The Quality of Jerusalem Artichoke Biomass Harvested Twice during the Growing Season in North-Eastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Analyses
Sample Preparation
2.3. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Chemical Composition of JA Biomass
3.2.1. Crude Ash Content
3.2.2. Crude Protein Content
3.2.3. Crude Fat Content
3.2.4. Crude Fiber Content
3.2.5. Structural Carbohydrate Content
3.2.6. Content of Water-Soluble Carbohydrates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivanova, T.; Muntean, A.; Titei, V.; Havrland, B.; Kolarikova, M. Energy crops utilization as an alternative agricultural production. Agron. Res. 2015, 13, 311–317. [Google Scholar]
- Kai, G.; Tie-Xia, Z.; Qi-Bing, W. Nitrogen fertilization, irrigation, and harvest times affect biomass and energy value of Helianthus tuberosus L. J. Plant Nutr. 2016, 39, 1906–1914. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, J.; Graban, Ł.; Lajszner, W. Short rotation coppices, grasses and other herbaceous crops: Biomass properties versus 26 genotypes and harvest time. Ind. Crops Prod. 2018, 119, 22–32. [Google Scholar] [CrossRef]
- Liebhard, P.; Zeitlhofer, C.; Kaul, H.P.; Amon, T. Methanbildungsvermögen und Biogasqualität bei der Vergärung von Topinamburkraut. In Topinambur—Eine Pflanze Mit Vielen Verwendungsmöglichkeiten; Landwirtschaftliches Technologiezentrum Augustenberg (LTZ): Karlsruhe, Germany, 2009; pp. 2.11–2.17. [Google Scholar]
- Jankowski, K.J.; Dubis, B.; Sokólski, M.M.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass yield and energy balance of Virginia fanpetals in different production technologies in north-eastern Poland. Energy 2019, 185, 612–623. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scoridia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal agricultural land low-input systems for biomass production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef]
- Komorowicz, M.; Wróblewska, H.; Pawłowski, J. Chemical composition and energetic properties of biomass from selected renewable resources. Skład chemiczny i właściwości energetyczne biomasy z wybranych surowców odnawialnych. Ochr. Sr. I Zasobów Nat. 2009, 40, 401–418. (In Polish) [Google Scholar]
- Menon, V.; Rao, M. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. 2012, 38, 522–550. [Google Scholar]
- Rossini, F.; Provenzano, M.E.; Kuzmanovíc, L.; Ruggeri, R. Jerusalem Artichoke (Helianthus tuberosus L.): A Versatile and Sustainable Crop for Renewable Energy Production in Europe. Agronomy 2019, 9, 528. [Google Scholar] [CrossRef]
- Godin, B.; Lamaudiere, S.; Agneessens, R.; Schmit, T.; Goffart, J.P.; Stilmant, D.; Gerin, P.A.; Delcarte, J. Chemical characteristics and biofuel potential of several vegetal biomasses grown under a wide range of environmental conditions. Ind. Crops Prod. 2013, 48, 1–12. [Google Scholar] [CrossRef]
- Maj, G.; Piekarski, W.; Słowik, T. Jerusalem artichoke (Helianthus tuberosus) substrate for biogas production. Gaz, Woda. Tech. Sanit. 2013, 2, 59–60. (In Polish) [Google Scholar]
- Jankowski, K.J.; Dubis, B.; Kozak, M. Sewage sludge and the energy balance of Jerusalem artichoke production-A case study in north-eastern Poland. Energy 2021, 236, 121545. [Google Scholar] [CrossRef]
- Dias, N.S.; Ferreira, J.F.S.; Liu, X.L.; Suarez, D.L. Jerusalem artichoke (Helianthus tuberosus L.) maintains high inulin, tuber yield, and antioxidant capacity under moderately-saline irrigation waters. Ind. Crops Prod. 2016, 94, 1009–1024. [Google Scholar] [CrossRef]
- Soja, G.; Dersch, G. Harvest dates, fertilizer and varietal effects on yield, concentration and molecular distribution of fructan in Jerusalem artichoke (Helianfhus tuberosus L.). J. Agron. Crop Sci. 1990, 165, 181–189. [Google Scholar] [CrossRef]
- Seiler, G.J. The potential of wild sunflower species for industrial uses. Helia 2007, 30, 175–198. [Google Scholar]
- Lewandowski, I.; Clifton-Brown, J.C.; Scurlock, J.M.O.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Sawicka, B. Jerusalem Artichoke Helianthus tuberosus L.—Biology, Cultivation and Applications; Wyd. UP w Lublinie: Lublin, Poland, 2016; p. 223. (In Polish) [Google Scholar]
- Chekroun, M.B.; Amzile, J.; El Yachioui, M.; El Holoui, N.E.; Prevost, J. Qualitative and quantitative development of carbohydrate reserves during the biological cycle of Jerusalem artichoke (Helianthus tuberosus L.) tubers. N. Z. J. Crop Hort. 1994, 22, 31–37. [Google Scholar] [CrossRef]
- Liava, V.; Karkanis, A.; Danalatos, N.; Tsiropoulos, N. Cultivation Practices, Adaptability and phytochemical composition of Jerusalem artichoke (Helianthus tuberosus L.): A weed with economic value. Agronomy 2021, 11, 914. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Curt, M.D.; Aguado, P.; Sanz, M.; Sanchez, G.; Fernandez, J. Clone precocity and the use of Helianthus tuberosus L. stems for bioethanol. Ind. Crops Prod. 2006, 24, 314–320. [Google Scholar] [CrossRef]
- Piskier, T. A model of topinambour cultivation for fuel purposes. Inżynieria Rol. 2010, 7, 183–190. (In Polish) [Google Scholar]
- Izsáki, Z.; Kádi, G.N. Biomass acumulation and nutrient uptake of Jerusalem artichoke (Helianthus tuberosus L.). Am. J. Plant Sci. 2013, 4, 1629–1640. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Z.; Zhu, T.; Coulter, J.A. Nitrogen fertilization, and harvest times affect biomass and energy value of Helianthus tuberosus L. J. Plant Nutr. 2020, 39, 1906–1914. [Google Scholar]
- Baldini, M.; Danuso, F.; Monti, A.; Amaducci, M.T.; Stevanato, P.; Mastro, G. Chichory and Jerusalem artichoke productivity In different areas of Italy, in relation to water availability and Time of harvest. Ital. J. Agron. Riv. Agron. 2006, 2, 291–307. [Google Scholar] [CrossRef]
- Piskier, T. A method of estimation of the caloric value of the biomass. Part I—Biomass energy potential. J. Mech. Energy Eng. 2017, 1, 189–194. [Google Scholar]
- Szostek, M.; Kaniuczak, J.; Hajduk, E.; Stanek-Tarkowska, J.; Jasiński, T.; Niemiec, W.; Smusz, R. Effect of sewage sludge on the yield and Energy value of the aboveground biomass of Jerusalem artichoke (Helianfhus tuberosus L.). Arch. Environ. Protect. 2018, 44, 42–50. [Google Scholar]
- Bogucka, B.; Pszczółkowska, A.; Okorski, A.; Jankowski, K. The Effects of Potassium Fertilization and Irrigation on the Yield and Health Status of Jerusalem Artichoke (Helianthus tuberosus L.). Agronomy 2021, 11, 234. [Google Scholar] [CrossRef]
- Bogucka, B.; Jankowski, K.J. The effect of harvest strategy on the energy potential of Jerusalem artichoke. Ind. Crops Prod. 2022, 177, 114473. [Google Scholar] [CrossRef]
- Kocsis, L.; Kaul, H.P.; Praznik, W.; Liebhard, P. Influence of harvest date on shoot and tuber yield of different Jerusalem artichoke (Helianthus tuberosus L.) cultivars in the semiarid production area of Austria. Pflanzenbauwissenschaften 2007, 11, 67–76. [Google Scholar]
- Piskier, T. Energetic potential of Jeruzalem artichoke. Potencjał energetyczny topinamburu. Inżynieria Rol. 2009, 1, 133–136. (In Polish) [Google Scholar]
- Gunnarsson, I.B.; Svensson, S.E.; Johansson, E.; Karakashev, D.; Angelidaki, I. Potential of Jerusalem artichoke (Helianthus tuberosus L.) as a biorefinery crop. Ind. Crops Prod. 2014, 56, 231–240. [Google Scholar] [CrossRef]
- Johansson, E.; Prade, T.; Angelidaki, I.; Svensson, S.E.; Newson, W.R.; Gunnarsson, I.B.; Hovmalm, H.P. Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 2015, 16, 8997–9016. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; He, Q.S.; Corscadden, K.; Udenigwe, C.C. The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol. Rep. 2015, 5, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, J.; Yang, Y.Z.; Xie, G.H. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem. Bioresour. Technol. 2016, 208, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Kaszás, L.; Alshaal, T.; El-Ramady, H.; Kovács, Z.; Koroknai, J.; Elhawat, N.; Nagy, É.; Cziáky, Z.; Fári, M.; Domokos-Szabolcsy, É. Identification of bioactive phytochemicals in leaf protein concentrate of Jerusalem artichoke (Helianthus tuberosus L.). Plants 2020, 9, 889. [Google Scholar] [CrossRef] [PubMed]
- Szyszlak-Bargłowicz, J.; Piekarski, W. Calorific value of biomass from Virginia fanpetals (Sida hermaphrodita Rusby) stems depending on humidity. Wartość opałowa łodyg ślazowca pensylwańskiego w zależności od wilgotności. Inżynieria Rol. 2009, 8, 223–230. (In Polish) [Google Scholar]
- Czeczko, R. Comparison the degre of hydration in of diferent parts of Helianthus tuberosus in aspect of their suitability as biofuel. Porównanie stopnia uwodnienia różnych części Helianthus tuberosus w aspekcie ich przydatności jako biopaliwa. Ochr. Sr. Zasobów Nat. 2011, 49, 521–524. (In Polish) [Google Scholar]
- Wisz, J.; Matwiejew, A. Bio-Mass—Laboratory Tests Concerning It Usefulness for Power Combustion. Biomasa—Badania w laboratorium w aspekcie przydatności do energetycznego spalania. Energetyka 2005, 9, 631–636. (In Polish) [Google Scholar]
- Piskier, T. Jerusalem artichoke—A crop with multiple uses. Czysta Energ. 2006, 8, 15. (In Polish) [Google Scholar]
- Niu, L.; Manxia, C.; Xiumei, G.; Xiaohua, L.; Hongbo, S.; Zhaopu, L.; Zed, R. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China. Sci. Total Environ. 2016, 568, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Piskier, T. Labour inputs and costs of topinambour growing. Inżynieria Rol. 2006, 11, 359–365. (In Polish) [Google Scholar]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, J. Short rotation coppices, grasses and other herbaceous crops: Productivity and yield energy value versus 26 genotypes. Biomass Bioenergy 2018, 119, 109–120. [Google Scholar] [CrossRef]
- Farzinmehr, S.; Rezaei, J.H.; Fazaeli, H. Effect of harvesting frequency and maturity stage of Jerusalem artichoke forage on yield, chemical composition and in vitro fermentation of the tubers and forage. Span. J. Agric. Res. 2020, 18, e0602. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Olba-Zięty, E. Biomass yield and quality of perennial herbaceous crops in a double harvest in a continental environment. Ind. Crops Prod. 2022, 180, 114752. [Google Scholar] [CrossRef]
- Zhou, L.; Pang, J.; Wang, A.; Zhang, T. Catalytic conversion of Jerusalem artichoke stalk to ethylene glycol over a combined catalyst of WO3 and Raney Ni. Chin. J. Catal. 2013, 34, 2041–2046. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.; Somerville, C. Cellulosic biofuels. Annu. Rev. Plant Biol. 2009, 60, 165–182. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; FAO: Vienna, Austria, 2022; p. 234. [Google Scholar]
- Houba, V.J.G.; Van der Lee, J.J.; Novozamsky, I. Soil and Plant Analysis; Part 5B. Soil Analysis Procedure Other Procedure; Wageningen Agricultural University: Wageningen, The Netherlands, 1995. [Google Scholar]
- Polish Standard PN–ISO 5983; Animal Feeding Stuffs. Determination of Nitrogen Content and Calculation of Crude Protein Content. Polish Committee for Standardization: Warsaw, Poland, 2000. (In Polish)
- Polish Standard PN–ISO 6492; Animal Feeding Stuffs. Determination of Fat Content. Polish Committee for Standardization: Warsaw, Poland, 2005. (In Polish)
- Polish Standard PN–EN ISO 6865; Animal Feeding Stuffs. Determination of Crude Fiber Content. Method with Intermediate Filtration. Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish)
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods of dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 199. [Google Scholar] [CrossRef] [PubMed]
- Polish Standard PN–R-64784; Animal Feeding Stuffs. Determination of Sugar Content. Polish Committee for Standardization: Warsaw, Poland, 1994. (In Polish)
- TIBCO. Statistica, version 13; Data Analysis Software System; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Kays, S.J.; Nottingham, S.F. Biology and Chemistry of Jerusalem Artichoke: Helianthus tuberosus L.; CRC Press: London, UK, 2008. [Google Scholar]
- Kocsis, L.; Liebhard, C.; Zeitlhofer, C.; Wetscherek, W. Einfluss der Sorte und des Erntezeitpunktes von Topinamburkraut auf ernährungsrelevante Aspekte in der Schweinefütterung. In Topinambur—Eine Pflanze mit Vielen Verwendungsmöglichkeiten; Landwirtschaftliches Technologiezentrum Augustenberg (LTZ): Karlsruhe, Germany, 2009; pp. 2.11–2.17. [Google Scholar]
- Wróblewska, H.; Komorowicz, M.; Pawłowski, J.; Cichy, W. Chemical and energetical properties of selected lignocellulosic raw materials. Folia For. Pol. 2009, 40, 67–78. [Google Scholar]
- Smoliński, A.; Howaniec, N.; Bąk, A. Utilization of energy crops and sewage sludge in the process of co-gasification for sustainable hydrogen production. Energies 2018, 11, 809. [Google Scholar] [CrossRef]
- Casler, M.D.; Boe, A.R. Cultivar_environment interactions in switchgrass. Crop Sci. 2003, 43, 2226–2233. [Google Scholar] [CrossRef]
- Lewandowski, I.; Schmidt, U. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agric. Ecosyst. Environ. 2006, 112, 335–346. [Google Scholar] [CrossRef]
- Cassida, K.A.; Muir, J.P.; Hussey, M.A.; Read, J.C.; Venuto, B.C.; Ocumpaugh, W.R. Biofuel component concentrations and yields of switchgrass in South central US environments. Crop Sci. 2005, 45, 682–692. [Google Scholar] [CrossRef]
- Kołodziej, B.; Antonkiewicz, J.; Sugier, D. Miscanthus × giganteus as a biomass feedstock grown on municipalsewage sludge. Ind. Crops Prod. 2016, 81, 72–82. [Google Scholar] [CrossRef]
- Gao, K.; Zhang, Z.; Zhu, T.; Coulter, J.A. The influence of flower removal on tuber yield and biomass characteristics of Helianthus tuberosus L. in a semi-arid area. Ind. Crops Prod. 2016, 150, 112374. [Google Scholar] [CrossRef]
- Denoroy, P. The crop physiology of Helianthus tuberosus L.: A model oriented view. Biomass Bioenergy 1996, 11, 11–32. [Google Scholar] [CrossRef]
- Sarmadi, B.; Rouzbehan, Y.; Rezaei, J. Influences of growth stage and nitrogen fertilizer on chemical composition, phenolics, in situ degradability and in vitro ruminal variables in amaranth forage. Anim. Feed Sci. Technol. 2016, 215, 73–84. [Google Scholar] [CrossRef]
- Seiler, G.J. Nitrogen and mineral content of selected wild and cultivated genotypes of Jerusalem artichoke. Agron. J. 1988, 80, 681–687. [Google Scholar] [CrossRef]
- Malmberg, A.; Theander, O. Differences in chemical composition of leaves and stemin Jerusalemartichoke and changes in lowmolecular sugar and fructan content with time of harvest. Swed. J. Agric. Res. 1986, 16, 7–12. [Google Scholar]
- Hopkins, W.G.; Hüner, N.P.A. Introduction to Plant Physiology, 4th ed.; John Wiley & Sons Inc.: New York, NY, USA, 2008; p. 503. [Google Scholar]
- Karsli, M.A.; Bingöl, N.T. The determination of planting density on herbage yield and silage quality of Jerusalem artichoke (Helianthus tuberosus L.) green mass. Kafkas Üniv. Vet. Fakült. Dergisi. (J. Fac. Vet. Med. Univ. Kafkas) 2009, 15, 581–586. [Google Scholar]
- Ma, X.Y.; Zhang, L.H.; Shao, H.B.; Xu, G.; Zhang, F.; Ni, F.T.; Brestic, M. Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant plant has high adaptability and multiple-use values. J. Med. Plants Res. 2011, 5, 1272–1279. [Google Scholar]
- Razmkhah, M.; Rezaei, J.; Fazaeli, H. Use of Jerusalem artichoke tops silage to replace corn silage in sheep diet. Anim. Feed Sci. Technol. 2017, 228, 168–177. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 7th ed.; Prentice Hall: Essex, UK, 2011; p. 692. [Google Scholar]
- Wyss, U.; Vogel, R. Ensylability of some common grassland herbs. Grassl. Sci. Eur. 1998, 3, 1005–1009. [Google Scholar]
- Hay, R.K.M.; Offer, N.W. Helianthus tuberosus as an alternative forage crop for cool maritime regions: A preliminary study of the yield and nutritional quality of shoot tissues from perennial stands. J. Sci. Food Agric. 1992, 60, 213–221. [Google Scholar] [CrossRef]
- Papi, N.; Kafilzadeh, F.; Fazaeli, H. Effects of incremental substitution of maize silage with Jerusalem artichoke silage on performance of fat-tailed lambs. Small Rumin. Res. 2017, 147, 56–62. [Google Scholar] [CrossRef]
- Fang, Y.R.; Liu, J.A.; Steinberger, Y.; Xie, G.H. Energy use efficiency and economic feasibility of Jerusalem artichoke production on arid and coastal saline lands. Ind. Crops Prod. 2018, 117, 131–139. [Google Scholar] [CrossRef]
- Žilakova, J.; Knotek, S. Ensiling capacity and quality of silage from permanent, oversown and temporary grassland sward. Grassl. Sci. Pol. 1998, 1, 213–220. [Google Scholar]
- Smith, A.M.; Kruger, N.J.; Lunn, J.E. Source of sugar nucleotides for starch and cellulose synthesis. Proc. Natl. Acad. Sci. USA 2012, 109, 776. [Google Scholar] [CrossRef] [PubMed]
Parameter | Year | Harvest Date | Year × Harvest Date | |||
---|---|---|---|---|---|---|
F | MS | F | MS | F | MS | |
Crude ash (%) | 39.65 ** | 6.47 ** | 59.34 ** | 9.68 ** | 16.05 ** | 2.62 ** |
Crude protein (%) | 15.93 ** | 6.43 ** | 36.38 ** | 14.69 ** | 11.88 ** | 4.80 ** |
Crude fat (%) | 0.65 ns | 0.013 ns | 1.74 ns | 0.035 ns | 9.57 ** | 0.19 ** |
Crude fiber (%) | 710.22 ** | 120.61 ** | 1300.11 ** | 220.78 ** | 204.70 ** | 34.76 ** |
WSC (%) | 0.60 ns | 1.78 ns | 93.66 ** | 277.72 ** | 1.82 ns | 5.40 ns |
NDF (%) | 9399.1 ** | 225.89 ** | 23,031.4 ** | 553.52 ** | 2710.4 ** | 65.14 ** |
ADF (%) | 12,362 ** | 125.57 ** | 37,233 ** | 378.23 ** | 4255 ** | 43.22 ** |
ADL (%) | 569.83 ** | 7.87 ** | 47.19 ** | 0.65 ** | 18.51 ** | 0.25 ** |
Cellulose (%) | 7402.8 ** | 110.3 ** | 18,762.5 ** | 279.6 ** | 3112.9 ** | 46.4 ** |
Hemicellulose (%) | 852.5 ** | 25.4 ** | 556.6 ** | 16.6 ** | 110.1 ** | 3.3 ** |
Month | Year | ||
---|---|---|---|
2018 | 2019 | 2020 | |
Total monthly rainfall (mm) | |||
January | 37 | 43 | 28 |
February | 2 | 33 | 44 |
March | 25 | 30 | 25 |
April | 28 | 0 | 1 |
May | 41 | 97 | 64 |
June | 64 | 92 | 99 |
July | 140 | 85 | 39 |
August | 31 | 64 | 107 |
September | 29 | 84 | 32 |
October | 46 | 38 | 81 |
November | 25 | 20 | 10 |
December | 57 | 17 | 25 |
∑ | 525 | 603 | 555 |
Mean daily temperature (°C) | |||
January | 0.0 | −2.6 | 2.4 |
February | −4.1 | 2.0 | 3.1 |
March | −0.5 | 5.2 | 3.6 |
April | 11.9 | 8.9 | 6.8 |
May | 16,5 | 12.1 | 9.9 |
June | 17.9 | 21.0 | 17.8 |
July | 20.0 | 17.4 | 17.6 |
August | 20.4 | 19.5 | 19.1 |
September | 15.3 | 14.0 | 15.1 |
October | 9.8 | 10.1 | 10.1 |
November | 4.1 | 5.6 | 5.6 |
December | 1.1 | 2.8 | 1.5 |
9.4 | 9.7 | 9.4 |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 7.17 bc | 7.37 b | 7.27 a |
2019 | 4.96 d | 6.33 bc | 5.65 b |
2020 | 6.17 c | 9.00 a | 7.58 a |
X | 6.10 b | 7.57 a |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 8.90 a | 9.60 a | 9.25 a |
2019 | 8.05 a | 8.90 a | 8.48 a |
2020 | 5.26 b | 9.13 a | 7.20 b |
X | 7.40 b | 9.21 a |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 0.87 ab | 0.83 ab | 0.85 a |
2019 | 1.10 a | 0.63 b | 0.87 a |
2020 | 0.66 b | 0.90 ab | 0.78 a |
X | 0.88 a | 0.79 a |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 24.26 b | 29.97 a | 27.11 a |
2019 | 17.47 d | 29.80 a | 23.63 b |
2020 | 16.73 d | 19.70 c | 18.21 c |
X | 19.48 b | 26.49 a |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 26.06 c | 42.40 a | 34.23 a |
2019 | 21.27 f | 31.15 b | 26.21 b |
2020 | 22.99 e | 25.71 c | 24.35 c |
X | 23.44 b | 33.09 a |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 5.76 b | 8.97 a | 7.36 a |
2019 | 5.20 b | 8.78 a | 6.99 a |
2020 | 2.69 c | 2.96 c | 2.82 b |
X | 4.55 b | 6.90 a |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 37.64 c | 58.79 a | 48.22 a |
2019 | 31.68 e | 46.20 b | 38.94 b |
2020 | 30.79 f | 35.88 d | 33.34 c |
X | 33.37 b | 46.96 a |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 31.89 d | 49.82 a | 40.85 a |
2019 | 26.48 f | 37.43 b | 31.96 b |
2020 | 28.10 e | 32.90 c | 30.50 c |
X | 28.82 b | 40.05 a |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 5.69 c | 7.41 a | 6.55 a |
2019 | 5.21 d | 6.28 b | 5.74 c |
2020 | 5.12 d | 7.18 a | 6.15 b |
X | 5.34 b | 6.96 a |
Year | Harvest Date (Month) | X | |
---|---|---|---|
August | June and October | ||
2018 | 20.80 a | 12.67 b | 16.73 a |
2019 | 20.76 a | 11.17 b | 15.97 a |
2020 | 19.93 a | 14.10 b | 17.01 a |
X | 20.50 a | 12.64 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogucka, B.; Dubis, B. The Quality of Jerusalem Artichoke Biomass Harvested Twice during the Growing Season in North-Eastern Poland. Energies 2024, 17, 4008. https://doi.org/10.3390/en17164008
Bogucka B, Dubis B. The Quality of Jerusalem Artichoke Biomass Harvested Twice during the Growing Season in North-Eastern Poland. Energies. 2024; 17(16):4008. https://doi.org/10.3390/en17164008
Chicago/Turabian StyleBogucka, Bożena, and Bogdan Dubis. 2024. "The Quality of Jerusalem Artichoke Biomass Harvested Twice during the Growing Season in North-Eastern Poland" Energies 17, no. 16: 4008. https://doi.org/10.3390/en17164008
APA StyleBogucka, B., & Dubis, B. (2024). The Quality of Jerusalem Artichoke Biomass Harvested Twice during the Growing Season in North-Eastern Poland. Energies, 17(16), 4008. https://doi.org/10.3390/en17164008