Properties of Gluten-Free Biscuits. Foods 2022, 11, 2346. [Google Scholar] [CrossRef]
- Laganà, V.; Giuffrè, A.M.; De Bruno, A.; Poiana, M. Formulation of biscuits fortified with a flour obtained from bergamot by-products (Citrus bergamia, Risso). Foods 2022, 11, 1137. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Poliński, S.; Momot, M. Optimization of Ingredients for Biscuits Enriched with Rapeseed Press Cake—Changes in Their Antioxidant and Sensory Properties. Appl. Sci. 2021, 11, 1558. [Google Scholar] [CrossRef]
- Arranz, S.; Saura Calixto, F. Analysis of polyphenols in cereals may be improved performing acidic hydrolysis: A study in wheat flour and wheat bran and cereals of the diet. J. Cereal Sci. 2010, 51, 313–318. [Google Scholar] [CrossRef]
- Williamson, G.; Holst, B. Dietary reference intake (DRI) value for dietary polyphenols: Are we heading in the right direction? Br. J. Nutr. 2008, 99, S55–S58. [Google Scholar] [CrossRef] [Green Version]
- Sies, H. Polyphenols and health: Update and perspectives. Arc. Biochem. Biophys. 2010, 501, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Kitts, D.D. Antioxidant activity of sugar–lysine Maillard reaction products in cell-free and cell culture systems. Arch. Biochem. Biophys. 2004, 429, 154–163. [Google Scholar] [CrossRef]
- Sun, Y.; Hayakawa, S.; Chuamanochan, M.; Fujimoto, M.; AInnun, A.; Izumori, K. Antioxidant effects of Maillard reaction products obtained from ovalbumin and different D-aldohexoses. Biosci. Biotech. Biochem. 2006, 70, 598–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, K.H.; Reichhold, S.; Koschutnig, K.; Cheriot, S.; Billaud, C. The potential antimutagenic and antioxidant effects of Maillard reaction products used as “natural antibrowning” agents. Mol. Nutr. Food Res. 2007, 51, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Toledo, R. Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 2005, 93, 273–278. [Google Scholar] [CrossRef]
- Rivero-Perez, M.D.; Muñiz, P.; González-San José, M.L. Antioxidant Profile of Red Wines Evaluated by Total Antioxidant Capacity, Scavenger Activity, and Biomarkers of Oxidative Stress Methodologies. J. Agric. Food Chem. 2007, 55, 5476–5483. [Google Scholar] [CrossRef]
- Prior, R.; Cao, G. Analysis of botanicals and dietary supplements for antioxidant capacity: A review. J. AOAC Int. 2000, 83, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Richelle, M.; Tavazzi, I.; Offord, E. Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa and tea) prepared per cup serving. J. Agri. Food Chem. 2001, 49, 3438–3442. [Google Scholar] [CrossRef]
- Gardner, P.T.; White, T.A.C.; McPhail, D.B.; Duthie, G.G. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 2000, 68, 471–474. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, H.; Gong, A.; Young, C.Y. Involvement of transcription factor Sp1 in quercetin-mediated inhibitory effect on the androgen receptor in human prostate cancer cells. Carcinogenesis 2005, 26, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.S.; Catravas, J.D.; Odoms, K.; Denenberg, A.; Malhorta, V.; Wong, H.R. Epigallocatechin-3-gallate, a green tea-derived polyphenol, inhibits IL-1 b-dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J. Nutr. 2004, 134, 1039–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.J.; Sutherland, W.H.; Whelan, A.P.; McCormick, M.P.; de Jong, S.A. Acute effect of drinking red and white wines on circulating levels of inflammation-sensitive molecules in men with coronary artery disease. Metabolism 2004, 53, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Manach, C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am. J. Clin. Nutr. 2005, 81, 243S–255S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.D.; Hong, J.; Yang, G.Y.; Liao, J.; Yang, C.S. Inhibition of carcinogenesis by polyphenols: Evidence from laboratory investigations. Am. J. Clin. Nutr. 2005, 81, 284S–291S. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Morand, C.; Gil-Izquierd, A.; Bouteloup-Demange, C.; Remesy, C. Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur. J. Clin. Nutr. 2003, 57, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenner, A.M.; Rafter, J.; Halliwell, B. Human fecal water content of phenolics: The extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 2005, 38, 763–772. [Google Scholar] [CrossRef] [PubMed]
- San Jose, F.; Collado-Fernandez, M.; Lopez, R. Sensory evaluation of biscuits enriched with artichoke fiber-rich powders (Cynara scolymus L.). Food Sci. Nutr. 2018, 6, 160–167. [Google Scholar] [CrossRef] [Green Version]
Ingredient | % |
---|---|
Water | 7.45 |
Glucose-fructose syrup | 1.45 |
Sunflower oil | 12.02 |
Whey | 3.52 |
Sodium and ammonium bicarbonate | 1 |
Salt | 0.23 |
Lecithin | 0.1 |
Wholemeal wheat flour | 61.2 |
Fiber: Pea fiber (P) or FRPA (W, CA) | 4 |
100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
José, F.J.S.; Collado-Fernández, M.; Álvarez-Castellanos, P.P. Variation, during Shelf Life, of Functional Properties of Biscuits Enriched with Fibers Extracted from Artichoke (Cynara scolymus L.). Nutrients 2023, 15, 3329. https://doi.org/10.3390/nu15153329
José FJS, Collado-Fernández M, Álvarez-Castellanos PP. Variation, during Shelf Life, of Functional Properties of Biscuits Enriched with Fibers Extracted from Artichoke (Cynara scolymus L.). Nutrients. 2023; 15(15):3329. https://doi.org/10.3390/nu15153329
Chicago/Turabian StyleJosé, Francisco José San, Montserrat Collado-Fernández, and Pino P. Álvarez-Castellanos. 2023. "Variation, during Shelf Life, of Functional Properties of Biscuits Enriched with Fibers Extracted from Artichoke (Cynara scolymus L.)" Nutrients 15, no. 15: 3329. https://doi.org/10.3390/nu15153329
APA StyleJosé, F. J. S., Collado-Fernández, M., & Álvarez-Castellanos, P. P. (2023). Variation, during Shelf Life, of Functional Properties of Biscuits Enriched with Fibers Extracted from Artichoke (Cynara scolymus L.). Nutrients, 15(15), 3329. https://doi.org/10.3390/nu15153329