Removal of As from Tambo River Using Sodium Alginate from Lessonia trabeculata (Aracanto)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Stations
2.2. Sodium Alginate Extraction and Characterization from LT
2.3. Alginate Interaction Assay
2.4. Langmuir and Freundlich Isotherms
2.5. Kinetics and Reaction Order
3. Results and Discussion
3.1. Sampling Stations
3.2. Extraction and Characterization of LT Sodium Alginate
- o
- Asymmetric COO− stretching bands (1594–1600 cm−1), associated with uronic acid carboxyl groups (mannuronic and guluronic).
- o
- Symmetric COO− stretching bands (1410–1411 cm−1), confirming carboxylate presence.
- o
- C-O-C glycosidic linkage peaks (1027–1029 cm−1), typical of alginate’s polysaccharide structure [61].
3.3. Alginate Interaction Assessment
3.4. Langmuir and Freundlich Isotherms
3.5. Kinetics and Reaction Order
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
As | Arsenic |
LT | Lessonia trabeculata |
A1 | Industrial sodium alginate |
A2 | Sodium alginate extracted from Lessonia trabeculata |
W1 | Prepared standard solution |
W2 | Tambo River water |
FTIR | Fourier Transform Infrared Spectroscopy |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
qmax | Maximum adsorption capacity (Langmuir Model) |
Ce calc | Calculated equilibrium concentration based on the Freundlich model equation |
RL | Langmuir equilibrium parameter |
KF | Freundlich constant |
nF | Heterogeneity exponent (Freundlich Model) |
RPM | Revolutions per minute |
DO | Dissolved oxygen |
TDS | Total dissolved solids |
PSI | Langelier Saturation Index (calculated from pH, TDS, and temperature) |
ANA | National Water Authority (Peru) |
CH4 | Methane |
Fe(III) | Iron in the +3-oxidation state |
References
- Alidokht, L.; Anastopoulos, I.; Ntarlagiannis, D.; Soupios, P.; Tawabini, B.; Kalderis, D.; Khataee, A. Recent advances in the application of nanomaterials for the remediation of arsenic-contaminated water and soil. J. Environ. Chem. Eng. 2021, 9, 105533. [Google Scholar] [CrossRef]
- Organizacion Mundial de la Salud. Preventing Disease Through Healthy Environments: Exposure to Arsenic: Major Public Health Concern; Department of Public Health, World Health Organization: Geneva, Switzerland, 2019.
- Bowell, R.J.; Alpers, C.N.; Jamieson, H.E.; Nordstrom, D.K.; Majzlan, J. The environmental geochemistry of arsenic—An overview. Rev. Mineral. Geochem. 2014, 79, 1–16. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Ohkura, T.; Takahashi, Y.; Maejima, Y.; Arao, T. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ. Sci. Technol. 2014, 48, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Boussouga, Y.A.; Mohankumar, M.B.; Gopalakrishnan, A.; Welle, A.; Schäfer, A.I. Removal of arsenic (III) via nanofiltration: Contribution of organic matter interactions. Water Res. 2021, 201, 117315. [Google Scholar] [CrossRef]
- Wu, C.; Huang, L.; Xue, S.G.; Pan, W.S.; Zou, Q.; Hartley, W.; Wong, M.-H. Oxic and anoxic conditions affect arsenic (As) accumulation and arsenite transporter expression in rice. Chemosphere 2017, 168, 969–975. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, J.F.; Meharg, A.A.; McGrath, S.P. Arsenic uptake and metabolism in plants. New Phytol. 2008, 181, 777–794. [Google Scholar] [CrossRef]
- Meharg, A.A.; Zhao, F.J. (Eds.) Arsenic & Rice; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Guan, H.; Caggìa, V.; Gómez-Chamorro, A.; Fischer, D.; Coll-Crespí, M.; Liu, X.; Chávez-Capilla, T.; Schlaeppi, K.; Ramette, A.; Mestrot, A.; et al. The Effects of Soil Microbial Disturbance and Plants on Arsenic Concentrations and Speciation in Soil Water and Soils. Expo. Health 2024, 16, 805–820. [Google Scholar] [CrossRef]
- Huerta Lozada, J.L.; Salazar Castillo, J.V. Análisis de la aplicabilidad del Índice de Calidad Ambiental de los Recursos Hídricos Superficiales (ICARHS) en la evaluación de la calidad de agua de la Cuenca del Río Tambo. TecnoHumanismo 2024, 4, 1–34. [Google Scholar] [CrossRef]
- Instituto Gofisico del Perú—IGP. Edición Especial: Volcán Ubinas [Internet]. 2023. Available online: https://www.igp.gob.pe/servicios/centro-vulcanologico-nacional/edicion-especial/2023/ubinas/ (accessed on 12 January 2025).
- Instituto Nacional de Defensa Civil. Por Contaminación de la Cuenca de los Ríos Tambo y Coralaque en la Región Moquegua y Arequipa [Internet]. Arequipa. 2021. Available online: https://portal.indeci.gob.pe/wp-content/uploads/2021/10/REPORTE-DE-PELIGRO-INMINENTE-N%C2%BA-192-11OCT2021-POR-CONTAMINACI%C3%93N-DE-LA-CUENCA-DE-LOS-R%C3%8DOS-TAMBO-Y-CORALAQUE-EN-LA-REGI%C3%93N-MOQUEGUA-Y-AREQUIPA-40.pdf (accessed on 9 July 2025).
- Autoridad Nacional del Agua. Resolición Directorial-Nro. 0775-2021-ANA-AAA.CO [Internet]. Autoridad Nacional del Agua, 775-2021-ANA-AAA.CO. 20 August 2021. Available online: https://www.ana.gob.pe/sites/default/files/normatividad/files/29-RD-0775-2021-08.pdf (accessed on 9 July 2025).
- Congreso de la Republica Decreto Supremo N°004-2017-MINAMAprueban Estándares de Calidad Ambiental (ECA) Para Agua y Establecen Disposiciones Complementarias [Internet] Diario Oficial El Peruano, D.S. N°004-2017-MINAM MINAM. 7 June 2017. Available online: https://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf (accessed on 9 July 2025).
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Moreno-Rivas, S.C.; Ibarra-Gutiérrez, M.J.; Fernández-Quiroz, D.; Lucero-Acuña, A.; Burgara-Estrella, A.J.; Zavala-Rivera, P. pH-Responsive Alginate/Chitosan Gel Films: An Alternative for Removing Cadmium and Lead from Water. Gels 2024, 10, 669. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Y.; Qin, Y.; Shen, P.; Peng, Q. Structures, properties and application of alginic acid: A review. Int. J. Biol. Macromol. 2020, 162, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Leal, D.; Mansilla, A.; Matsuhiro, B.; Moncada-Basualto, M.; Lapier, M.; Maya, J.D.; Olea-Azar, C.; De Borggraeve, W. Chemical structure and biological properties of sulfated fucan from the sequential extraction of subAntarctic Lessonia sp. (Phaeophyceae). Carbohydr. Polym. 2018, 199, 304–313. [Google Scholar] [CrossRef]
- Thomas-Busani, C.; Sarabia-Sainz, J.A.; García-Hernández, J.; Madera-Santana, T.J.; Vázquez-Moreno, L.; Ramos-Clamont Montfort, G. Synthesis of alginate-polycation capsules of different composition: Characterization and their adsorption for [As(iii)] and [As(v)] from aqueous solutions. RSC Adv. 2020, 10, 28755–28765. [Google Scholar] [CrossRef] [PubMed]
- Naga Babu, A.; Raja Sree, T.; Srinivasa Reddy, D.; Suresh Kumar, G.; Krishna Mohan, G.V. Experimental and statistical analysis of As(III) adsorption from contaminated water using activated red mud doped calcium-alginate beads. Environ. Technol. 2019, 42, 1810–1825. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, L.K.; Gaur, J.P. Metal sorption by algal biomass: From batch to continuous system. Algal Res. 2016, 18, 95–109. [Google Scholar] [CrossRef]
- Mohammed, A.; Rivers, A.; Stuckey, D.C.; Ward, K. Alginate extraction from Sargassum seaweed in the Caribbean region: Optimization using response surface methodology. Carbohydr. Polym. 2020, 245, 116419. [Google Scholar] [CrossRef] [PubMed]
- Villouta, E.; Santelices, B. Lessonia trabeculata sp. nov. (Laminariales, Phaeophyta), a new kelp from Chile. Phycologia 1986, 25, 81–86. [Google Scholar] [CrossRef]
- Vásquez-Castillo, S.; Hinojosa, I.A.; Colin, N.; Poblete, A.A.; Górski, K. The presence of kelp Lessonia trabeculata drives isotopic niche segregation of redspotted catshark Schroederichthys chilensis. Estuar. Coast. Shelf Sci. 2021, 258, 107435. [Google Scholar] [CrossRef]
- Campos, L.; Berrios, F.; Oses, R.; González, J.E.; Bonnail, E. Unravelling Lessonia trabeculata management in coastal areas of the Atacama region of northern Chile through a DPSIR approach: Insights for sustainable plans. Mar. Policy 2021, 133, 104737. [Google Scholar] [CrossRef]
- Sáez, C.A.; Lobos, M.G.; Macaya, E.C.; Oliva, D.; Quiroz, W.; Brown, M.T. Variation in Patterns of Metal Accumulation in Thallus Parts of Lessonia trabeculata (Laminariales; Phaeophyceae): Implications for Biomonitoring. PLoS ONE 2012, 7, e50170. [Google Scholar] [CrossRef] [PubMed]
- López-Vila, J.M.; Valdéz-Moreno, M.E.; Schmitter-Soto, J.J.; Mendoza-Carranza, M.; Herrera-Pavón, R.L. Composición y estructura de la ictiofauna del río Hondo, México-Belice, con base en el uso del arpoń. Rev. Mex. Biodivers. 2014, 85, 866–874. [Google Scholar] [CrossRef]
- Autoridad Nacional del Agua. Resolución Jefatural N°010-2016-ANA, Protocolo Nacional para el Monitoreo de la Calidad de los Recursos Hídricos Superficiales [Internet]. Diario Oficial El Peruano Perú. 11 January 2015. Available online: https://www.ana.gob.pe/normatividad/rj-no-010-2016-ana-0 (accessed on 9 July 2025).
- ISO 17294-2:2023; Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes. Organización Internacional de Normalización: Geneva, Switzerland, 2023.
- Carbajal, P.; Gamarra, A. Guía Para Recolección y Reconocimiento de Macroalgas Pardas Comerciales del Perú [Internet]. 2018. Available online: https://alicia.concytec.gob.pe/vufind/Record/IMAR_e9637537e825fc4ce2129df9d9c555d6/Details#description (accessed on 9 July 2025).
- Fertah, M.; Belfkira, A.; Dahmane Emontassir Taourirte, M.; Brouillette, F. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab. J. Chem. 2014, 10, S3707–S3714. [Google Scholar] [CrossRef]
- Daga, L.; Garcia, R. Proceso de Secado del Alga Lessonia Nigrescens (Aracanto Negro) en un Secador Rotatorio Discontinuo. 2017. Available online: https://hdl.handle.net/20.500.12952/3572 (accessed on 9 July 2025).
- ASTM E11-22; Specification for Woven Wire Test Sieve Cloth and Test Sieves. ASTM International: West Conshohocken, PA, USA, 2022. Available online: http://www.astm.org/cgi-bin/resolver.cgi?E11-22 (accessed on 9 July 2025).
- Gomez-Matos, M.; Martinez-Balmoti, D.; Coll-Garcia, Y. Alginato y Sus Oligosacáridos a Partir de Algas Pardas de Arribazón: Preparación y Bioactividad Agrícola. Una Revision [Internet]. Revista Cubana de Química. 2023; pp. 46–56. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-54212023000100046&lng=es&tlng=es (accessed on 16 January 2025).
- Andriamanantoanina, H.; Rinaudo, M. Characterization of the alginates from five madagascan brown algae. Carbohydr. Polym. 2010, 82, 555–560. [Google Scholar] [CrossRef]
- Chang, R.; Goldsby, K.A. General Chemistry: The Essential Concepts, 12th ed.; McGraw-Hill Education/Interamericana Editores: New York, NY, USA, 2016. [Google Scholar]
- Fawzy, M.A.; Gomaa, M.; Hifney, A.F.; Abdel-Gawad, K.M. Optimization of alginate alkaline extraction technology from Sargassum latifolium and its potential antioxidant and emulsifying properties. Carbohydr. Polym. 2017, 157, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Bissoon, R.; Bajnath, E.; Mohammed, K.; Lee, T.; Bissram, M.; John, N.; Jalsa, N.K.; Lee, K.-Y.; Ward, K. Multistage extraction and purification of waste Sargassum natans to produce sodium alginate: An optimization approach. Carbohydr. Polym. 2018, 198, 109–118. [Google Scholar] [CrossRef]
- Nogueira, M.T.; Chica, L.R.; Yamashita, C.; Nunes, N.S.S.; Moraes, I.C.F.; Branco, C.C.Z.; Branco, I.G. Optimal conditions for alkaline treatment of alginate extraction from the brown seaweed Sargassum cymosum C. Agardh by response surface methodology. Appl. Food Res. 2022, 2, 100141. [Google Scholar] [CrossRef]
- Davis, T.A.; Ramirez, M.; Mucci, A.; Larsen, B. Extraction, isolation and cadmium binding of alginate from Sargassum spp. J. Appl. Phycol. 2004, 16, 275–284. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Kovačević, D.B.; Garofulić, I.E.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef]
- Hernández-Carmona, G.; Rodríguez-Montesinos, Y.E.; Arvizu-Higuera, D.L.; Reyes-Tisnado, R.; Murillo-Álvarez, J.I.; Muñoz-Ochoa, M. Avances tecnológicos en la producción de alginatos en México. Ing. Investig. Tecnol. 2012, 13, 155–168. Available online: http://www.revistaingenieria.unam.mx/numeros/v13n2-03.php (accessed on 9 July 2025).
- Kokova, V.; Lukova, P.; Baldzhieva, A.; Katsarov, P.; Delattre, C.; Molinié, R.; Petit, E.; Elboutachfaiti, R.; Murdjeva, M.; Apostolova, E. Extraction, Structural Characterization, and In Vivo Anti-Inflammatory Effect of Alginate from Cystoseira crinita (Desf.) Borry Harvested in the Bulgarian Black Sea. Mar. Drugs 2023, 21, 245. [Google Scholar] [CrossRef] [PubMed]
- ASTM E1252-98; Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. ASTM International: West Conshohocken, PA, USA, 2021. Available online: http://www.astm.org/cgi-bin/resolver.cgi?E1252-98R21 (accessed on 9 July 2025).
- Benhammou, A.; Yaacoubi, A.; Nibou, L.; Tanouti, B. Adsorption of metal ions onto Moroccan stevensite: Kinetic and isotherm studies. J. Colloid Interface Sci. 2005, 282, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Chojnacki, A.; Górecka, H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere 2005, 59, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Sawalha, M.F.; Peralta-Videa, J.R.; Romero-González, J.; Gardea-Torresdey, J.L. Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies. J. Colloid Interface Sci. 2006, 300, 100–104. [Google Scholar] [CrossRef]
- Lin, S.-H.; Juang, R.-S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J. Hazard. Mater. 2002, 92, 315–326. [Google Scholar] [CrossRef]
- Romero-González, J.; Peralta-Videa, J.R.; Rodriíguez, E.; Ramirez, S.L.; Gardea-Torresdey, J.L. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J. Chem. Thermodyn. 2005, 37, 343–347. [Google Scholar] [CrossRef]
- Freundlich, H. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471. Available online: https://www.scirp.org/reference/referencespapers?referenceid=857464 (accessed on 12 January 2025).
- Lee, Y.C.; Chang, S.P. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour. Technol. 2011, 102, 5297–5304. [Google Scholar] [CrossRef]
- Ezzati, R.; Azizi, M.; Ezzati, S. A theoretical approach for evaluating the contributions of pseudo-first-order and pseudo-second-order kinetics models in the Langmuir rate equation. Vacuum 2024, 222, 113018. [Google Scholar] [CrossRef]
- Ho, Y.S.; Mckay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Weber, W.; Morris, J. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Zhu, Q.; Moggridge, G.D.; D’Agostino, C. Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500. Part 2: Kinetics and diffusion analysis. Chem. Eng. J. 2016, 306, 1223–1233. [Google Scholar] [CrossRef]
- Lafi, R.; Montasser, I.; Hafiane, A. Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorpt. Sci. Technol. 2019, 37, 160–181. [Google Scholar] [CrossRef]
- Mckay, G.; Poots, V.J.P. Kinetics and Diffusion Processes in Colour Removal from Effluent Using Wood as an Adsorbent. J. Chem. Technol. Biotechnol. 1980, 30, 279–292. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Lai, A.; Xue, J.; Wu, Q.; Yu, C.; Xie, K.; Mao, Z.; Li, H.; Xing, P.; et al. Hydrogenotrophic pathway dominates methanogenesis along the river-estuary continuum of the Yangtze River. Water Res. 2023, 240, 120096. [Google Scholar] [CrossRef]
- Fan, R.; Deng, Y.; Xue, J.; Xu, Y.; Yuan, X.; Yan, X.; Zhang, C.; Du, Y.; Xie, X. Contrasting occurrence of arsenic concentrations in Quaternary aquifers inside and outside the oxbow lakes along the middle reaches of the Yangtze river. Appl. Geochem. 2024, 160, 105847. [Google Scholar] [CrossRef]
- Simonič, M. Algae Modified Alginate Beads for Improved Cd(II) Removal from Aqueous Solutions. Sustainability 2024, 16, 8174. [Google Scholar] [CrossRef]
- Hernandez-Carmona, G.; Margarita Casas Valdez, C. Proceso Mejorado para la Obtención de Alginato de Sodio a Partir del Alga Macrocystis pynfera. Researchgate [Internet]. 1991. Available online: https://www.researchgate.net/publication/263158433 (accessed on 9 July 2025).
- Sellimi, S.; Younes, I.; Ayed HBen Maalej, H.; Montero, V.; Rinaudo, M.; Dahia, M.; Mechichi, T.; Hajji, M.; Nasri, M. Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed. Int. J. Biol. Macromol. 2015, 72, 1358–1367. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Butt, H.-J.; Graf, K.; Kappl, M. Physics and Chemistry of Interfaces; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Jeppu, G.P.; Clement, T.P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 2012, 129–130, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, A. Adsorption from theory to practice. Adv. Colloid Interface Sci. 2001, 9, 135–224. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Mckay, G.; Al-Duri, B. Study of the Mechanism of Pore Diffusion in Batch Adsorption Systems. J. Chem. Technol. Biotechnol. 1990, 48, 269–285. [Google Scholar] [CrossRef]
- Lupo, B.; González, C.; Maestro, A. Microencapsulación con alginato en alimentos. Técnicas y aplicaciones. Rev. Venez. Cienc. Tecnol. Aliment. 2012, 3, 130–151. [Google Scholar]
Zone | Date | Hour (h) | Length (m) | Depth (m) | GPS Coordinates | Altitude m.s.n.m. | pH | ppmDO | uS/ cm | ppm Tds | Temp °C | Press. kPa | [As] mg/L | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QG001 | 2 July 2022 | 10.34 | 26.75 | 0.84 | 17°00′59″ S | 71°32′36″ W | 334 | 7.74 | 34.24 | 1313 | 660 | 15.63 | 97.63 | 0.313 |
QG002 | 11 December 2022 | 9.10 | 17.45 | 0.67 | 17°01′07″ S | 71°32′31″ W | 335 | 6.5 | 26.15 | 595 | 476 | 21.83 | 101.08 | 0.127 |
QG003 | 22 August 2023 | 10.30 | 38.41 | 0.78 | 17°01′14″ S | 71°32′27″ W | 342 | 7.45 | 29.87 | 2465 | 1233 | 20.92 | 100.39 | 0.309 |
PPB001 | 2 July 2022 | 12.02 | 15.46 | 1.04 | 17°04′15″ S | 71°44′08″ O | 94 | 7.08 | 31.09 | 1563 | 782 | 18.58 | 100.8 | 0.229 |
PPB002 | 11 December 2022 | 11.32 | 15.46 | 0.58 | 17°04′16″ S | 71°44 ′09″ O | 94 | 6.51 | 13.87 | 405 | 891 | 25.38 | 101.28 | 0.075 |
PPB003 | 22 August 2023 | 13.10 | 17.20 | 0.76 | 17°04′17″ S | 71°44 ′09″ O | 93 | 7.2 | 24.66 | 227 | 214 | 21.64 | 101.49 | 0.266 |
LC001 | 2 July 2022 | 14.30 | 11.87 | 0.98 | 17°09′18″ S | 71°49′03″ O | 12 | 6.77 | 33.75 | 1641 | 821 | 21.72 | 101.63 | 0.168 |
LC002 | 11 December 2022 | 13.34 | 11.13 | 0.44 | 17°09′20″ S | 71°49′08″ O | 12 | 6.53 | 10.03 | 1866 | 937 | 22.78 | 101.08 | 0.106 |
LC003 | 22 August 2023 | 15.24 | 10.87 | 0.53 | 17°09′24″ S | 71°49′29″ O | 13 | 6.89 | 28.92 | 3600 | 1838 | 23.91 | 97.63 | 0.129 |
Parameters | Alginate Interaction | Isotherm | Kinetics |
---|---|---|---|
Mass (g) | 0.5 | 0.5 | 1–0.5–0.1 |
Volume (mL) | 100 | 100 | 100 |
Time (min) | 1440 | 1440 | 0–10–20–30 60–120–240 360–450–720 1440–2160–2880 |
RPM | 120 | 120 | 120 |
Temperature °C | 20 (±1) | 20 (±1) | 20 (±1) |
Neutral pH | 7 (±1) | 7 (±1) | 7 (±1) |
[As] W1 mg/L | 0.31 | 0.2–0.4–0.6–0.8–1.00 | --- |
[As] W2 mg/L | 0.309 | --- | 0.309 |
Performance Results | ||||
---|---|---|---|---|
Replicates | Code | Mass | Yield (%) | |
LT Algae (g) | Alginate Obtained (g) | |||
1 | A2001 | 10.000 | 2.204 | 22.040% |
2 | A2002 | 10.000 | 2.311 | 23.114% |
3 | A2003 | 10.000 | 1.917 | 19.166% |
A2 Replicates | Functional Group Similarity | Spectral Similarity to A1 (%) | ||
---|---|---|---|---|
R-COO− | OH− | C-O-C | ||
A2001 | 1594 | 1410 | 1029 | 99.340% |
A2002 | 1598 | 1406 | 1027 | 97.300% |
A2003 | 1600 | 1411 | 1027 | 96.690% |
A1000 | 1599 | 1404 | 1027 | 100.000% |
Sample | Description | Replicate 1 | Replicate 2 | Replicate 3 | Average ± SD | Reduction (%) | Statistical Grouping |
---|---|---|---|---|---|---|---|
T1 | A1 + W1 | 0.081 | 0.067 | 0.079 | 0.076 ± 0.007 | 75.4 | c |
T2 | A2 + W1 | 0.042 | 0.028 | 0.008 | 0.026 ± 0.015 | 91.6 | b |
T3 | A1 + W2 | 0.032 | 0.043 | 0.023 | 0.033 ± 0.010 | 89.3 | b |
T4 | A2 + W2 | 0.001 | 0.005 | 0.003 | 0.003 ± 0.002 | 99.0 | a |
[As]0 (mg/L). | [As]e (mg/L) | [As]0 (mmol/L) | [As]e (mmol/L) | qt (mmol/g-Alginate) | qe (mmol/g-Alginate) | Ce/qe |
---|---|---|---|---|---|---|
0.2 | 0.025 | 0.00266951 | 0.00033369 | 0.00017468 | 0.00023358 | 1.42857143 |
0.4 | 0.093 | 0.00533903 | 0.00124132 | 0.00046631 | 0.00040977 | 3.02931596 |
0.6 | 0.162 | 0.00800854 | 0.00216231 | 0.00063137 | 0.00058462 | 3.69863014 |
0.8 | 0.251 | 0.01067806 | 0.00335024 | 0.00075992 | 0.00073278 | 4.57194900 |
1 | 0.333 | 0.01334757 | 0.00444474 | 0.00083624 | 0.00089028 | 4.99250375 |
[As]0 (mg/L) | [As]e (mg/L) | Ce calc (mmol/L) | [As]0 (mmol/L) | [As]f (mmol/L) | qt (mmol/g- Alginate) | qe (mmol/g- Alginate) | log qe | log Ce Final |
---|---|---|---|---|---|---|---|---|
0.2 | 0.025 | 0.1228 | 0.00267 | 0.0003337 | 0.0002248 | 0.00023358 | −3.63156 | −3.4766578 |
0.4 | 0.093 | 0.164 | 0.005339 | 0.0012413 | 0.00044175 | 0.00040977 | −3.38746 | −2.9061148 |
0.6 | 0.162 | 0.1969 | 0.008009 | 0.0021623 | 0.00058764 | 0.00058462 | −3.23312 | −2.6650828 |
0.8 | 0.251 | 0.2211 | 0.010678 | 0.0033502 | 0.00073603 | 0.00073278 | −3.13503 | −2.4749241 |
1 | 0.333 | 0.2444 | 0.013348 | 0.0044447 | 0.00085118 | 0.00089028 | −3.05047 | −2.3521535 |
Time | Alginate 0.1 g | Alginate 0.5 g | Alginate 1.0 g | ||||||
---|---|---|---|---|---|---|---|---|---|
(min) | [As] mg/L | [As] mg/L | [As] mg/L | ||||||
Replica 1 B1T1 | Replica 2 B1T2 | Replica 3 B1T3 | Replica 1 B2T1 | Replica 2 B2T2 | Replica 3 B2T3 | Replica 1 B3T1 | Replica 2 B3T2 | Replica 3 B3T3 | |
0 | 0.309 | 0.309 | 0.309 | 0.309 | 0.309 | 0.309 | 0.309 | 0.309 | 0.309 |
30 | 0.209 | 0.205 | 0.227 | 0.042 | 0.04 | 0.052 | 0.034 | 0.032 | 0.032 |
60 | 0.179 | 0.151 | 0.200 | 0.039 | 0.036 | 0.037 | 0.026 | 0.020 | 0.020 |
120 | 0.104 | 0.096 | 0.115 | 0.029 | 0.025 | 0.029 | 0.010 | 0.010 | 0.009 |
240 | 0.079 | 0.082 | 0.085 | 0.022 | 0.021 | 0.023 | 0.007 | 0.006 | 0.006 |
360 | 0.057 | 0.052 | 0.060 | 0.020 | 0.019 | 0.021 | 0.005 | 0.005 | 0.004 |
480 | 0.029 | 0.028 | 0.028 | 0.013 | 0.010 | 0.013 | 0.004 | 0.003 | 0.003 |
720 | 0.017 | 0.018 | 0.016 | 0.008 | 0.007 | 0.010 | 0.001 | 0.001 | 0.001 |
1440 | 0.011 | 0.012 | 0.015 | 0.006 | 0.005 | 0.006 | 0.000 | 0.000 | 0.000 |
2160 | 0.008 | 0.008 | 0.009 | 0.001 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 |
2880 | 0.007 | 0.007 | 0.008 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Dose A2 (g/L) | qe (mmol/g) | k (g/mmol·min) | R2 |
---|---|---|---|
0.1 | 0.41 ± 0.02 | 0.012 ± 0.001 | 0.994 |
0.5 | 0.89 ± 0.03 | 0.028 ± 0.002 | 0.998 |
1.0 | 1.12 ± 0.05 | 0.045 ± 0.003 | 0.997 |
t1/2 | qt Exp | t1/2 | qt Exp | t1/2 | qt Exp |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
5.47722558 | 0.12710002 | 5.477225575 | 0.35267396 | 5.47722558 | 0.36869105 |
7.74596669 | 0.17648603 | 7.745966692 | 0.36246218 | 7.74596669 | 0.38292846 |
10.9544512 | 0.27214362 | 10.95445115 | 0.37536483 | 10.9544512 | 0.39939046 |
15.4919334 | 0.30284303 | 15.49193338 | 0.38292846 | 15.4919334 | 0.40383965 |
18.973666 | 0.3371018 | 18.97366596 | 0.38559797 | 18.973666 | 0.40606425 |
21.9089023 | 0.374475 | 21.9089023 | 0.39627603 | 21.9089023 | 0.40784392 |
26.8328157 | 0.38960224 | 26.83281573 | 0.40117014 | 26.8328157 | 0.41095836 |
37.9473319 | 0.39538619 | 37.94733192 | 0.40472949 | 37.9473319 | 0.41229311 |
46.4758002 | 0.40117014 | 46.47580015 | 0.41006852 | 46.4758002 | 0.41229311 |
53.6656315 | 0.40250489 | 53.66563146 | 0.41229311 | 53.6656315 | 0.41229311 |
Dose A2 (g/L) | Initial Slope (mmol/g·min1/2) | Final Slope (mmol/g·min1/2) |
---|---|---|
0.1 | 0.15 ± 0.01 | 0.02 ± 0.001 |
0.5 | 0.28 ± 0.02 | 0.05 ± 0.003 |
1.0 | 0.35 ± 0.03 | 0.08 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva, D.M.; Gonzales, A.G.; Saez, C.A.; Lazarte, A.M. Removal of As from Tambo River Using Sodium Alginate from Lessonia trabeculata (Aracanto). Plants 2025, 14, 2173. https://doi.org/10.3390/plants14142173
Villanueva DM, Gonzales AG, Saez CA, Lazarte AM. Removal of As from Tambo River Using Sodium Alginate from Lessonia trabeculata (Aracanto). Plants. 2025; 14(14):2173. https://doi.org/10.3390/plants14142173
Chicago/Turabian StyleVillanueva, Diana M., Aldo G. Gonzales, Claudio A. Saez, and Antonio M. Lazarte. 2025. "Removal of As from Tambo River Using Sodium Alginate from Lessonia trabeculata (Aracanto)" Plants 14, no. 14: 2173. https://doi.org/10.3390/plants14142173
APA StyleVillanueva, D. M., Gonzales, A. G., Saez, C. A., & Lazarte, A. M. (2025). Removal of As from Tambo River Using Sodium Alginate from Lessonia trabeculata (Aracanto). Plants, 14(14), 2173. https://doi.org/10.3390/plants14142173