Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.)
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Characterization of Artichoke Leaves
2.1.1. Identification of Compound 5 as a Constituent of the Plant Material and Not an Extraction Artifact
2.1.2. HPLC Analysis of Artichoke Leaves Extracts
2.2. Proximate Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. General Experimental Procedures
4.3. Phytochemical Characterization of Artichoke Leaves
4.3.1. Extraction and Isolation of Phenolic Derivatives (1–5)
4.3.2. Extraction and Isolation of Cynaropicrin (6)
4.3.3. NMR Analysis of Isolated Compound (1–6)
- 3-O-Caffeoylquinic acid (chlorogenic acid) (1): white amorphous solid (48 mg; purity 95%, HPLC); 1H NMR (MeOH-d4, 600 MHz) δ 7.58 (d, J = 15.8 Hz, 1H, H-7′), 7.06 (d, J = 1.5 Hz, 1H, H-2′), 6.97 (dd, J = 8.1, 1.5 Hz, 1H, H-6′), 6.78 (d, J = 8.1 Hz, 1H, H-5′), 6.28 (d, J = 15.8 Hz, 1H, H-7′), 5.35 (m, 1H, H-5), 4.17–3.90 (m, 1H, H-3), 3.73 (dd, J = 8.4, 2.9 Hz, 1H, H-4), 1.96–2.30 (m, 4H, H-2, H-6, overlapped signals). NMR data are consistent with the literature [36].
- 1,5-Di-O-caffeoylquinic acid (cynarin) (2): white amorphous solid (9 mg; purity 95%, HPLC); 1H NMR (MeOH-d4, 600 MHz) δ 7.48 (dd, J = 15.9 Hz, 1H, H-7), 7.47 (bd, J = 15.9 Hz, 1H, H-7), 6.92 (dd, J = 2.1, 0.5 Hz, 1H, H-2), 6.81 (dd, J = 2.1, 0.5 Hz, 1H, H-2), 6.75 (ddd, J = 8.2, 2.1, 0.5 Hz, 1H, H-6), 6.63 (d, J = 8.2 Hz, 1H, H-5), 6.59 (ddd, J = 8.2, 2.1, 0.5 Hz, 1H, H-6), 6.18 (d, J = 15.9 Hz, 1H, H-8), 6.51 (d, J = 8.2 Hz, 1H, H-5), 6.12 (d, J = 15.9 Hz, 1H, H-8), 5.37 (q, J = 3.5 Hz, 1H, H-3), 4.23 (ddd, J = 11.2, 9.5, 4.5 Hz, 1H, H-5), 3.62 (dd, J = 9.5, 3.7 Hz, 1H, H-4), 2.88 (dt, J = 16.0, 3.3 Hz, 2H, H-2a), 2.52 (ddd, J = 13.8, 4.5, 3.3 Hz, 1H, H-6a), 2.30 (dd, J = 16.1, 3.4 Hz, 2H, H-2b), 1.83 (dd, J = 13.8, 11.2 Hz, 2H, H-6b) NMR data are consistent with the literature [36].
- Luteolin 7-O-rutinoside (scolymoside) (3): yellow amorphous solid (15 mg; purity 95%, HPLC); 1H NMR (MeOH-d4, 600 MHz) δ 7.39 (dd, J = 8.7, 2.2 Hz, 1H, H-6′), 7.37 (d, J = 2.2 Hz, 1H, H-2′), 6.82 (d, J = 8.7 Hz, 1H, H-5′), 6.75 (d, J = 2.1 Hz, 1H, H-8), 6.56 (s, 1H, H-3), 6.52 (d, J = 2.1 Hz, 1H, H-6), 5.05 (d, J = 7.3 Hz, 1H, H-1″), 4.74 (d, J = 1.5 Hz, 1H, H-1‴), 4.07 (d, J = 9.5 Hz, 1H, H-6″b), 3.93 (dd, J = 3.5, 1.6 Hz, 1H, H-2‴), 3.75 (dd, J = 9.5, 3.3 Hz, 1H, H-3‴), 3.29–3.70 (m, 7H, H-2″, 3″, 4″, 5″, 6″a, 4‴, 5‴), 1.18 (d, J = 6.2 Hz, 3H, H-6‴). NMR data are consistent with the literature [36].
- Luteolin-7-O-glucoside (cynaroside) (4): yellow amorphous solid (22 mg; purity 95%, HPLC); 1H NMR (DMSO-d6, 600 MHz) δ 12.98 (s, 1H, OH-5), 7.46 (dd, J = 8.3, 2.0 Hz, 1H, H-6′), 7.43 (d, J = 2.0 Hz, 1H, H-2′), 6.92 (d, J = 8.3 Hz, 1H, H-5′), 6.79 (d, J = 1.9 Hz, 1H, H-8), 6.75 (s, 1H, H-3), 6.45 (d, J = 1.9 Hz, 1H, H-6), 5.09 (d, J = 7.3 Hz, 1H, H-1′′), 3.73–3.17 (m, 5H, H-2′′, 3′′, 4′′, 5′′, and 6′′). NMR data are consistent with the literature [36].
- 3-O-Caffeoylquinic acid methyl ester (chlorogenic acid methyl ester) (5): white amorphous solid (35 mg; purity 95%, HPLC); 1H NMR (MeOH-d4, 600 MHz) δ 7.53 (d, J = 15.9 Hz, 1H, H-7′), 7.05 (d, J = 1.5 Hz, 1H, H-2′), 6.96 (dd, J = 8.2, 1.5 Hz, 1H, H-6′), 6.80 (d, J = 8.2 Hz, 1H, H-5′), 6.24 (d, J = 15.9 Hz, 1H, H-7′), 5.30 (dd, J = 3.5 Hz, 1H, H-3), 4.16 (ddd, J = 3.5, 3.5, 1.5 Hz, 1H, H-5), 3.75 (dd, J = 3.5, 7.6 Hz, 1H, H-4), 3.72 (s, 3H, OMe), 1.96–2.28 (m, 4H, H-2, H-6). 13C NMR (MeOH-d4, 151 MHz) δ 175.7 (COOMe), 168.6 (CH=CHCO), 149.9 (C-4′), 147.5 (C=CCO), 147.1 (C-4′), 127.9 (C-1′), 123.3 (C-6′), 116.8 (C-5′), 115.4 (C-2′), 115.3 (C=CCO), 76.1 (C-1), 72.9 (C-3), 72.4 (C-4), 70.6 (C-5), 53.3 (COOMe), 38.3 (C-6), 38.0 (C-2). NMR data are consistent with the literature [37].
- Cynaropicrin (6): white amorphous solid (382 mg; purity 95%, HPLC); 1H NMR (MeOH-d4, 600 MHz) δ 3.01 (dt, J = 10.8, 8.4 Hz, 1H, H-1), 2.12 (dt, J = 13.2, 7.2 Hz, 1H, H-2a), 1.74 (dt, J = 13.2, 7.2 Hz, 1H, H-2b), 4.53 (dd, J = 9.3, 7.1 Hz, 1H, H-3), 2.91 (dd, J = 10.4, 9.2 Hz, 1H, H-5), 4.37 (dd, J = 9.3, 7.1 Hz, 1H, H-6), 3.31 (t, J = 10.2 Hz, 1H, H-7), 5.15 (m, 2H, H-8), 2.42 (dd, J = 14.4, 3.6 Hz, 1H, H-9a), 2.75 (dd, J = 14.4, 5.2 Hz, 1H, H-9b), 5.66 (d, J = 3.2 Hz, 1H, H-13a), 6.14 (d, J = 4.0 Hz, 1H, H-13b), 4.93 (br s, 1H, H-14a), 5.17 (br s, 1H, H-14b), 5.35 (t, J = 1.6 Hz, 1H, H-15a), 5.45 (br t, J = 1.6 Hz, 1H, H-15b), 5.98 (d, J = 0.8 Hz, 1H, H-3′a), 6.32 (d, J = 0.8 Hz, 1H, H-3′b), 4.31 (s, 2H, H-4′). NMR data are consistent with the literature [38].
4.3.4. Esterification Attempt of Chlorogenic Acid (1) to Methyl Ester (5)
4.3.5. HPLC Analysis of Artichoke Leaves Extracts
4.4. Proximate Analysis
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
AOAC | Association of Official Agricultural Chemists |
CQAs | Caffeoylquinic Acids |
HPLC | High-Performance Liquid Chromatography |
LOD | Limit of Detection |
LOQ | Limit of Quantification |
NMR | Nuclear Magnetic Resonance |
SEM | Standard Error of the Mean |
TLC | Thin-Layer Chromatography |
References
- Sonnante, G.; Pignone, G.; Hammer, K. The domestication of artichoke and cardoon: From roman times to the genomic age. Ann. Bot. 2007, 100, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichokes: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- FAOSTAT Database: Crops—Artichoke Production. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 27 January 2025).
- Pérez-Esteve, E.; Sałata, A.; Barat, J.M.; Stępniowska, A.; López-Galarza, S.; Nurzyńska-Wierdak, R. Polyphenolic composition of Spanish cultivar of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Acta Sci. Pol. Hortorum Cultus 2018, 17, 177–184. [Google Scholar] [CrossRef]
- Fratianni, F.; Pepe, R.; Nazzaro, F. Polyphenol composition, antioxidant, antimicrobial and quorum quenching activity of the “Carciofo di Montoro” (Cynara cardunculus var. scolymus) global artichoke of the Campania region, Southern Italy. Food Nutr. Sci. 2014, 5, 2053–2062. [Google Scholar] [CrossRef]
- Gouveia, S.C.; Castilho, P.C. Phenolic composition and antioxidant capacity of cultivated artichoke, Madeira cardoon and artichoke-based dietary supplements. Food Res. Int. 2012, 48, 712–724. [Google Scholar] [CrossRef]
- Gezer, C. Potential health effects of the popular compound of artichoke: Cynarin. Prog. Nutr. 2017, 19, 5–9. [Google Scholar]
- de Falco, B.; Incerti, G.; Amato, M.; Lanzotti, V. Artichoke: Botanical, agronomical, phytochemical, and pharmacological overview. Phytochem. Rev. 2015, 14, 993–1018. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Mocan, A.; Atanasov, A.G. Cynaropicrin: A comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Front. Pharmacol. 2016, 7, 472. [Google Scholar] [CrossRef]
- Brockhoff, A.; Behrens, M.; Massarotti, A.; Appendino, G.; Meyerhof, W. Broad tuning of the human bitter taste receptor hTAS2R46 to various sesquiterpene lactones, clerodane and labdane diterpenoids, strychnine, and denatonium. J. Agric. Food Chem. 2007, 55, 6236–6243. [Google Scholar] [CrossRef]
- Ziaikin, E.; David, M.; Uspenskaya, S.; Niv, M.Y. BitterDB: 2024 update on bitter ligands and taste receptors. Nucleic Acids Res. 2025, 53, D1645–D1650. [Google Scholar] [CrossRef]
- Yan, J.; Tong, H. An overview of bitter compounds in foodstuffs: Classifications, evaluation methods for sensory contribution, separation and identification techniques, and mechanism of bitter taste transduction. Compr. Rev. Food Sci. Food Saf. 2023, 22, 187–232. [Google Scholar] [CrossRef] [PubMed]
- López-Anido, F.; Martin, E. Globe Artichoke (Cynara cardunculus var. scolymus L.) Breeding. In Advances in Plant Breeding Strategies: Vegetable Crops; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2021; pp. 137–155. [Google Scholar] [CrossRef]
- De Falco, E.; Senatore, A.; Roscigno, G.; Pergola, M. The artichoke “Bianco di Pertosa”: The enhancement of crop residues through environmentally friendly uses. Horticulturae 2022, 8, 900. [Google Scholar] [CrossRef]
- Francavilla, M.; Marone, M.; Marasco, P.; Contillo, F.; Monteleone, M. Artichoke biorefinery: From food to advanced technological applications. Foods 2021, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Gominho, J.; Curt, M.D.; Lourenço, A.; Fernández, J.; Pereira, H. Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass Bioenergy 2018, 109, 257–275. [Google Scholar] [CrossRef]
- Zayed, A.; Farag, M.A. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications. LWT Food Sci. Technol. 2020, 132, 109883. [Google Scholar] [CrossRef]
- Zuorro, A.; Maffei, G.; Lavecchia, R. Reuse potential of artichoke (Cynara scolymus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 2016, 111, 279–284. [Google Scholar] [CrossRef]
- Fernandez, J.; Curt, M.D.; Aguado, P.L. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind. Crops Prod. 2006, 24, 222–229. [Google Scholar] [CrossRef]
- Machado, M.T.; Eça, K.S.; Vieira, G.S.; Menegalli, F.C.; Martínez, J.; Hubinger, M.D. Prebiotic oligosaccharides from artichoke industrial waste: Evaluation of different extraction methods. Ind. Crops Prod. 2015, 76, 141–148. [Google Scholar] [CrossRef]
- Sabater, C.; Corzo, N.; Olano, A.; Montilla, A. Enzymatic extraction of pectin from artichoke (Cynara scolymus L.) by-products using Celluclast®1.5L. Carbohydr. Polym. 2018, 190, 43–49. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G. Globe artichoke leaves and floral stems as a source of bioactive compounds. Ind. Crops Prod. 2013, 44, 44–49. [Google Scholar] [CrossRef]
- Rouphael, Y.; Bernardi, J.; Cardarelli, M.; Bernardo, L.; Kane, D.; Colla, G.; Lucini, L. Phenolic compounds and sesquiterpene lactones profile in leaves of nineteen artichoke cultivars. J. Agric. Food Chem. 2016, 64, 8540–8548. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; El-Ahmady, S.H.; Elian, F.S.; Wessjohann, L.A. Metabolomics-driven analysis of artichoke leaf and its commercial products via UHPLC–q-TOF-MS and chemometrics. Phytochemistry 2013, 95, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Colombo, R.; Moretto, G.; Pellicorio, V.; Papetti, A. Globe artichoke (Cynara scolymus L.) by-products in food applications: Functional and biological properties. Foods 2024, 13, 1427. [Google Scholar] [CrossRef] [PubMed]
- Rudić, S.; Dimitrijević-Branković, S.; Dimitrijević, S.; Milić, M. Valorization of unexploited artichoke leaves dust for obtaining of extracts rich in natural antioxidants. Sep. Purif. Technol. 2021, 256, 117714. [Google Scholar] [CrossRef]
- Bittencourt, G.M.; Simprônio, M.D.R.; Mothé, I.R.; Ferreira, G.R.; De Oliveira, A.L. Globe artichoke leaf extracts and production of phytotherapeutic solid lipid particles using high pressure technologies. J. Supercrit. Fluids 2023, 201, 106028. [Google Scholar] [CrossRef]
- Karaduman, U.; Yilmazer, M.S.; Balkir, P. Artichoke leaf extract powder: Sustainable production and potential culinary applications. Int. J. Gastr. Food Sci. 2025, 39, 101113. [Google Scholar] [CrossRef]
- Amoriello, T.; Mellara, F.; Ruggeri, S.; Ciorba, R.; Ceccarelli, D.; Ciccoritti, R. Artichoke by-products valorization for phenols-enriched fresh egg pasta: A sustainable food design project. Sustainability 2022, 14, 14778. [Google Scholar] [CrossRef]
- Olas, B. An overview of the versatility of the parts of the globe artichoke (Cynara scolymus L.), its by-products and dietary supplements. Nutrients 2024, 16, 599. [Google Scholar] [CrossRef]
- Laghezza Masci, V.; Alicandri, E.; Antonelli, C.; Paolacci, A.R.; Marabottini, R.; Tomassi, W.; Scarascia Mugnozza, G.; Tiezzi, A.; Garzoli, S.; Vinciguerra, V.; et al. Cynara cardunculus L. var. scolymus L. landrace “Carciofo Ortano” as a source of bioactive compounds. Plants 2024, 13, 761. [Google Scholar] [CrossRef]
- Zeven, A. Landraces: A review of definitions and classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Crinò, P.; Pagnotta, M.A. Phenotyping, genotyping, and selections within Italian local landraces of Romanesco globe artichoke. Diversity 2017, 9, 14. [Google Scholar] [CrossRef]
- Alicandri, E.; Paolacci, A.R.; Catarcione, G.; Del Lungo, A.; Iacoponi, V.; Pati, F.; Scarascia Mugnozza, G.; Ciaffi, M. Morphological, molecular, and nutritional characterisation of the globe artichoke landrace “Carciofo Ortano”. Plants 2023, 12, 1844. [Google Scholar] [CrossRef] [PubMed]
- Pedrali, D.; Zuccolo, M.; Giupponi, L.; Sala, S.; Giorgi, A. Characterization and future distribution prospects of “Carciofo di Malegno” landrace for its in situ conservation. Plants 2024, 13, 680. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Simon, J.E.; Aviles, I.F.; He, K.; Zheng, Q.-Y.; Tadmor, Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J. Agric. Food Chem. 2003, 51, 601–608. [Google Scholar] [CrossRef]
- Zhu, X.; Dong, X.; Wang, Y.; Ju, P.; Luo, S. Phenolic compounds from Viburnum cylindricum. Helv. Chim. Acta 2005, 88, 339–342. [Google Scholar] [CrossRef]
- Tastan, P.; Hajdú, Z.; Kúsz, N.; Zupkó, I.; Sinka, I.; Kivcak, B.; Hohmann, J. Sesquiterpene lactones and flavonoids from Psephellus pyrrhoblepharus with antiproliferative activity on human gynecological cancer cell lines. Molecules 2019, 24, 3165. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, H.; Lo, R. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J. Agric. Food Chem. 2004, 52, 7272–7278. [Google Scholar] [CrossRef]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic acid: A systematic review on the biological functions, mechanistic actions, and therapeutic potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Zhong, J.; Ran, Q.; Han, Y.; Gan, L.; Dong, C. Biosynthetic Mechanisms of Plant Chlorogenic Acid from a Microbiological Perspective. Microorganisms 2025, 13, 1114. [Google Scholar] [CrossRef]
- De Stefano, A.; Caporali, S.; Di Daniele, N.; Rovella, V.; Cardillo, C.; Schinzari, F.; Minieri, M.; Pieri, M.; Candi, E.; Bernardini, S.; et al. Anti-inflammatory and proliferative properties of luteolin-7-O-glucoside. Int. J. Mol. Sci. 2021, 22, 1321. [Google Scholar] [CrossRef] [PubMed]
- Caporali, S.; De Stefano, A.; Calabrese, C.; Giovannelli, A.; Pieri, M.; Savini, I.; Tesauro, M.; Bernardini, S.; Minieri, M.; Terrinoni, A. Anti-inflammatory and active biological properties of the plant-derived bioactive compounds luteolin and luteolin 7-glucoside. Nutrients 2022, 14, 1155. [Google Scholar] [CrossRef] [PubMed]
- Çetinkaya, M.; Baran, Y. Therapeutic potential of luteolin on cancer. Vaccines 2023, 11, 554. [Google Scholar] [CrossRef] [PubMed]
- Chiruvella, K.K.; Mohammed, A.; Dampuri, G.; Ghanta, R.G.; Raghavan, S.C. Phytochemical and antimicrobial studies of methyl angolensate and luteolin-7-O-glucoside isolated from callus cultures of Soymida febrifuga. Int. J. Biomed. Sci. 2007, 3, 269–278. [Google Scholar]
- Karaoğlan, E.S.; Hancı, H.; Koca, M.; Kazaz, C. Some bioactivities of isolated apigenin-7-O-glucoside and luteolin-7-O-glucoside. Appl. Sci. 2023, 13, 1503. [Google Scholar] [CrossRef]
- Kim, M.Y.; Cha, H.; Hong, S.H.; Moon, S.; Kwon, T.K.; Chang, Y.; Kim, G.Y.; Hyun, J.W.; Nam, A.; Shim, J.; et al. Cynaropicrin induces reactive oxygen species-dependent paraptosis-like cell death in human liver cancer cells. Biomol. Ther. 2025, 33, 470–482. [Google Scholar] [CrossRef]
- Yang, R.; Ma, S.; Zhuo, R.; Xu, L.; Jia, S.; Yang, P.; Yao, Y.; Cao, H.; Ma, L.; Pan, J. Suppression of endoplasmic reticulum stress-dependent autophagy enhances cynaropicrin-induced apoptosis via attenuation of the P62/Keap1/Nrf2 pathways in neuroblastoma. Front. Pharmacol. 2022, 13, 977622. [Google Scholar] [CrossRef]
- Rotondo, R.; Oliva, M.A.; Arcella, A. The sesquiterpene lactone cynaropicrin manifests strong cytotoxicity in glioblastoma cells U-87 MG by induction of oxidative stress. Biomedicines 2022, 10, 1583. [Google Scholar] [CrossRef]
- Scavo, A.; Rial, C.; Molinillo, J.M.G.; Varela, R.M.; Mauromicale, G.; Macías, F.A. The extraction procedure improves the allelopathic activity of cardoon (Cynara cardunculus var. altilis) leaf allelochemicals. Ind. Crops Prod. 2019, 128, 479–487. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Lucini, L.; Rea, E.; Colla, G. Nutrient solution concentration affects growth, mineral composition, phenolic acids, and flavonoids in leaves of artichoke and cardoon. HortScience 2012, 47, 1424–1429. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Svecova, E.; Rea, E.; Lucini, L. Effects of saline stress on mineral composition, phenolic acids, and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 2013, 93, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Lucini, L.; Borgognone, D.; Rouphael, Y.; Cardarelli, M.; Bernardi, J.; Colla, G. Mild potassium chloride stress alters the mineral composition, hormone network, and phenolic profile in artichoke leaves. Front. Plant Sci. 2016, 7, 948. [Google Scholar] [CrossRef] [PubMed]
- Montesano, V.; Negro, D.; Sonnante, G.; Laghetti, G.; Urbano, M. Polyphenolic compound variation in globe artichoke cultivars as affected by fertilization and biostimulants application. Plants 2022, 11, 2067. [Google Scholar] [CrossRef] [PubMed]
- El Senousy, A.S.; Farag, M.A.; Al-Mahdy, D.A.; Wessjohann, L.A. Developmental changes in leaf phenolics composition from three artichoke cultivars (Cynara scolymus) as determined via UHPLC–MS and chemometrics. Phytochemistry 2014, 108, 67–76. [Google Scholar] [CrossRef]
- Schneider, G.; Thiele, K. The distribution of the bitter principle cynaropicrin in the globe artichoke. Planta Med. 1974, 26, 174–183. [Google Scholar] [CrossRef]
- Jaiswal, R.; Kuhnert, N. How to identify and discriminate between the methyl quinates of chlorogenic acids by liquid chromatography–tandem mass spectrometry. J. Mass Spectrom. 2011, 46, 269–281. [Google Scholar] [CrossRef]
- Abdel Magied, M.M.; Hussien, S.E.D.; Zaki, S.M.; El Said, R.M. Artichoke (Cynara scolymus L.) leaves and heads extracts as hypoglycemic and hypocholesterolemic in rats. J. Food Nutr. Res. 2016, 4, 60–68. [Google Scholar] [CrossRef]
- Biel, W.; Witkowicz, R.; Piątkowska, E.; Podsiadło, C. Proximate composition, minerals and antioxidant activity of artichoke leaf extracts. Biol. Trace Elem. Res. 2019, 194, 589–595. [Google Scholar] [CrossRef]
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of dietary fiber on human health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Colombo, R.; Moretto, G.; Milanese, C.; Papetti, A. Phytochemicals from artichoke (Cynara cardunculus var. scolymus L.) by-products. In Bioactive Phytochemicals in By-Products from Bulb, Flower and Fruit Vegetables; Ramadan, M.F., Ed.; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- San José, F.J.S.; Collado-Fernández, M.; Álvarez-Castellanos, P.P. Variation, during shelf life, of functional properties of biscuits enriched with fibers extracted from artichoke (Cynara scolymus L.). Nutrients 2023, 15, 3329. [Google Scholar] [CrossRef]
- Ayuso, P.; Quizhpe, J.; de los Ángeles Rosell, M.; Peñalver, R.; Nieto, G. Bioactive compounds, health benefits and food applications of artichoke (Cynara scolymus L.) and artichoke by-products: A review. Appl. Sci. 2024, 14, 4940. [Google Scholar] [CrossRef]
- Cravotto, G.; Nano, G.M.; Binello, A.; Spagliardi, P.; Seu, G. Chemical and biological modification of cynaropicrin and grosheimin: A structure–bitterness relationship study. J. Sci. Food Agric. 2005, 85, 1757–1764. [Google Scholar] [CrossRef]
- Scotti, L.; Scotti, M.T.; Ishiki, H.M.; Ferreira, M.J.P.; Emerenciano, V.P.; Menezes, C.M.d.S.; Ferreira, E.I. Quantitative elucidation of the structure–bitterness relationship of cynaropicrin and grosheimin derivatives. Food Chem. 2007, 105, 77–83. [Google Scholar] [CrossRef]
- Rau, D.; Attene, G.; Rodriguez, M.; Baghino, L.; Pisanu, A.B.; Sanna, D.; Acquadro, A.; Portis, E.; Comino, C. The population structure of a globe artichoke worldwide collection, as revealed by molecular and phenotypic analyses. Front. Plant Sci. 2022, 13, 898740. [Google Scholar] [CrossRef]
- Pignatti, S.; Guarino, R.; La Rosa, M. Flora d’Italia, 2nd ed.; Edagricole: Bologna, Italy, 2017. [Google Scholar]
- AOAC International. Official Methods 930.15, 942.05, 978.04, 963.15, 962.09. In Official Methods of Analysis of AOAC International, 21st ed.; Latimer, G.W., Ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- R Development Core Team. R: A Language and Environment or Statistical Computing. R Foundation for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 30 January 2025).
Component * | Sample | ||||
---|---|---|---|---|---|
A (mg/g DW) | B (mg/g DW) | C (mg/g DW) | D (mg/g DW) | ||
Chlorogenic acid | 1 | Trace | 2.30 ± 0.08 c | 6.90 ± 0.24 b | 8.62 ± 0.82 a |
Cynarin | 2 | n.d. | Trace | Trace | Trace |
Scolymoside | 3 | Trace | 5.31 ± 0.57 a | 4.74 ± 0.42 a | 2.15 ± 0.09 b |
Cynaroside | 4 | Trace | 4.29 ± 0.18 ab | 3.99 ± 0.30 b | 4.60 ± 0.05 a |
Methyl chlorogenate | 5 | n.d. | Trace | 4.87 ± 0.18 b | 6.43 ± 0.74 a |
Cynaropicrin | 6 | 0.52 ± 0.03 b | 1.11 ± 0.09 b | 1.94 ± 0.67 a | 2.36 ± 0.39 a |
Component * | Sample | |||
---|---|---|---|---|
A (%) | B (%) | C (%) | D (%) | |
Residual moisture | 8.56 ± 0.05 a | 8.49 ± 0.09 a | 8.18 ± 0.11 | 8.45 ± 0.09 a |
Crude protein | 8.67 ± 0.08 a | 8.61 ± 0.01 a | 8.57 ± 0.04 a | 8.59 ± 0.09 a |
Crude fat | 2.50 ± 0.03 a | 2.48 ± 0.01 a | 2.56 ± 0.02 a | 2.45 ± 0.06 a |
Ash | 8.01 ± 0.04 a | 6.75 ± 0.09 b | 5.81 ± 0.05 c | 5.61 ± 0.07 c |
Crude fiber | 35.75 ± 0.29 a | 31.01 ± 0.11 b | 31.93 ± 0.23 b | 35.74 ± 0.39 a |
Total carbohydrates | 36.50 ± 0.29 b | 46.67 ± 0.25 a | 42.95 ± 0.21 a | 39.16 ± 0.40 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuccolo, M.; Bassoli, A.; Giorgi, A.; Giupponi, L.; Mazzini, S.; Borgonovo, G. Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.). Molecules 2025, 30, 2649. https://doi.org/10.3390/molecules30122649
Zuccolo M, Bassoli A, Giorgi A, Giupponi L, Mazzini S, Borgonovo G. Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.). Molecules. 2025; 30(12):2649. https://doi.org/10.3390/molecules30122649
Chicago/Turabian StyleZuccolo, Marco, Angela Bassoli, Annamaria Giorgi, Luca Giupponi, Stefania Mazzini, and Gigliola Borgonovo. 2025. "Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.)" Molecules 30, no. 12: 2649. https://doi.org/10.3390/molecules30122649
APA StyleZuccolo, M., Bassoli, A., Giorgi, A., Giupponi, L., Mazzini, S., & Borgonovo, G. (2025). Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.). Molecules, 30(12), 2649. https://doi.org/10.3390/molecules30122649