Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (661)

Search Parameters:
Keywords = aromatic and medicinal plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 300 KB  
Article
Optimizing Thermal Pretreatment for Volatile Bioactive Profiling in Medicinal Plants Using HS-GC-MS Analysis
by Péter Tamás Nagy, Florence Alexandra Tóth, Levente Czeglédi and Attila Péter Kiss
Appl. Sci. 2026, 16(2), 1031; https://doi.org/10.3390/app16021031 - 20 Jan 2026
Abstract
Oregano (Origanum vulgare L.), basil (Ocimum basilicum L.), rosemary (Rosmarinus officinalis L.), yarrow (Achillea millefolium L.), and thyme (Thymus vulgaris L.) are aromatic medicinal plants rich in bioactive volatile compounds with antioxidant, antimicrobial, and anti-inflammatory properties. This study [...] Read more.
Oregano (Origanum vulgare L.), basil (Ocimum basilicum L.), rosemary (Rosmarinus officinalis L.), yarrow (Achillea millefolium L.), and thyme (Thymus vulgaris L.) are aromatic medicinal plants rich in bioactive volatile compounds with antioxidant, antimicrobial, and anti-inflammatory properties. This study presents a simple, solvent-free, and eco-friendly headspace GC-MS method for VOC profiling. Optimized thermal pretreatment (40–90 °C) enhanced compound detection, particularly at 70–90 °C, without loss of reproducibility. The approach lowers analytical costs and waste generation, supporting green analytical practices and the sustainable valorization of medicinal herbs as natural functional ingredients. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
24 pages, 3862 KB  
Article
The Consociation of Sage and Grapevine Modifies Grape Leaf Metabolism and Reduces Downy Mildew Infection
by Monica Fittipaldi Broussard, Carlo Campana, Veronica Ferrari, Ilaria Ragnoli, Leilei Zhang, Luigi Lucini, Vittorio Rossi, Tito Caffi and Giorgia Fedele
Agronomy 2026, 16(2), 201; https://doi.org/10.3390/agronomy16020201 - 14 Jan 2026
Viewed by 371
Abstract
Volatile organic compounds (VOCs) produced by Medicinal Aromatic Plants (MAPs) are bioactive signaling molecules that play key roles in plant defense, acting against pathogens and triggering resistance responses. Intercropping with VOC-emitting MAPs can therefore enhance disease resistance. This study investigated VOCs emitted by [...] Read more.
Volatile organic compounds (VOCs) produced by Medicinal Aromatic Plants (MAPs) are bioactive signaling molecules that play key roles in plant defense, acting against pathogens and triggering resistance responses. Intercropping with VOC-emitting MAPs can therefore enhance disease resistance. This study investigated VOCs emitted by sage (Salvia officinalis) as potential resistance inducers in grapevine (Vitis vinifera) against Plasmopara viticola, the causal agent of downy mildew, under consociated growth conditions. Sage and grapevine plants were co-grown in an airtight box system for 24 or 48 h, after which grape leaves were inoculated with P. viticola. Disease assessments were integrated with grapevine leaf metabolic profiling to evaluate responses to VOC exposure and pathogen infection. Untargeted and targeted metabolomic analysis revealed that sage VOCs consistently reprogrammed grapevine secondary metabolism, without substantial differences between 24 and 48 h exposures. Lipids, phenylpropanoids, and terpenoids were markedly accumulated following VOC exposure and persisted following inoculation. Correspondingly, leaves pre-exposed to sage VOCs exhibited a significant reduction in disease susceptibility. Overall, our results suggest that exposure to sage VOCs induces signaling and metabolic reprogramming in grapevine. Further research should elucidate how grapevines perceive and integrate these signals, as well as the broader processes underlying MAP VOC-induced defense, and evaluate their translation into sustainable viticultural practices. Full article
Show Figures

Figure 1

18 pages, 1034 KB  
Article
Chemical Composition, Antimicrobial, Antioxidant, and Anticancer Activities of Jacquemontia pentantha Essential Oils
by Noorah A. Alkubaisi, Mashail Fahad Alsayed, Hissah Abdulrahman Alodaini, Fuad Alanazi, Abdulhadi M. Abdulwahed and Ibrahim M. Aziz
Molecules 2026, 31(2), 296; https://doi.org/10.3390/molecules31020296 - 14 Jan 2026
Viewed by 179
Abstract
Jacquemontia pentantha (Jacq.) G. Don. (Convolvulaceae): This is a plant with rich ethnobotanical uses, but its essential oil (EO) composition and overall biological properties remain largely uninvestigated. In this research, the J. pentantha EO (JPEO) is characterized in a thorough manner, [...] Read more.
Jacquemontia pentantha (Jacq.) G. Don. (Convolvulaceae): This is a plant with rich ethnobotanical uses, but its essential oil (EO) composition and overall biological properties remain largely uninvestigated. In this research, the J. pentantha EO (JPEO) is characterized in a thorough manner, with an evaluation of its in vitro antioxidant, antimicrobial, and cytotoxic properties, aiming to provide scientific support for ethnobotanical uses, as well as the definition of new potentialities. The EOs were isolated from the aerial part of the plant via hydrodistillation, and a qualitative analysis of the components was carried out via GC–MS. The biological properties were investigated by means of standard in vitro assays: namely, DPPH and ABTS for the measurement of antioxidant activity, the disk diffusion technique, and the microbroth dilution assay for the evaluation of antimicrobial activity against six bacterial species, as well as for the assessment of the activity against five species of Candida fungi, whereas the cytotoxic activity against MCF-7 and HepG2 cells was assessed using the MTT assay. Preliminary characterization of the EOs via GC/MS revealed a particular “chemical profile” with a high concentration of himachalene-type sesquiterpenes, namely, β-himachalene (6.47%) and (+)-α-himachalene (6.46%), together with phenolic monoterpenoids. The EOs showed significant antioxidant activity (IC50 = 172.41 and 378.94 µg/mL, respectively), high phenolic content (97.34 mg GAE/g), and significant antibacterial activity (MIC = 4.68 µg/mL), especially against Pseudomonas aeruginosa, as well as against Candida albicans (MFC = 3.90 µg/mL), together with dose-dependent cytotoxic effects on the two cell lines, with IC50 = 161.62 and 151.87 µg/mL, respectively. This research indicates that the EO of this plant is a potential source of a certain “chemical profile” with noteworthy antibacterial and cytotoxic properties, thus providing scientific support for its ethnobotanical use and highlighting its particular potential for developing pharmaceutical agents against infections and cancer. Full article
Show Figures

Figure 1

28 pages, 4337 KB  
Article
Lavender as a Catalyst for Rural Development: Identifying Commercially Suitable Cultivation Sites Through Multi-Criteria Decision Analysis
by Serdar Selim, Mesut Çoşlu, Rifat Olgun, Nihat Karakuş, Emine Kahraman, Namık Kemal Sönmez and Ceren Selim
Land 2026, 15(1), 130; https://doi.org/10.3390/land15010130 - 9 Jan 2026
Viewed by 247
Abstract
Lavender is a perennial Mediterranean plant that has been cultivated throughout history for medicinal, aromatic, and cosmetic purposes. Due to its high economic and commercial value, it has become an important agricultural product worldwide. The low production cost, adaptability to environmental conditions, and [...] Read more.
Lavender is a perennial Mediterranean plant that has been cultivated throughout history for medicinal, aromatic, and cosmetic purposes. Due to its high economic and commercial value, it has become an important agricultural product worldwide. The low production cost, adaptability to environmental conditions, and demand for its versatile use in the global market make it a significant potential source of income for developing Mediterranean countries. This study aims to identify commercially suitable cultivation sites for Lavandula angustifolia Mill. using remote sensing (RS) and geographic information systems (GIS) technologies to support rural development. Within this scope, suitable cultivation habitat parameters for the species in open fields and natural conditions were determined; these parameters were weighted according to their importance using multi-criteria decision analysis (MCDA), and thematic maps were created for each parameter. The created maps were combined using weighted overlay analysis, and a final map was generated according to the suitability class. The results indicate that within the study area, 75,679.45 ha is mostly suitable, 388,832.71 ha is moderately suitable, 24,068.43 ha is marginally suitable, and 229,327.20 ha is not suitable. As a result, it has been observed that Lavandula angustifolia Mill., which is currently cultivated on approximately 4045 ha of land and contributes 429 tons of product to the regional economy, covers only a relatively small portion of the suitable cultivation sites identified in the study and is not utilized to its full potential. It is understood that the expansion of lavender cultivation in determined suitable sites has significant potential to substantially develop the region and its rural population in terms of both yield and production volume, and to involve women and youth entrepreneurs in agricultural employment. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

31 pages, 1471 KB  
Article
Seasonal Variation in Wild Rosmarinus officinalis L.: Phytochemicals and Their Multifunctional Potential Against Metabolic Disorders
by Khaled Kherraz, Khalil Guelifet, Mokhtar Benmohamed, Luca Rastrelli, Latifa Khattabi, Afaf Khadra Bendrihem, Abderrazek Ferhat, Mohamed Amine Ferhat, Khaled Aggoun, Duygu Aygünes Jafari, Barbara Sawicka, Lilya Harchaoui, Wafa Zahnit, Azzeddine Zeraib and Mohammed Messaoudi
Molecules 2026, 31(2), 220; https://doi.org/10.3390/molecules31020220 - 8 Jan 2026
Viewed by 324
Abstract
This investigation explored how seasonal variation affects the phytochemical composition and biological potential of Rosmarinus officinalis L., a widely used aromatic and medicinal plant. Aerial parts collected during spring, summer, autumn, and winter were extracted with ethanol and analyzed using LC-ESI-MS/MS, while total [...] Read more.
This investigation explored how seasonal variation affects the phytochemical composition and biological potential of Rosmarinus officinalis L., a widely used aromatic and medicinal plant. Aerial parts collected during spring, summer, autumn, and winter were extracted with ethanol and analyzed using LC-ESI-MS/MS, while total phenolic (TPC) and flavonoid (TFC) contents were determined spectrophotometrically. The extracts were evaluated for antioxidant, anti-inflammatory, enzyme inhibitory, analgesic, antimicrobial, cytotoxic, and photoprotective properties. Major constituents identified in all seasons included luteolin, kaempferol, rutin, and biochanin A. The autumn extract contained the highest phenolic (353.21 ± 4.05 µg GAE/mg) and flavonoid (190.11 ± 5.65 µg QE/mg) levels. Antioxidant assays revealed that the autumn extract had the strongest DPPH radical scavenging activity (IC50 = 24.72 ± 0.16 µg/mL), while the spring extract exhibited the greatest reducing power (A0.5 = 7.62 ± 0.30 µg/mL). The winter extract demonstrated superior anti-inflammatory activity (IC50 = 28.60 ± 2.84 µg/mL), exceeding the reference drug diclofenac. Only the spring extract inhibited urease (IC50 = 62.26 ± 0.58 µg/mL) and moderately inhibited α-amylase. All seasonal extracts showed notable photoprotective potential, with SPF values between 25.18 and 32.46, well above the recommended minimum. The spring extract also presented strong analgesic activity and no acute toxicity up to 2000 mg/kg. Antimicrobial effects were weak, limited to slight inhibition of Staphylococcus aureus, while moderate cytotoxicity was observed against MCF-7 and MDA-MB-231 breast cancer cells. Overall, seasonal variation significantly influenced the chemical profile and bioactivities of R. officinalis, with autumn and spring identified as the most suitable harvesting periods for pharmaceutical and cosmetic applications. Full article
(This article belongs to the Special Issue Phytochemicals as Valuable Tools for Fighting Metabolic Disorders)
Show Figures

Figure 1

20 pages, 2983 KB  
Review
2-Hydroxy-4-Methoxybenzaldehyde (2H4MB): Integrating Cell Culture, Metabolic Engineering, and Intelligent Genome Editing
by Fatima Firdaus, Vikas Yadav, Muthusamy Ramakrishnan, Adla Wasi, Irfan Bashir Ganie, Anamica Upadhyay, Anwar Shahzad and Zishan Ahmad
Int. J. Mol. Sci. 2026, 27(1), 503; https://doi.org/10.3390/ijms27010503 - 3 Jan 2026
Viewed by 392
Abstract
2-Hydroxy-4-Methoxybenzaldehyde (2H4MB) is a valuable aromatic compound with applications in flavour, fragrance, and pharmaceuticals. Because of its endangered status and root-specific accumulation, its production in native plants is restricted. In order to increase 2H4MB yield, this study emphasises recent developments in metabolic engineering, [...] Read more.
2-Hydroxy-4-Methoxybenzaldehyde (2H4MB) is a valuable aromatic compound with applications in flavour, fragrance, and pharmaceuticals. Because of its endangered status and root-specific accumulation, its production in native plants is restricted. In order to increase 2H4MB yield, this study emphasises recent developments in metabolic engineering, synthetic biology, in vitro culture methods, and AI-assisted route prediction. This review discussed about how CRISPR-based genome editing can be used to modify important biosynthetic genes and regulatory components, as well as how predictive machine learning techniques can be used to improve production conditions. Inadequate genetic resources, poorly understood biosynthetic pathways, and a dearth of reliable transformation systems are among the present constraints. The work highlights the importance of using integrative plant biotechnology techniques to fully realise the industrial and medicinal potential of this underutilised chemical. Full article
(This article belongs to the Special Issue Advances in Secondary Metabolites in Plants)
Show Figures

Figure 1

19 pages, 2344 KB  
Article
Biochemical Diversity and Nutraceutical Potential of Medicinal Plant-Based Herbal Teas from Southwestern Türkiye
by Halil Ibrahim Sagbas, Saban Kordali, Sena Sahin, Selçuk Küçükaydın and Elif Uyduran
Plants 2026, 15(1), 125; https://doi.org/10.3390/plants15010125 - 1 Jan 2026
Viewed by 330
Abstract
Medicinal and aromatic plants contain valuable natural compounds widely used in health, food, and cosmetics. This study compares the antioxidant capacities and phenolic compositions of tea and ethanol extracts from eight species naturally growing in Fethiye, Muğla, Türkiye. Antioxidant activity was assessed using [...] Read more.
Medicinal and aromatic plants contain valuable natural compounds widely used in health, food, and cosmetics. This study compares the antioxidant capacities and phenolic compositions of tea and ethanol extracts from eight species naturally growing in Fethiye, Muğla, Türkiye. Antioxidant activity was assessed using the β-carotene bleaching method, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), cupric reducing antioxidant capacity (CUPRAC), and metal chelating activity. Herbal teas generally showed stronger antioxidant activity than ethanol extracts. Rosemary tea had the highest activity (2.90 µg/mL), followed by lavender (11.30 µg/mL). In metal chelating, rosemary tea exhibited a half-maximal inhibitory concentration (IC50) of 9.22 µg/mL, close to ethylenediaminetetraacetic acid (EDTA). Phenolic profiling showed rosemary tea contained 30.74 mg/g rosmarinic acid and 0.74 mg/g quercetin. These results support the traditional use of southwestern Türkiye’s medicinal plants and emphasize the antioxidant potential of herbal teas. Integrating ethnobotanical knowledge with phytochemical data provides a basis for functional food development, crop improvement, and conservation of local plant genetic resources. Unlike previous studies focusing on single species or limited solvent comparisons, this research simultaneously evaluates both herbal tea and ethanol extracts of eight locally grown medicinal plants, offering a unique perspective on their comparative antioxidant and phenolic diversity. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 1579 KB  
Article
Sea-Derived Organic Amendments Enhance Growth and Nitrogen Dynamics in Sage Cultivation (Salvia officinalis L.)
by Aikaterini Molla, Alexios Lolas and Elpiniki Skoufogianni
Nitrogen 2026, 7(1), 5; https://doi.org/10.3390/nitrogen7010005 - 28 Dec 2025
Viewed by 224
Abstract
Sustainable fertilization strategies are increasingly required to enhance crop performance while reducing dependence on synthetic inaputs. In this study, the effectiveness of sea-derived organic amendments, Posidonia oceanica compost and mussel shell powder, was evaluated in Salvia officinalis (sage) cultivation. A pot experiment was [...] Read more.
Sustainable fertilization strategies are increasingly required to enhance crop performance while reducing dependence on synthetic inaputs. In this study, the effectiveness of sea-derived organic amendments, Posidonia oceanica compost and mussel shell powder, was evaluated in Salvia officinalis (sage) cultivation. A pot experiment was conducted in Istron Kalou Xoriou (Crete), using three nitrogen rates (0, 40 and 80 kg ha−1) in combination with four rates of mussel shell powder (0, 50, 100 and 200 g/pot). A total of 9 treatments were set up, each replicated 3 times, resulting in 27 pots. Growth parameters (plant height, total and leaf fresh-dry weight), nitrogen content in plant tissues, nitrogen uptake, and nitrogen use efficiency (NUE) were assessed across three harvest periods. The results indicated that both P. oceanica compost and mussel shell amendments significantly improved soil properties and plant performance. The treatment receiving 200 g/pot of mussel shell powder combined with 80 kg ha−1 fertilization (PH200) consistently produced the highest values for biomass (223.99–383.58 g/plant), nitrogen plant concentration (1.967–2.117%), and nitrogen uptake (1.762–3.248 g/plant). The application of mussel shells effectively increased soil pH, thereby enhancing nutrient availability and promoting nitrogen assimilation. Furthermore, NUE values showed a progressive increase with rising amendments rates. Overall, sea-derived organic amendments demonstrated strong potential as sustainable fertilization materials, contributing to sage productivity improvement while supporting circular management of coastal waste resources. Full article
Show Figures

Figure 1

26 pages, 13586 KB  
Article
1-Deoxy-D-Xylulose-5-Phosphate Synthase 1 as a Crucial Regulatory Enzyme for Terpenoid Biosynthesis in the Leaves of Cinnamomum burmannii
by Yanling Cai, Lingling Shi, Feng Chen, Qian Zhang, Jun Yao, Yu Xiu, Cunfu Lu and Shanzhi Lin
Horticulturae 2026, 12(1), 36; https://doi.org/10.3390/horticulturae12010036 - 27 Dec 2025
Viewed by 306
Abstract
Cinnamomum burmannii, renowned for its high essential oil content in leaves, is a pivotal species utilized for aromatic medicinal and industrial materials. This study focused on the functional identification of key regulatory enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS) for terpenoid biosynthesis in the leaves [...] Read more.
Cinnamomum burmannii, renowned for its high essential oil content in leaves, is a pivotal species utilized for aromatic medicinal and industrial materials. This study focused on the functional identification of key regulatory enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS) for terpenoid biosynthesis in the leaves of C. burmannii. A comprehensive approach, integrating terpenoid profiling assay and synthesis pathway construction, correlation analysis of terpenoid content and gene expression, and genome-wide analysis of DXS family across four developmental stages of leaves in three accessions of C. burmannii, led to the identification of CbDXS1 as a candidate regulatory gene for terpenoid biosynthesis. Overexpressing CbDXS1 in Arabidopsis enhanced plant growth, DXS enzyme activity, and chlorophyll content, and elevated transcriptional levels of terpenoid biosynthesis-related genes, leading to significant increases in terpenoid metabolites in transgenic leaves. Additionally, alterations in metabolite contents in the pathways of glycolysis, the tricarboxylic acid cycle, oxidative pentose phosphate, the Calvin cycle, oxidative phosphorylation, amino acid metabolism, and phytohormone biosynthesis suggested a potential redirection of carbon flux from primary metabolism to terpenoid biosynthesis and changes in endogenous phytohormone contents, the diterpene biosynthesis pathway, and amino acid metabolism, which may collectively contribute to terpenoid accumulation and phenotypic improvement in transgenic Arabidopsis. Our findings elucidated the multifaceted roles of CbDXS1 in modulating carbon flux and phytohormone biosynthesis for terpenoid production and plant development, offering potential strategies for engineering essential oil accumulation in the leaves of C. burmannii. Full article
Show Figures

Figure 1

34 pages, 17237 KB  
Article
Integrative Analysis of the Transcriptome and Metabolome Reveals the Mechanism of Saline-Alkali Stress Tolerance in Dracocephalum moldavica L.
by Haoze Wang, Jinhua Sheng, Xiongjie Zhang and Jianxun Qi
Agronomy 2026, 16(1), 46; https://doi.org/10.3390/agronomy16010046 - 23 Dec 2025
Viewed by 334
Abstract
Salt–alkali stress is a major abiotic factor limiting plant growth. Dracocephalum moldavica L., an aromatic plant with medicinal and edible value, shows some potential for salt–alkali tolerance, but its response mechanisms remain unclear. In this study, physiological, transcriptomic, and metabolomic approaches were employed [...] Read more.
Salt–alkali stress is a major abiotic factor limiting plant growth. Dracocephalum moldavica L., an aromatic plant with medicinal and edible value, shows some potential for salt–alkali tolerance, but its response mechanisms remain unclear. In this study, physiological, transcriptomic, and metabolomic approaches were employed to compare the responses of D. moldavica seedlings to salt (NaCl/Na2SO4 = 1:1), alkali (NaHCO3/Na2CO3 = 1:1), and mixed saline–alkali stress (NaCl/Na2SO4/NaHCO3/Na2CO3 = 1:1:1:1). The results showed that all stress types increased the MDA content, with osmotic regulators and antioxidant enzymes helping mitigate damage. Alkali stress caused the most severe chlorophyll and photosynthetic damage. Transcriptomic analysis identified 12,838, 11,124, and 11,460 differentially expressed genes (DEGs) under salt, alkali, and mixed saline–alkali stress, respectively. Metabolomic analysis identified 1802, 1937, and 1794 differentially accumulated metabolites (DAMs) under each stress condition. Combined analysis revealed that all stresses activated pathways involved in galactose metabolism, the TCA cycle, pentose–glucuronic acid interconversion, and phenylpropanoid biosynthesis. Salt stress enhanced sucrose hydrolysis and lignification via INV and HCT. Alkali stress promoted the synthesis of 1-O-sinapoyl-β-D-glucose through COMT, improving antioxidant capacity and pH stability. Mixed saline–alkali stress activated genes related to sugar and energy metabolism, leading to the accumulation of xylitol and citric acid. These findings provide insights into D. moldavica’s mechanisms for tolerance, supporting its potential for saline–alkali land use. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 3103 KB  
Article
Multi-Analytical Insight into the Non-Volatile Phytochemical Composition of Coleus aromaticus (Roxb.) Benth.
by Chiara Toniolo, Martina Bortolami, Adriano Patriarca, Daniela De Vita, Fabio Sciubba and Luca Santi
Metabolites 2026, 16(1), 15; https://doi.org/10.3390/metabo16010015 - 23 Dec 2025
Viewed by 235
Abstract
Background/Objectives: Coleus aromaticus (Lamiaceae), also known as Cuban oregano or Indian borage, is a semi-succulent perennial species widely used in traditional medicine for its therapeutic and nutritional properties. While its essential oils and aromatic fraction have been extensively investigated, the characterization of [...] Read more.
Background/Objectives: Coleus aromaticus (Lamiaceae), also known as Cuban oregano or Indian borage, is a semi-succulent perennial species widely used in traditional medicine for its therapeutic and nutritional properties. While its essential oils and aromatic fraction have been extensively investigated, the characterization of its non-volatile metabolites remains limited. The aim of this study was to explore the chemical composition of fresh leaves with a focus on the non-volatile fraction. Methods: Fresh leaves of C. aromaticus were cryogenically treated with liquid nitrogen, ground, and subjected to three different extraction procedures: hydroalcoholic maceration, ethyl acetate maceration, and liquid–liquid partitioning to obtain a dichloromethane organic phase and a hydroalcoholic phase. Extracts and fractions were analyzed by HPTLC and HPLC for metabolic profiling. In addition, the Bligh–Dyer method was applied to separate polar and non-polar metabolites, which were subsequently characterized using NMR spectroscopy. Results: Chromatographic analyses highlighted the occurrence and distribution of organic acids, polyphenols (notably flavonoids), and proteinogenic amino acids. Spectroscopic data confirmed the presence of diverse polar and non-polar metabolites, providing a more detailed chemical fingerprint of C. aromaticus. This integrated approach broadened the phytochemical profile of the species beyond the well-documented essential oils. Conclusions: The results contribute to a better understanding of the non-volatile metabolites of C. aromaticus, offering novel insights into its chemical diversity. These findings highlight the potential of this plant as a valuable source of bioactive compounds, supporting its future application in nutraceutical and pharmaceutical research. Full article
Show Figures

Graphical abstract

27 pages, 865 KB  
Article
Therapeutic Potential of Salvia rosmarinus: Seasonal and Geographical Variation in Phytochemical Composition, Bioactivity, and Synergistic Effects of Rosmarinic Acid with 5-FU
by Mariana Oalđe Pavlović, Milena Milutinović, Ana Alimpić Aradski, Uroš Gašić, Danijela Mišić, Petar D. Marin and Sonja Duletić-Laušević
Plants 2026, 15(1), 1; https://doi.org/10.3390/plants15010001 - 19 Dec 2025
Viewed by 510
Abstract
Salvia rosmarinus Spenn. (rosemary) is a medicinal and aromatic plant of notable pharmacological value. This study evaluated the therapeutic properties of rosemary leaves collected from two Serbian continental (L1, L2) and one Montenegrin Mediterranean (L3) locations, harvested in November (N), March (M), and [...] Read more.
Salvia rosmarinus Spenn. (rosemary) is a medicinal and aromatic plant of notable pharmacological value. This study evaluated the therapeutic properties of rosemary leaves collected from two Serbian continental (L1, L2) and one Montenegrin Mediterranean (L3) locations, harvested in November (N), March (M), and July (J). Extracts prepared with 70% methanol, 70% ethanol, and water were analyzed for chemical composition and biological activity. L3 extracts exhibited the highest polyphenolic content, with L3M methanolic extract showing the greatest total phenolic (134.60 mg GAE/g) and phenolic acid levels (211.96 mg CAE/g), and L3M ethanolic extract the highest flavonoid content (25.54 mg QE/g). LC/MS analysis identified 28 previously unreported compounds in Rosmarinus sp. extracts, revealing hydroxycinnamic acid derivatives and flavonoid O-glycosides as the main constituents in S. rosmarinus. The alcoholic extracts were rich in 1,8-cineole, camphor, borneol, terpinen-4-ol, and verbenone. L3 extracts demonstrated the strongest antioxidant and enzyme-inhibitory activities, often surpassing positive controls. L3J showed pronounced cytotoxicity against HCT-116 colorectal cancer cells (IC50 = 13.08 µg/mL after 24 h incubation), while showing non-cytotoxic effects on normal human keratinocytes (IC50 > 500 µg/mL). Finally, rosmarinic acid alone synergistically enhanced the cytotoxic effect of 5-fluorouracil (combination index < 0.8). This comprehensive study highlights the influence of geography, season, and solvent on phytochemical profile and bioactivity of rosemary extracts, emphasizing the therapeutic potential of distinct rosemary populations. Full article
Show Figures

Figure 1

21 pages, 5061 KB  
Article
Unveiling Acinetobacter endophylla sp. nov.: A Specialist Endophyte from Peganum harmala with Distinct Genomic and Metabolic Traits
by Salma Mouhib, Khadija Ait Si Mhand, Nabil Radouane, Khaoula Errafii, Issam Meftah Kadmiri, Derly Andrade-Molina, Juan Carlos Fernández-Cadena and Mohamed Hijri
Microorganisms 2025, 13(12), 2843; https://doi.org/10.3390/microorganisms13122843 - 15 Dec 2025
Viewed by 618
Abstract
Peganum harmala (L.) Schrad., a perennial medicinal plant thriving in arid Moroccan soils, represents a natural reservoir of unexplored bacterial diversity. To uncover its hidden foliar endosphere microbiota, we isolated and characterized two Acinetobacter strains: a novel endophytic bacterium, AGC35, and another strain, [...] Read more.
Peganum harmala (L.) Schrad., a perennial medicinal plant thriving in arid Moroccan soils, represents a natural reservoir of unexplored bacterial diversity. To uncover its hidden foliar endosphere microbiota, we isolated and characterized two Acinetobacter strains: a novel endophytic bacterium, AGC35, and another strain, AGC59, newly reported from this host. Both are non-halophilic, aerobic, Gram-negative bacteria exhibiting optimal growth at 30–35 °C, pH5, and with 1% NaCl. An integrative genomic, phylogenetic, functional, and phenotypic characterization classified both strains within the genus Acinetobacter (class Gamma-pseudomonadota). However, Average Nucleotide Identity (<96%) and digital DNA-DNA Hybridization (<70%) values distinguished the AGC35 strain as a novel species, for which the name Acinetobacter endophylla sp. nov. is proposed. A comparative genomic and phenotypic analysis with the co-isolated Acinetobacter pittii strain AGC59 revealed extensive genome rearrangements, reflecting distinct evolutionary lineage and ecological strategies. While both genomes share core metabolic pathways, A. endophylla harbors specialized genes for the degradation of plant-derived aromatic compounds (e.g., catechol) but shows reduced capacities in carbohydrate metabolism and osmotic stress tolerance, traits indicative of a metabolic specialist with plant-growth-promotion potential, including phosphorus, potassium, and silicon solubilization and indole-3-acetic acid production. In contrast, A. pittii exhibits a more generalist genome enriched in stress functions. Analysis using the Antibiotics and Secondary Metabolite Analysis Shell revealed multiple biosynthetic gene clusters in both strains, showing ≤26% similarity to known references, suggesting the potential for novel antimicrobial secondary metabolite biosynthesis, including antifungal lipopeptides and thiopeptide antibiotics. Altogether, functional specialization and ecological coherence of these findings support the recognition of A. endophylla sp. nov. as a genomically and functionally distinct species, highlighting niche partitioning and adaptive metabolism within the P. harmala holobiont. These results underscore the plant’s value as a reservoir of untapped microbial diversity with significant ecological and biotechnological relevance. Finally, future work will focus on elucidating the novel metabolites encoded by the biosynthetic gene clusters in both isolates and exploring their applications in crop-improvement strategies and natural-product discovery. Full article
Show Figures

Figure 1

31 pages, 4987 KB  
Article
First EST-SSRs of Helichrysum italicum (Roth) G. Don (Asteraceae) Revealed Insights into the Genetic Diversity and Population Structure in Corsica
by Petra Gabrovšek, Matjaž Hladnik, Dunja Bandelj, Zala Jenko Pražnikar, Saša Kenig, Félix Tomi, Marc Gibernau, Slavko Brana and Alenka Baruca Arbeiter
Plants 2025, 14(24), 3794; https://doi.org/10.3390/plants14243794 - 12 Dec 2025
Viewed by 613
Abstract
Helichrysum italicum (Roth) G. Don (Asteraceae) is a valuable medicinal and aromatic plant native to a variety of habitats across the Mediterranean region. However, genetic studies of this morphologically diverse species have been limited by the scarcity of species-specific DNA markers. To address [...] Read more.
Helichrysum italicum (Roth) G. Don (Asteraceae) is a valuable medicinal and aromatic plant native to a variety of habitats across the Mediterranean region. However, genetic studies of this morphologically diverse species have been limited by the scarcity of species-specific DNA markers. To address this limitation, we generated the first de novo transcriptome assembly comprising 24,806 transcripts from young shoots containing leaves and flowers, developed EST-SSR markers, and evaluated their utility in population genetic analysis. Seventy-eight primer pairs were designed, of which 23 showed successful amplification, polymorphism, and transferability to Helichrysum litoreum Guss. and Helichrysum arenarium (L.) Moench. A subset of 12 EST-SSRs was used to genotype 270 individuals from 12 natural populations of H. italicum in Corsica (France), along with one outgroup population from Croatia. The polymorphic information content ranged from 0.250 to 0.796, and Shannon’s information index ranged from 0.588 to 1.843, indicating the markers’ suitability for population genetic studies. Analysis of molecular variance revealed that 15% of the total genetic variation was attributable to differences among populations. Discriminant analysis of principal components and Bayesian clustering in STRUCTURE identified distinct population clusters corresponding to geographic locations. Notably, the southernmost coastal populations were clearly differentiated from the others. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 1467 KB  
Article
In Vitro Antifungal Effect of Selected Essential Oils Against Clinical Isolates Causing Fungal Keratitis: A Preliminary Pharmacological Evaluation
by Elijah Akegbe, Nuno Mesquita, Célia Cabral, Emília Pereira, Luís Fernandes, Anália do Carmo, Rui Tomé, Dolores Pinheiro, João Pinheiro-Costa, Andreia M. Rosa and Elisa J. Campos
Future Pharmacol. 2025, 5(4), 73; https://doi.org/10.3390/futurepharmacol5040073 - 12 Dec 2025
Viewed by 421
Abstract
Background/Objectives: Fungal keratitis (FK) is a current challenge in ophthalmology due to its association with severe visual impairment and the limitations of current antifungal therapies. We aim to evaluate the antifungal activity of essential oils (EOs) from the aromatic and medicinal plants Cymbopogon [...] Read more.
Background/Objectives: Fungal keratitis (FK) is a current challenge in ophthalmology due to its association with severe visual impairment and the limitations of current antifungal therapies. We aim to evaluate the antifungal activity of essential oils (EOs) from the aromatic and medicinal plants Cymbopogon citratus and Lavandula pedunculata against selected FK pathogens collected from FK patients in two Portuguese hospitals. Methods: The antifungal activity of the EOs was tested at concentrations of 25%, 50%, 75%, and 100% for up to 7 days using the solid-phase disk diffusion in vitro assay. Results: Candida albicans was the most prevalent pathogen (28.6%), followed by Candida parapsilosis (21.4%) and Dicyma olivacea (14.2%). The other identified species were Aspergillus fumigatus and Scedosporium boydii (7.1%). Clinical diagnostic methodologies showed agreement with the molecular identification. Cymbopogon citratus EO showed higher antifungal activity than Lavandula pedunculata EO. The highest antifungal activity was observed against Aspergillus fumigatus and Scedosporium boydii (inhibition zone diameter, IZD = 90.0 mm) after 7 (Cymbopogon citratus EO) or 3 days of incubation (Lavandula pedunculata EO). While the antifungal activity of Cymbopogon citratus EO was maintained during the study (for Aspergillus fumigatus, Candida albicans, and Scedosporium boydii), the antifungal activity of Lavandula pedunculata EO decreased with time. Conclusions: Cymbopogon citratus EO and Lavandula pedunculata EO showed optimal antifungal activity against molds (Aspergillus fumigatus and Scedosporium boydii) after 3 days of incubation. Against yeasts (Candida albicans and Candida parapsilosis), the EOs showed lower activity. Our study sheds light on the development of new pharmacological strategies for FK based on EOs extracted from aromatic and medicinal plants. Full article
Show Figures

Graphical abstract

Back to TopTop