Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (956)

Search Parameters:
Keywords = arsenic contaminant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7156 KiB  
Communication
Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake
by Tseren Ochir Soyol-Erdene, Ganbat Munguntsetseg, Zambuu Burmaa, Ulziibat Bilguun, Shagijav Oyungerel, Soninkhishig Nergui, Nyam-Osor Nandintsetseg, Michael Walther and Ulrich Kamp
Geographies 2025, 5(3), 38; https://doi.org/10.3390/geographies5030038 - 1 Aug 2025
Viewed by 431
Abstract
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized [...] Read more.
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized by the international organization Birdlife. However, the construction of the Taishir Hydroelectric Power Station, aimed at supplying electricity to the western provinces of Mongolia, had a detrimental effect on the flow of the Zavkhan River, resulting in a drying-up and pollution of Lake Ereen, which relies on the river as its water source. This study assesses the pollution levels in Ereen Lake and determines the feasibility of its rehabilitation by redirecting the flow of the Zavkhan River. Field studies included the analysis of water quality, sediment contamination, and the composition of flora. The results show that the concentrations of ammonium, chlorine, fluorine, and sulfate in the lake water exceed the permissible levels set by the Mongolian standard. Analyses of elements from sediments revealed elevated levels of arsenic, chromium, and copper, exceeding international sediment quality guidelines and posing risks to biological organisms. Furthermore, several species of diatoms indicative of polluted water were discovered. Lake Ereen is currently in a eutrophic state and, based on a water quality index (WQI) of 49.4, also in a “polluted” state. Mass balance calculations and box model analysis determined the period of pollutant replacement for two restoration options: drying-up and complete removal of contaminated sediments and plants vs. dilution-flushing without direct interventions in the lake. We recommend the latter being the most efficient, eco-friendly, and cost-effective approach to rehabilitate Lake Ereen. Full article
Show Figures

Figure 1

15 pages, 1787 KiB  
Article
Flow Regime Impacts on Chemical Pollution in the Water and Sediments of the Moopetsi River and Human Health Risk in South Africa
by Abraham Addo-Bediako, Thato Matita and Wilmien Luus-Powell
Water 2025, 17(15), 2200; https://doi.org/10.3390/w17152200 - 23 Jul 2025
Viewed by 278
Abstract
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of [...] Read more.
Many effluents from human activities discharged into freshwater ecosystems cause chemical pollution. Chemical pollution in rivers is a serious threat to freshwater ecosystems due to the associated potential human health risks. This study determined the extent of chemical pollution, identified potential sources of pollution and assessed human health risk in the Moopetsi River, an intermittent river in the Limpopo Province of South Africa. Chemical analyses were conducted on water and sediment samples collected during high-flow, low-flow and intermittent-flow regimes. The findings showed seasonal variations in the chemical pollution levels in the sediments and the highest contamination was measured during intermittent flow. The enrichment factor and geoaccumulation index values identified chromium and nickel as major contributors to sediment contamination. The mean arsenic, chromium and nickel levels exceeded the established guideline values. An evaluation of human health risk was conducted using ingestion and dermal absorption pathways. The results showed that ingestion has greater non-carcinogenic and carcinogenic risks than dermal exposure, especially for children during intermittent flow. The elements of great concern for non-carcinogenic risk were chromium, manganese and nickel and for carcinogenic risk, they were arsenic, chromium, nickel and lead. The outcome of this study is useful for waste management and conservation to reduce environmental degradation and human health risk. Full article
(This article belongs to the Special Issue Advances in Metal Removal and Recovery from Water)
Show Figures

Figure 1

8 pages, 961 KiB  
Proceeding Paper
Analyzing Small-Particle Contamination in Disposable Food Service Ware, Drinking Water, and Commercial Table Salt in Doha, Qatar
by Marwa Al-Ani, Ala Al-Ardah, Mennatalla Kuna, Zainab Smati, Asma Mohamed, Mostafa Sliem and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 5; https://doi.org/10.3390/materproc2025022005 - 18 Jul 2025
Viewed by 125
Abstract
Microplastics (MPs) have emerged as pervasive environmental contaminants due to their widespread presence across various ecosystems, including their use in single-use plastic food ware and table salt dispensers. This issue coincides with the presence of heavy metals in water sources in Doha, Qatar. [...] Read more.
Microplastics (MPs) have emerged as pervasive environmental contaminants due to their widespread presence across various ecosystems, including their use in single-use plastic food ware and table salt dispensers. This issue coincides with the presence of heavy metals in water sources in Doha, Qatar. Fourier Transform Infrared (FTIR) analysis revealed that the plastic plate and spoon were composed of polyolefin, with the spoon exhibiting additional peaks that indicated oxidation or the presence of additives. Thermogravimetric Analysis (TGA) revealed that the spoon exhibited higher thermal stability, retaining approximately 10% of its mass at 700 °C, than the plate, which retained 2%, indicating the presence of complex additives or contamination. MPs in food-grade salt samples were verified through filtration and Fourier Transform Infrared (FTIR) Spectroscopy, identifying polymers such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). These MPs likely stem from exposure to packaging or environmental contaminants. FTIR spectra confirmed the integrity of the polymers after treatment. Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis revealed varying levels of heavy metals in bottled and tap water, with notable findings including detectable arsenic and lead in both, higher calcium and magnesium in bottled water, and the presence of copper present in tap water only, highlighting potential health and infrastructure-related concerns. These results highlight the possible risks associated with exposure to MPs and heavy metals from everyday products and water sources, underscoring the need for enhanced regulatory oversight and safer material choices to ensure protection. Full article
Show Figures

Figure 1

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 228
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

30 pages, 2521 KiB  
Article
From Batch to Pilot: Scaling Up Arsenic Removal with an Fe-Mn-Based Nanocomposite
by Jasmina Nikić, Jovana Jokić Govedarica, Malcolm Watson, Đorđe Pejin, Aleksandra Tubić and Jasmina Agbaba
Nanomaterials 2025, 15(14), 1104; https://doi.org/10.3390/nano15141104 - 16 Jul 2025
Viewed by 295
Abstract
Arsenic contamination in groundwater is a significant public health concern, with As(III) posing a greater and more challenging risk than As(V) due to its higher toxicity, mobility, and weaker adsorption affinity. Fe-Mn-based adsorbents offer a promising solution, simultaneously oxidizing As(III) to As(V), enhancing [...] Read more.
Arsenic contamination in groundwater is a significant public health concern, with As(III) posing a greater and more challenging risk than As(V) due to its higher toxicity, mobility, and weaker adsorption affinity. Fe-Mn-based adsorbents offer a promising solution, simultaneously oxidizing As(III) to As(V), enhancing its adsorption. This study evaluates an Fe-Mn nanocomposite across typical batch (20 mg of adsorbent), fixed-bed column (28 g), and pilot-scale (2.5 kg) studies, bridging the gap between laboratory and real-world applications. Batch experiments yielded maximum adsorption capacities of 6.25 mg/g and 4.71 mg/g in a synthetic matrix and real groundwater, respectively, demonstrating the impact of the water matrix on adsorption. Operational constraints and competing anions led to a lower capacity in the pilot (0.551 mg/g). Good agreement was observed between the breakthrough curves in the pilot (breakthrough at 475 bed volumes) and the fixed-bed column studies (365–587 bed volumes) under similar empty bed contact times (EBCTs). The Thomas, Adams–Bohart, and Yoon–Nelson models demonstrated that lower flow rates and extended EBCTs significantly enhance arsenic removal efficiency, prolonging the operational lifespan. Our findings demonstrate the necessity of continuous-flow experiments using real contaminated water sources and the importance of optimizing flow conditions, EBCTs, and pre-treatment in order to successfully scale up Fe-Mn-based adsorbents for sustainable arsenic removal. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

19 pages, 3216 KiB  
Article
The Mechanism of an Fe-Based MOF Material as a Foliar Inhibitor and Its Co-Mitigation Effects on Arsenic and Cadmium Accumulation in Rice Grains
by Tianyu Wang, Hao Cui, Weijie Li, Zhenmao Jiang, Lei Li, Lidan Lei and Shiqiang Wei
Agronomy 2025, 15(7), 1710; https://doi.org/10.3390/agronomy15071710 - 16 Jul 2025
Viewed by 332
Abstract
Arsenic (As) and cadmium (Cd) in rice grains are major global food safety concerns. Iron (Fe) can help reduce both, but current Fe treatments suffer from poor stability, low leaf absorption, and fast soil immobilization, with unclear underlying mechanisms. To address these issues, [...] Read more.
Arsenic (As) and cadmium (Cd) in rice grains are major global food safety concerns. Iron (Fe) can help reduce both, but current Fe treatments suffer from poor stability, low leaf absorption, and fast soil immobilization, with unclear underlying mechanisms. To address these issues, an Fe-based metal–organic framework (MIL-88) was modified with sodium alginate (SA) to form MIL-88@SA. Its stability as a foliar inhibitor and its leaf absorption were tested, and its effects on As and Cd accumulation in rice were compared with those of soluble Fe (FeCl3) and chelating Fe (HA + FeCl3) in a field study on As–Cd co-contaminated rice paddies. Compared with the control, MIL-88@SA outperformed or matched the other Fe treatments. A single foliar spray during the tillering stage increased the rice yield by 19% and reduced the inorganic As and Cd content in the grains by 22.8% and 67.8%, respectively, while the other Fe treatments required two sprays. Its superior performance was attributed to better leaf affinity and thermal stability. Laser ablation inductively coupled plasma–mass spectrometry (LA–ICP–MS) and confocal laser scanning microscopy (CLSM) analyses revealed that Fe improved photosynthesis and alleviated As–Cd stress in leaves, MIL-88@SA promoted As and Cd redistribution, and Fe–Cd co-accumulation in leaf veins enhanced Cd retention in leaves. Full article
(This article belongs to the Topic Effect of Heavy Metals on Plants, 2nd Volume)
Show Figures

Figure 1

16 pages, 3380 KiB  
Article
Native Fungi as a Nature-Based Solution to Mitigate Toxic Metal(loid) Accumulation in Rice
by Laura Canonica, Michele Pesenti, Fabrizio Araniti, Jens Laurids Sørensen, Jens Muff, Grazia Cecchi, Simone Di Piazza, Fabio Francesco Nocito and Mirca Zotti
Microorganisms 2025, 13(7), 1667; https://doi.org/10.3390/microorganisms13071667 - 16 Jul 2025
Viewed by 325
Abstract
Heavy metal contamination in paddy fields poses serious risks to food safety and crop productivity. This study evaluated the potential of native soil fungi as bioinoculants to reduce metal uptake in rice cultivated under contaminated conditions. Eight fungal strains—four indigenous and four allochthonous—were [...] Read more.
Heavy metal contamination in paddy fields poses serious risks to food safety and crop productivity. This study evaluated the potential of native soil fungi as bioinoculants to reduce metal uptake in rice cultivated under contaminated conditions. Eight fungal strains—four indigenous and four allochthonous—were selected based on their plant growth-promoting traits, including siderophore production and phosphate solubilization. Additional metabolic analysis confirmed the production of bioactive secondary metabolites. In a greenhouse experiment, three rice cultivars were grown under permanent flooding (PF) and alternate wetting and drying (AWD) in soil enriched with arsenic, cadmium, chromium, and copper. Inoculation with indigenous fungi under AWD significantly reduced the arsenic accumulation in rice shoots by up to 75%. While AWD increased cadmium uptake across all cultivars, fungal inoculation led to a moderate reduction in cadmium accumulation—ranging from 15% to 25%—in some varieties. These effects were not observed under PF conditions. The results demonstrate the potential of native fungi as a nature-based solution to mitigate heavy metal stress in rice cultivation, supporting both environmental remediation and sustainable agriculture. Full article
(This article belongs to the Special Issue Plant and Microbial Interactions in Soil Remediation)
Show Figures

Figure 1

21 pages, 5958 KiB  
Article
Removal of As from Tambo River Using Sodium Alginate from Lessonia trabeculata (Aracanto)
by Diana M. Villanueva, Aldo G. Gonzales, Claudio A. Saez and Antonio M. Lazarte
Plants 2025, 14(14), 2173; https://doi.org/10.3390/plants14142173 - 14 Jul 2025
Viewed by 349
Abstract
Arsenic (As) contamination in the Tambo River (Perú), linked to mining activities and volcanic eruptions, poses significant health and agricultural risks. This study evaluated sodium alginate extracted from the brown macroalgae Lessonia trabeculata (LT) as a biosorbent for As removal. Water samples from [...] Read more.
Arsenic (As) contamination in the Tambo River (Perú), linked to mining activities and volcanic eruptions, poses significant health and agricultural risks. This study evaluated sodium alginate extracted from the brown macroalgae Lessonia trabeculata (LT) as a biosorbent for As removal. Water samples from three river points revealed As concentrations up to 0.309 mg/L, exceeding regulatory limits (0.1 mg/L). Sodium alginate was obtained via a simplified alkaline method, yielding an average of 21.44% (w/w relative to dry algae biomass) and characterized by Fourier Transform Infrared Spectroscopy (FTIR), showing structural similarity to industrial alginate (A1). Biosorption assays under simulated environmental conditions (neutral pH, 20 °C) demonstrated that LT alginate (A2) reduced As by 99% at 48 h with a 1.0 g/L dose, outperforming A1. Langmuir (qmax = 0.0012 mmol/g; b = 506.9 L/mg) and Freundlich (n = 1.94) isotherms confirmed favorable adsorption, while kinetics followed a Pseudo-Second-Order Model, suggesting physisorption. These results highlight LT alginate as a sustainable and scalable solution for remediating As-contaminated water, promoting the conservation of a vulnerable marine resource. This study underscores the potential of algal biopolymers in bioremediation strategies aligned with environmental and socioeconomic needs. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

24 pages, 2126 KiB  
Article
Contaminant Assessment and Potential Ecological Risk Evaluation of Lake Shore Surface Sediments
by Audrey Maria Noemi Martellotta and Daniel Levacher
Water 2025, 17(14), 2042; https://doi.org/10.3390/w17142042 - 8 Jul 2025
Viewed by 375
Abstract
The interruption of solid transport causes sediment deposition, compromising the useful storage capacity. Therefore, it is essential to remove these materials, currently labelled as waste and disposed of in landfills, by identifying alternatives for recovery and valorization, after assessing their compatibility for reuse [...] Read more.
The interruption of solid transport causes sediment deposition, compromising the useful storage capacity. Therefore, it is essential to remove these materials, currently labelled as waste and disposed of in landfills, by identifying alternatives for recovery and valorization, after assessing their compatibility for reuse through characterization, in a circular economy view. This study analyses the potential contamination of shore surface sediments collected at the Camastra and the San Giuliano lakes, located in the Basilicata region. It defines their potential ecological risk, assesses the contamination level status of the sediments, and verifies whether they are polluted and, consequently, suitable for reuse. Analyses carried out using several pollution indices show a slight Arsenic pollution (with values above the regulatory threshold between 55% and 175%) for the San Giuliano sediments and slight Cobalt pollution (with exceedances between 30% and 58.5%) for the Camastra sediments. Subsequently, through statistical analysis, it was possible to make hypotheses on the possible pollutant sources, depending on the geological characteristics of the sampling area and the type of land use, and to identify the potential ecological risk linked to the exceedance of As and Co in San Giuliano and Camastra reservoirs, respectively. In conclusion, this study ascertained the low pollution content in the sampled sediments, so they could be reused in various application fields, from construction to agriculture, significantly reducing landfill disposal. Full article
(This article belongs to the Special Issue Soil Erosion and Sedimentation by Water)
Show Figures

Figure 1

12 pages, 3179 KiB  
Article
Pilot Test of Soil Washing for Arsenic-Contaminated H2SO4 Plant Soil Using Discarded H2SO4
by Di Wang, Hongbin Xu, Ying Cao, Wei Zhang, Aihua Gao, Yingxu Liu, Haihua Bao, Guangrui Dong, Di Mao and Yunfei Tan
Processes 2025, 13(7), 2171; https://doi.org/10.3390/pr13072171 - 8 Jul 2025
Viewed by 377
Abstract
This study investigates an innovative soil washing process designed to remediate arsenic (As) contamination in sulfuric acid (H2SO4) plant soil by using discarded H2SO4 solution in situ. The pilot-scale process comprises five key steps: screening and [...] Read more.
This study investigates an innovative soil washing process designed to remediate arsenic (As) contamination in sulfuric acid (H2SO4) plant soil by using discarded H2SO4 solution in situ. The pilot-scale process comprises five key steps: screening and rinsing of oversized sand, washing the soil with H2SO4, phase separation, recycling the washing solution, and water recovery. This research explored the optimal washing parameters for the process and further researched the reuse of the H2SO4 solution across multiple batches. The pH of the washing solution, critical at a threshold of 6.5, was identified as a key factor for effective recycling. Approximately 75% of the H2SO4 solution was successfully recycled. In terms of economic analysis, the total operational cost of the soil washing process was significantly lower than in previous studies. Overall, these findings demonstrate the feasibility of using discarded H2SO4 as a washing agent for As-contaminated soil. The integration of automated pH-based monitoring technology streamlines the washing process, providing a cost-effective and effective As removal remediation strategy, making it a viable option for large-scale applications in soil remediation. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

39 pages, 560 KiB  
Review
Trace Mineral Imbalances in Global Health: Challenges, Biomarkers, and the Role of Serum Analysis
by Marta López-Alonso, Inés Rivas and Marta Miranda
Nutrients 2025, 17(13), 2241; https://doi.org/10.3390/nu17132241 - 7 Jul 2025
Viewed by 761
Abstract
Background/Objectives: Trace minerals (TMs), both essential and toxic, are integral to human physiology, participating in enzymatic reactions, oxidative balance, immune function, and the modulation of chronic disease risk. Despite their importance, imbalances due to deficiencies or toxic exposures are widespread globally. While [...] Read more.
Background/Objectives: Trace minerals (TMs), both essential and toxic, are integral to human physiology, participating in enzymatic reactions, oxidative balance, immune function, and the modulation of chronic disease risk. Despite their importance, imbalances due to deficiencies or toxic exposures are widespread globally. While low-income countries often face overt deficiencies and environmental contamination, middle- and high-income populations increasingly deal with subclinical deficits and chronic toxic metal exposure. This review aims to explore the relevance of serum as a matrix for evaluating TM status across diverse clinical and epidemiological, geographic, and demographic settings. Methods: A narrative literature review was conducted focusing on the physiological roles, health impacts, and current biomarker approaches for key essential (e.g., zinc, copper, selenium) and toxic (e.g., lead, mercury, cadmium, arsenic) trace elements. Particular emphasis was placed on studies utilizing serum analysis and on recent advances in multi-element detection using inductively coupled plasma mass spectrometry (ICP-MS). Results: Serum was identified as a versatile and informative matrix for TM assessment, offering advantages in terms of clinical accessibility, biomarker reliability, and capacity for the simultaneous quantification of multiple elements. For essential TMs, serum levels reflect nutritional status with reasonable accuracy. For toxic elements, detection depends on instrument sensitivity, but serum can still provide valuable exposure data. The method’s scalability supports applications ranging from public health surveillance to individualized patient care. Conclusions: Serum trace mineral analysis is a practical and scalable approach for nutritional assessment and exposure monitoring. Integrating it into clinical practice and public health strategies can improve the early detection of imbalances, guide interventions such as nutritional supplementation, dietary modifications, and exposure mitigation efforts. This approach also supports advanced personalized nutrition and preventive care. Full article
(This article belongs to the Special Issue A New Perspective: The Effect of Trace Elements on Human Health)
Show Figures

Figure 1

20 pages, 3364 KiB  
Article
Improved Groundwater Arsenic Contamination Modeling Using 3-D Stratigraphic Mapping, Eastern Wisconsin, USA
by Eric D. Stewart, William A. Fitzpatrick and Esther K. Stewart
Water 2025, 17(13), 2024; https://doi.org/10.3390/w17132024 - 5 Jul 2025
Viewed by 274
Abstract
Dissolved arsenic in private bedrock drinking water wells is a problem in eastern Wisconsin. Previous studies have identified bedrock sources of arsenic as discrete intervals within the local Paleozoic sedimentary section and have also identified release mechanisms causing arsenic to enter well boreholes. [...] Read more.
Dissolved arsenic in private bedrock drinking water wells is a problem in eastern Wisconsin. Previous studies have identified bedrock sources of arsenic as discrete intervals within the local Paleozoic sedimentary section and have also identified release mechanisms causing arsenic to enter well boreholes. However, widespread contamination modeling is hindered by a lack of 3-D knowledge constraining the depth of the arsenic-bearing units in the subsurface. The growth and improvement of 3-D geologic mapping provides an opportunity to improve predictive models. This study in eastern Wisconsin, USA, uses a multivariate binary logistic regression analysis combined with 3-D geologic mapping to both assess various geologic and well construction factors that impact arsenic occurrence, and improve the ability to predict contamination risk. We find well construction characteristics, the stratigraphic unit within the open interval of a well, and the proximity to fold axes/fault zones are all statistically significant variables that impact the probability of a well exceeding either 2 or 10 µg/L dissolved arsenic. We apply these results by using 3-D mapping to determine the geologic unit present within the open interval of thousands of untested wells and use the logistic regression results to calculate contamination probability. This allows arsenic risk to be rapidly estimated for thousands of individual groundwater wells, and models of potential casing regulations to be assessed. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

19 pages, 1369 KiB  
Review
Current State of Arsenic, Fluoride, and Nitrate Groundwater Contamination in Northern Mexico: Distribution, Health Impacts, and Emerging Research
by Mélida Gutiérrez, María Teresa Alarcón-Herrera, María Socorro Espino-Valdés and Luz Idalia Valenzuela-García
Water 2025, 17(13), 1990; https://doi.org/10.3390/w17131990 - 2 Jul 2025
Viewed by 505
Abstract
The plateaus of north-central Mexico have an arid to semiarid climate and groundwater naturally contaminated with inorganic arsenic (iAs) and fluoride (F). Like other arid and semiarid areas, this region faces great challenges to maintain a safe supply of drinking and irrigation water. [...] Read more.
The plateaus of north-central Mexico have an arid to semiarid climate and groundwater naturally contaminated with inorganic arsenic (iAs) and fluoride (F). Like other arid and semiarid areas, this region faces great challenges to maintain a safe supply of drinking and irrigation water. Studies conducted in the past few decades on various locations within this region have reported groundwater iAs, F, and nitrate-nitrogen (NO3-N), and either their source, enrichment processes, health risks, and/or potential water treatments. The relevant findings are analyzed and condensed here to provide an overview of the groundwater situation of the region. Studies identify volcanic rocks (rhyolite) and their weathering products (clays) as the main sources of iAs and F and report that these solutes become enriched through evaporation and residence time. In contrast, NO3-N is reported as anthropogenic, with the highest concentrations found in large urban centers and in agricultural and livestock farm areas. Health risks are high since the hot spots of contamination correspond to populated areas. Health problems associated with NO3-N in drinking water may be underestimated. Removal technologies of the contaminants remain at the laboratory or pilot stage, except for the reverse osmosis filtration units fitted to selected wells within the state of Chihuahua. A recent approach to supplying drinking water free of iAs and F to two urban centers consisted of switching from groundwater to surface water. Incipient research currently focuses on the potential repercussions of irrigating crops with As-rich water. The groundwater predicaments concerning contamination, public health impact, and irrigation suitability depicted here can be applied to semiarid areas worldwide. Full article
Show Figures

Graphical abstract

34 pages, 8503 KiB  
Article
Hydrogeochemical Characterization and Determination of Arsenic Sources in the Groundwater of the Alluvial Plain of the Lower Sakarya River Basin, Turkey
by Nisa Talay and İrfan Yolcubal
Water 2025, 17(13), 1931; https://doi.org/10.3390/w17131931 - 27 Jun 2025
Viewed by 462
Abstract
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in [...] Read more.
Arsenic (As) contamination in groundwater represents a major global public health threat, particularly in alluvial aquifer systems where redox-sensitive geochemical processes facilitate the mobilization of naturally occurring trace elements. This study investigates groundwater quality, particularly focusing on the origin of arsenic contamination in shallow and deep alluvial aquifers of the Lower Sakarya River Basin, which are crucial for drinking, domestic, and agricultural uses. Groundwater samples were collected from 34 wells—7 tapping the shallow aquifer (<60 m) and 27 tapping the deep aquifer (>60 m)—during wet and dry seasons for the hydrogeochemical characterization of groundwater. Environmental isotope analysis (δ18O, δ2H, 3H) was conducted to characterize origin and groundwater residence times, and the possible hydraulic connection between shallow and deep alluvial aquifers. Mineralogical and geochemical characterization of the sediment core samples were carried out using X-ray diffraction and acid digestion analyses to identify mineralogical sources of As and other metals. Pearson correlation coefficient analyses were also applied to the results of the chemical analyses to determine the origin of metal enrichments observed in the groundwater, as well as related geochemical processes. The results reveal that 33–41% of deep groundwater samples contain arsenic concentrations exceeding the WHO and Turkish drinking water standard of 10 µg/L, with maximum values reaching 373 µg/L. Manganese concentrations exceeded the 50 µg/L limit in up to 44% of deep aquifer samples, reaching 1230 µg/L. On the other hand, iron concentrations were consistently low, remaining below the detection limit in nearly all samples. The co-occurrence of As and Mn above their maximum contaminant levels was observed in 30–33% of the wells, exhibiting extremely low sulfate concentrations (0.2–2 mg/L), notably low dissolved oxygen concentration (1.45–3.3 mg/L) alongside high bicarbonate concentrations (450–1429 mg/L), indicating localized varying reducing conditions in the deep alluvial aquifer. The correlations between molybdenum and As (rdry = 0.46, rwet = 0.64) also indicate reducing conditions, where Mo typically mobilizes with As. Arsenic concentrations also showed significant correlations with bicarbonate (HCO3) (rdry = 0.66, rwet = 0.80), indicating that alkaline or reducing conditions are promoting arsenic mobilization from aquifer materials. All these correlations between elements indicate that coexistence of As with Mn above their MCLs in deep alluvial aquifer groundwater result from reductive dissolution of Mn/Fe(?) oxides, which are primary arsenic hosts, thereby releasing arsenic into groundwater under reducing conditions. In contrast, the shallow aquifer system—although affected by elevated nitrate, sulfate, and chloride levels from agricultural and domestic sources—exhibited consistently low arsenic concentrations below the maximum contaminant level. Seasonal redox fluctuations in the shallow zone influence manganese concentrations, but the aquifer’s more dynamic recharge regime and oxic conditions suppress widespread As mobilization. Mineralogical analysis identified that serpentinite, schist, and other ophiolitic/metamorphic detritus transported by river processes into basin sediments were identified as the main natural sources of arsenic and manganese in groundwater of deep alluvium aquifer. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

13 pages, 486 KiB  
Article
Livestock Animal Hair as an Indicator of Environmental Heavy Metals Pollution in Central Albania
by Marta Castrica, Egon Andoni, Alda Quattrone, Xhelil Koleci, Enkeleda Ozuni, Pellumb Zalla, Rezart Postoli, Laura Menchetti, Bengü Bilgiç, Duygu Tarhan, Ibrahim Ertugrul Yalcin, Ilir Dova, Nour Elhouda Fehri, Mehmet Erman Or, Albana Munga, Doriana Beqiraj, Giulio Curone and Stella Agradi
Animals 2025, 15(13), 1898; https://doi.org/10.3390/ani15131898 - 27 Jun 2025
Viewed by 364
Abstract
Trace elements, which may have harmful health effects, are present in the environment at varying concentrations. In Albania, data on exposure risks are limited. This study aimed to assess and compare the concentrations of various trace elements (aluminum, arsenic, boron, calcium, cadmium, chromium, [...] Read more.
Trace elements, which may have harmful health effects, are present in the environment at varying concentrations. In Albania, data on exposure risks are limited. This study aimed to assess and compare the concentrations of various trace elements (aluminum, arsenic, boron, calcium, cadmium, chromium, copper, iron, potassium, magnesium, manganese, nickel, lead, and zinc) in the hair of cattle and sheep raised in Central Albania (Tirana and Elbasan Counties). Hair samples were collected from 25 cattle and 25 sheep per county and analyzed using inductively coupled plasma–optical emission spectroscopy. Zinc concentrations were significantly higher in cattle than in sheep (p = 0.029), while no differences were observed between counties (p > 0.05), indicating similar environmental conditions. Copper (17.84, 95%CI: 13.63–16.34 and 15.84, 95%CI: 14.00–17.69 mg/kg in cattle, and 15.58, 95%CI: 13.61–17.56 and 14.14, 95%CI: 12.07–16.20 mg/kg in sheep, in Elbasan and Tirana County, respectively), arsenic (2.08, 95%CI: 1.45–1.21 and 1.51, 95%CI: 1.19–1.81 mg/kg in cattle, 1.73, 95%CI: 1.38–2.07 and 1.39, 95%CI: 1.02–1.75 mg/kg in sheep, in Elbasan and Tirana County, respectively), and cadmium (2.36, 95%CI: 1.63–2.07 and 2.00, 95%CI: 1.68–2.32 mg/kg in cattle, 2.00, 95%CI: 1.59–2.40 and 1.71, 95%CI: 1.39–2.02 mg/kg in sheep, in Elbasan and Tirana County, respectively) concentrations exceeded the values reported in the literature, likely due to contamination from local mining and metal processing activities. Further research is needed to determine the sources of contamination and assess potential risks to animal and human health. Full article
Show Figures

Figure 1

Back to TopTop