Pilot Test of Soil Washing for Arsenic-Contaminated H2SO4 Plant Soil Using Discarded H2SO4
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Samples
2.2. Chemicals and Reagents
2.3. As Sequential Extraction Analysis
- Add 25 mL of 0.25 M KCl to 2.5 g of sample in a 250 mL volumetric flask to extract the soluble fraction of arsenic species and stir the slurry for 2 h;
- Extract the adsorbed fraction of arsenic species by adding 0.1 M Na2HPO4 (25 mL, pH 8.0) and stirring for 20 h;
- Extract the carbonate fraction by adding 1 M sodium acetate (25 mL) and stirring for 5 h, and add 0.1 M Na2HPO4 (25 mL) and stir for 20 h;
- Extract the operationally defined crystalline mineral fraction of crystalline oxide and amorphous aluminosilicates by adding aqua regia (30 mL HCl and 10 mL HNO3) and stirring for 1 h.
2.4. As Determination
2.5. Criterion
3. Soil Washing Process and Equipment
3.1. Step1. Screening and Rinsing of Oversized Sand
3.2. Step2. Soil Washing and Phase Separation
3.3. Step3. H2SO4 Recycling and Treatment of Washed Soil
3.4. Step4. Treatment of Washing Solution
3.5. Step5. Recycling of Washing Water
4. Results and Discussion
4.1. Parameters in the Washing Process
4.2. H2SO4 Recycling and Water Recovery
4.2.1. Reuse of H2SO4 in the Washing Process
4.2.2. Remediation of Washing Water for Water Recovery
4.3. As Speciation Transformation
4.4. Process Costs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
As | Arsenic |
As4S4 | Realgar |
H2SO4 | Sulfuric acid |
USGS | U.S. Geological Survey |
HIMS | High intensity magnetic separation |
CEC | Cation exchange capacity |
XRF | X-ray fluorescence |
ICP-OES | Inductively coupled plasma-optical emission spectroscopy |
PAM | Polyacrylamide |
EDTA | Ethylene diamine tetraacetic acid |
References
- Fatoki, J.O.; Badmus, J.A. Arsenic as an environmental and human health antagonist: A review of its toxicity and disease initiation. J. Hazard. Mater. Adv. 2022, 5, 100052. [Google Scholar] [CrossRef]
- Bari, A.S.M.F.; Lamb, D.; MacFarlane, G.R.; Rahman, M.M. Soil washing of arsenic from mixed contaminated abandoned mine soils and fate of arsenic after washing. Chemosphere 2022, 296, 134053. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Ahmed, M.B.; Mojiri, A.; Huang, Y.; Zhou, J.L.; Li, D. Advances in As contamination and adsorption in soil for effective management. J. Environ. Manag. 2021, 296, 113274. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Song, Y.; Li, C.; Liu, R.; Chen, Y.; Yu, L.; Huang, Q.; Zhu, D.; Lu, C.; Yu, X.; et al. Arsenic compounds: The wide application and mechanisms applied in acute promyelocytic leukemia and carcinogenic toxicology. Eur. J. Med. Chem. 2021, 221, 113519. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Jho, E.H.; Im, J.; Yang, K.; Kim, Y.-J.; Nam, K. Changes in soil toxicity by phosphate-aided soil washing: Effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions. Chemosphere 2015, 119, 1399–1405. [Google Scholar] [CrossRef]
- Zhou, Y.; Niu, L.; Liu, K.; Yin, S.; Liu, W. Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment. Sci. Total Environ. 2018, 616–617, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Von Lindern Ian, H.; Hanrahan, D.; von Braun, M. Remediation of Legacy Arsenic Mining Areas in Yunnan Province, China. J. Health Pollut. 2011, 1, 26–35. [Google Scholar] [CrossRef]
- Mine, H.R. Comprehensive utilization for turning waste into treasure–Manufacturing sulfuric acid using tail gas from arsenic refining in realgar mines. Chem. Min. Technol. 1972, 5, 39–41. (In Chinese) [Google Scholar] [CrossRef]
- Du, Y.; Du, Y.; Ma, W.; Zhao, X.; Ma, M.; Cao, L.; Du, D. Application of dirty-acid wastewater treatment technology in non-ferrous metal smelting industry: Retrospect and prospect. J. Environ. Manag. 2024, 352, 120050. [Google Scholar] [CrossRef]
- Zhuang, F.; Huang, J.; Li, H.; Peng, X.; Xia, L.; Zhou, L.; Zhang, T.; Liu, Z.; He, Q.; Luo, F.; et al. Biogeochemical behavior and pollution control of arsenic in mining areas: A review. Front. Microbiol. 2023, 14, 1043024. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, L.; Liu, Q.; Li, J.; Qiao, Z.; Sun, P.; Yang, Y. A critical review on soil washing during soil remediation for heavy metals and organic pollutants. Int. J. Environ. Sci. Technol. 2022, 19, 601–624. [Google Scholar] [CrossRef]
- Liao, X.; Li, Y.; Miranda Avilés, R.; Zha, X.; Anguiano, J.H.H.; Moncada Sánchez, C.D.; Puy Alquiza, M.J.; González, V.P.; Garzon, L.F.R. In situ remediation and ex situ treatment practices of arsenic-contaminated soil: An overview on recent advances. J. Hazard. Mater. Adv. 2022, 8, 100157. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Zhan, B.; Wang, L.; Poon, C.S.; Tsang, D.C.W. Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends. Chemosphere 2021, 271, 129868. [Google Scholar] [CrossRef]
- Quan, H.; Yu, H.; Yang, X.; Lv, D.; Zhu, X.; Li, Y. Long-Term Stabilization/Solidification of Arsenic-Contaminated Sludge by a Blast Furnace Slag-Based Cementitious Material: Functions of CaO and NaCl. ACS Omega 2022, 7, 32631–32639. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Y.; Qian, Z.; Chen, H.; Li, W.; Li, Q.; Xue, S. The effect of extracellular polymeric substances (EPS) of iron-oxidizing bacteria (Ochrobactrum EEELCW01) on mineral transformation and arsenic (As) fate. J. Environ. Sci. 2023, 130, 187–196. [Google Scholar] [CrossRef]
- Xue, Y.; Li, Y.; Li, X.; Zheng, J.; Hua, D.; Jiang, C.; Yu, B. Arsenic bioremediation in mining wastewater by controllable genetically modified bacteria with biochar. Environ. Technol. Innov. 2024, 33, 103514. [Google Scholar] [CrossRef]
- Leštan, D.; Luo, C.; Li, X. The use of chelating agents in the remediation of metal-contaminated soils: A review. Environ. Pollut. 2008, 153, 3–13. [Google Scholar] [CrossRef]
- Kyllönen, H.; Pirkonen, P.; Hintikka, V.; Parvinen, P.; Grönroos, A.; Sekki, H. Ultrasonically aided mineral processing technique for remediation of soil contaminated by heavy metals. Ultrason. Sonochemistry 2004, 11, 211–216. [Google Scholar] [CrossRef]
- Rikers, R.A.; Rem, P.; Dalmijn, W.L. Improved method for prediction of heavy metal recoveries from soil using high intensity magnetic separation (HIMS). Int. J. Miner. Process. 1998, 54, 165–182. [Google Scholar] [CrossRef]
- Isosaari, P.; Sillanpää, M. Effects of oxalate and phosphate on electrokinetic removal of arsenic from mine tailings. Sep. Purif. Technol. 2012, 86, 26–34. [Google Scholar] [CrossRef]
- Virkutyte, J.; Sillanpää, M.; Latostenmaa, P. Electrokinetic soil remediation—Critical overview. Sci. Total Environ. 2002, 289, 97–121. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. An evaluation of technologies for the heavy metal remediation of dredged sediments. J. Hazard. Mater. 2001, 85, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Jin, F.; O’Connor, D.; Hou, D. Solidification/Stabilization for Soil Remediation: An Old Technology with New Vitality. Environ. Sci. Technol. 2019, 53, 11615–11617. [Google Scholar] [CrossRef]
- Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Laflèche, M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152, 1–31. [Google Scholar] [CrossRef]
- He, J.; Lin, Q.; Luo, Y.; Liu, Y.; Fan, X.; Zheng, J.; Xu, K.; Ma, Y. Removal of arsenic from contaminated soils by combining tartaric acid with dithionite: An efficient composite washing agent. J. Environ. Chem. Eng. 2023, 11, 109877. [Google Scholar] [CrossRef]
- Wei, M.; Chen, J.; Wang, X. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks. Chemosphere 2016, 156, 252–261. [Google Scholar] [CrossRef]
- Arwidsson, Z.; Elgh-Dalgren, K.; von Kronhelm, T.; Sjöberg, R.; Allard, B.; van Hees, P. Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids. J. Hazard. Mater. 2010, 173, 697–704. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, D.; Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, F.; Zhang, Q.; Peng, C.; Wu, B.; Li, F.; Gu, Q. An evaluation of different soil washing solutions for remediating arsenic-contaminated soils. Chemosphere 2017, 173, 368–372. [Google Scholar] [CrossRef]
- Cho, J.H.; Eom, Y.; Lee, T.G. Pilot-test of the calcium sodium phosphate (CNP) process for the stabilization/solidification of various mercury-contaminated wastes. Chemosphere 2014, 117, 374–381. [Google Scholar] [CrossRef]
- Mann, M.J. Full-scale and pilot-scale soil washing. J. Hazard. Mater. 1999, 66, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Baloyi, J.N. Spectral Interferences in ICP-OES; The Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2014. [Google Scholar]
- Kim, E.J.; Yoo, J.C.; Baek, K. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environ. Pollut. 2014, 186, 29–35. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.H.; Xie, Q.L. Dependence of arsenate solubility and stability on pH value. Environ. Chem. 2003, 22, 478–484. [Google Scholar]
- Lee, S.-Z.; Chang, L.; Yang, H.-H.; Chen, C.-M.; Liu, M.-C. Adsorption characteristics of lead onto soils. J. Hazard. Mater. 1998, 63, 37–49. [Google Scholar] [CrossRef]
- Tokunaga, S.; Hakuta, T. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 2002, 46, 31–38. [Google Scholar] [CrossRef]
- Lee, J.-C.; Kim, E.J.; Kim, H.-W.; Baek, K. Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil. Geoderma 2016, 270, 76–82. [Google Scholar] [CrossRef]
- Voglar, D.; Lestan, D. Pilot-scale washing of metal contaminated garden soil using EDTA. J. Hazard. Mater. 2012, 215–216, 32–39. [Google Scholar] [CrossRef]
- Voglar, D.; Lestan, D. Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling. Chemosphere 2013, 91, 76–82. [Google Scholar] [CrossRef]
Parameters | As-Contaminated Soil |
---|---|
Land use Organic matter (%) | Plant–soil < 0.1 |
CEC (cmol/kg) | 1.6 |
pH | 7.70 |
Soil texture | Sand |
Sand (%) | 98.2 |
Silt (%) | 1.4 |
Clay (%) | 0.4 |
As (mg kg−1) | 165.1 |
Ca (mg kg−1) | 5.4 × 105 |
Fe (mg kg−1) | 6.8 × 103 |
As Sequential Extraction | As Content in Soil (mg·kg−1) | Percent of ①~④Σ (%) |
---|---|---|
① soluble fraction | 143.2 | 74.0 |
② adsorbed fraction | 36.3 | 18.8 |
③ carbonate-bound fraction | 7.3 | 3.8 |
④ residual fraction | 6.6 | 3.4 |
①~④Σ | 193.5 | 100.0 |
Total As | 165.0 |
Consumables | Consumption/Generation Per ton of Soil | Unit Cost | Costs Per Ton of Soil |
---|---|---|---|
Energy | |||
Apparatus | 245 KW h | 0.9 CNY KW h−1 | 220.5 CNY |
Materials | |||
H2SO4 | 10 L | 14 CNY L−1 a | 140 CNY |
Water | 1000 L | 4.4 CNY m−3 | 4.4 CNY |
Lime | 2.5 kg | 1 CNY kg−1 a | 2.5 CNY |
FeSO4 | 1.5 kg | 0.4 CNY kg−1 a | 0.6 CNY |
PAM | 0.5 kg | 3.6 CNY kg−1 a | 1.8 CNY |
Wastes | |||
Solid waste | 30 kg | 1.8 CNY kg−1 | 54 CNY |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Xu, H.; Cao, Y.; Zhang, W.; Gao, A.; Liu, Y.; Bao, H.; Dong, G.; Mao, D.; Tan, Y. Pilot Test of Soil Washing for Arsenic-Contaminated H2SO4 Plant Soil Using Discarded H2SO4. Processes 2025, 13, 2171. https://doi.org/10.3390/pr13072171
Wang D, Xu H, Cao Y, Zhang W, Gao A, Liu Y, Bao H, Dong G, Mao D, Tan Y. Pilot Test of Soil Washing for Arsenic-Contaminated H2SO4 Plant Soil Using Discarded H2SO4. Processes. 2025; 13(7):2171. https://doi.org/10.3390/pr13072171
Chicago/Turabian StyleWang, Di, Hongbin Xu, Ying Cao, Wei Zhang, Aihua Gao, Yingxu Liu, Haihua Bao, Guangrui Dong, Di Mao, and Yunfei Tan. 2025. "Pilot Test of Soil Washing for Arsenic-Contaminated H2SO4 Plant Soil Using Discarded H2SO4" Processes 13, no. 7: 2171. https://doi.org/10.3390/pr13072171
APA StyleWang, D., Xu, H., Cao, Y., Zhang, W., Gao, A., Liu, Y., Bao, H., Dong, G., Mao, D., & Tan, Y. (2025). Pilot Test of Soil Washing for Arsenic-Contaminated H2SO4 Plant Soil Using Discarded H2SO4. Processes, 13(7), 2171. https://doi.org/10.3390/pr13072171