Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (700)

Search Parameters:
Keywords = aromatic alcohol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3747 KiB  
Article
Biocontrol Activity of Volatile Organic Compounds Emitted from Bacillus paralicheniformis 2-12 Against Fusarium oxysporum Associated with Astragalus membranaceus Root Rot
by Yan Wang, Jiaqi Yuan, Rui Zhao, Shengnan Yuan, Yaxin Su, Wenhui Jiao, Xinyu Huo, Meiqin Wang, Weixin Fan and Chunwei Wang
Microorganisms 2025, 13(8), 1782; https://doi.org/10.3390/microorganisms13081782 - 31 Jul 2025
Viewed by 192
Abstract
Root rot, mainly caused by Fusarium oxysporum, is one of the most destructive diseases and leads to significant economic loss of Astragalus membranaceus. To develop an effective strategy for the management of this serious disease, a bacterial strain 2-12 was screened [...] Read more.
Root rot, mainly caused by Fusarium oxysporum, is one of the most destructive diseases and leads to significant economic loss of Astragalus membranaceus. To develop an effective strategy for the management of this serious disease, a bacterial strain 2-12 was screened from A. membranaceus rhizosphere soil and identified as Bacillus paralicheniformis based on the phylogenetic analyses of gyrase subunit B gene (gyrB) and RNA polymerase gene (rpoB) sequences. Interestingly, the volatile organic compounds (VOCs) produced by B. paralicheniformis 2-12 exhibited potent antifungal activities against F. oxysporum, as well as fifteen other plant pathogens. Under scanning electron microscopy observation, hyphae treated with the VOCs exhibited abnormal variation such as distortion, twist, and vesiculation, leading to distinctive protoplasm shrinkage. After treatment with B. paralicheniformis 2-12 VOCs, the lesion diameter and disease incidence both reduced significantly compared to control (p < 0.05), thus demonstrating prominent biological efficiency. Moreover, B. paralicheniformis 2-12 VOCs were composed of 17 VOCs, including 9 alkanes, 3 alcohols, 3 acids and esters, 1 aromatic compound, and 1 alkyne compound. A total of 1945 DEGs, including 1001 up-regulated and 944 down-regulated genes, were screened via transcriptome analysis. These DEGs were mainly associated with membranes and membrane parts, amino acid metabolism, and lipid metabolism. The findings in this work strongly suggested that B. paralicheniformis 2-12 VOCs could be applied as a new candidate for the control of A. membranaceus root rot. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

25 pages, 4958 KiB  
Article
Comparative Analysis of Bioactive Compounds and Flavor Characteristics in Red Fermentation of Waxy and Non-Waxy Millet Varieties
by Zehui Yang, Jie Liu, Xiaopeng Li, Changyu Zhang, Pengliang Li, Yawei Zhu, Jingke Liu and Bin Liu
Foods 2025, 14(15), 2692; https://doi.org/10.3390/foods14152692 - 30 Jul 2025
Viewed by 87
Abstract
(1) Background: This study investigated changes in bioactive components and volatile compounds (VCs) during the production of red millet by comparing two varieties: Miao Xiang glutinous millet (waxy) and Jigu-42 (non-waxy). The samples were solid-state-fermented with “Red Ferment” and evaluated for [...] Read more.
(1) Background: This study investigated changes in bioactive components and volatile compounds (VCs) during the production of red millet by comparing two varieties: Miao Xiang glutinous millet (waxy) and Jigu-42 (non-waxy). The samples were solid-state-fermented with “Red Ferment” and evaluated for bioactive components. (2) Methods: Multiple analytical methods—including principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-DA), cluster analysis, and correlation analysis—were employed to systematically compare bioactive components and VCs. (3) Results: Significant varietal differences were observed: (1) Miao Xiang glutinous millet showed higher monacolin K (MK) and fatty acid contents; (2) Jigu-42 contained significantly more polyphenols; (3) linoleic acid dominated the fatty acid profiles of two varieties; and (4) a total of twenty-seven VCs were identified, including six alcohols, four aldehydes, seven ketones (corrected from duplicated count), two aromatic hydrocarbons, three heterocycles, one acid, three furans, and one ether. (4) Conclusions: The two varieties exhibited significant differences in MK, pigment profiles, fatty acid composition, polyphenol content, and volatile-compound profiles. These findings provide scientific guidance for the selection of the appropriate millet varieties in functional food production. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

20 pages, 2100 KiB  
Article
Enantioseparation of Proton Pump Inhibitors by HPLC on Polysaccharide-Type Stationary Phases: Enantiomer Elution Order Reversal, Thermodynamic Characterization, and Hysteretic Effect
by Máté Dobó, Gergely Molnár, Ali Mhammad, Gergely Dombi, Arash Mirzahosseini, Zoltán-István Szabó and Gergő Tóth
Int. J. Mol. Sci. 2025, 26(15), 7217; https://doi.org/10.3390/ijms26157217 - 25 Jul 2025
Viewed by 149
Abstract
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 [...] Read more.
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 and -4). Different alcohols, such as methanol, ethanol, 1-propanol, 2-propanol, and their combinations, were used as eluents. After method optimization, semi-preparative enantioseparation was successfully applied for the three proton pump inhibitors to collect the individual enantiomers. A detailed investigation was conducted into elution order reversal, thermodynamic parameters, the effect of eluent mixtures, and the hysteresis of retention time and selectivity. Using Chiralpak AS, containing the amylose tris[(S)-α-methylbenzylcarbamate] chiral selector, the separation of the investigated enantiomers was achieved in all four neat eluents, with methanol providing the best results. In many cases, a reversal of the enantiomer elution order was observed. In addition to chiral-selector-dependent reversal, eluent-dependent reversal was also observed. Notably, even replacing methanol with ethanol altered the enantiomer elution order. Both enthalpy- and entropy-controlled enantioseparation were also observed in several cases; however, temperature-dependent elution order reversal was not. The hysteresis of retention and selectivity was further investigated on amylose-type columns in methanol–2-propanol and methanol–ethanol eluent mixtures. The phenomenon was observed on all amylose columns regardless of the eluent mixtures employed. Hystereticity ratios were calculated and used to compare the hysteresis behaviors of different systems. Multivariate statistical analysis revealed that Chiralpak AS exhibited the most distinct enantioselective behavior among the tested columns, likely due to the absence of a direct connection between the carbamate moiety and the aromatic substituent. The present study aided in understanding the mechanisms leading to enantiomer recognition, which is crucial for developing new chiral stationary phases and chiral HPLC method development in general. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 1565 KiB  
Article
Volatile Compounds Profiling of Fresh R. alba L. Blossom by Headspace—Solid Phase Microextraction and Gas Chromatography
by Daniela Antonova-Nedeltcheva, Ana Dobreva, Kamelia Gechovska and Liudmil Antonov
Molecules 2025, 30(15), 3102; https://doi.org/10.3390/molecules30153102 - 24 Jul 2025
Viewed by 244
Abstract
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for [...] Read more.
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for new aromatic alternatives. Therefore, the purpose of the current research is to evaluate the volatile compounds profile of fresh R. alba L. flowers using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS). More than 75 individual compounds were identified and quantified using HS-SPME-GC/MS. The study revealed that the aroma-bearing fraction of rose volatiles consists mainly of monoterpene alcohols; 2-phenylethanol was the most abundant component (8.4–33.9%), followed by geraniol (12.8–32.5%) and citronellol + nerol (17.7–26.5%). Linalool, α-pinene, β-myrcene, and rose oxides were also observed in low concentrations. The stearopten fraction in the HS phase was observed in low concentration, with main representatives nonadecane + nonadecene, heptadecane, heneicosane, and tricosane. The HS-GC profile of the R. alba fresh flowers shows distinct differences in relative abundance of the components between the two studied clones of the population, as well as between volatiles in petals and in the whole blossom. The absence of some undesirable components, such as allergenic and potentially carcinogenic methyl eugenol in fresh R. alba blossom, makes white oil-bearing rose a promising alternative to R. damascena in perfumery, natural cosmetics, and aromatherapy. Full article
Show Figures

Figure 1

14 pages, 2041 KiB  
Article
Carbohydrate-Based Chiral Ligands for the Enantioselective Addition of Diethylzinc to Aldehydes
by F. Javier López-Delgado, Daniele Lo Re, F. Franco and J. A. Tamayo
Pharmaceuticals 2025, 18(8), 1088; https://doi.org/10.3390/ph18081088 - 23 Jul 2025
Viewed by 377
Abstract
Background: Carbohydrate-derived chiral ligands are promising tools in asymmetric catalysis due to their structural diversity, chirality, and availability. However, ligands based on galactose or sorbose have been scarcely explored in the enantioselective addition of dialkylzinc reagents to aldehydes. Methods: A series [...] Read more.
Background: Carbohydrate-derived chiral ligands are promising tools in asymmetric catalysis due to their structural diversity, chirality, and availability. However, ligands based on galactose or sorbose have been scarcely explored in the enantioselective addition of dialkylzinc reagents to aldehydes. Methods: A series of chiral diols and β-amino alcohols was synthesized from methyl D-glucopyranoside, methyl D-galactopyranoside, and D-fructose. These ligands were tested in the titanium tetraisopropoxide-promoted enantioselective addition of diethylzinc to aromatic and aliphatic aldehydes. Results: Several ligands, particularly those with a D-fructopyranose backbone, exhibited excellent catalytic activity, with conversion rates up to 100% and enantioselectivities up to 96% ee. Notably, this study reports for the first time the use of β-amino alcohols derived from fructose and sorbose in this transformation. Conclusions: Carbohydrate-based ligands represent effective, inexpensive, and structurally versatile scaffolds for developing highly enantioselective catalysts, expanding the utility of sugars in asymmetric organometallic reactions. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

22 pages, 3522 KiB  
Article
Seasonal Variation in Volatile Profiles of Lemon Catnip (Nepeta cataria var. citriodora) Essential Oil and Hydrolate
by Milica Aćimović, Biljana Lončar, Milica Rat, Mirjana Cvetković, Jovana Stanković Jeremić, Milada Pezo and Lato Pezo
Horticulturae 2025, 11(7), 862; https://doi.org/10.3390/horticulturae11070862 - 21 Jul 2025
Viewed by 352
Abstract
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks [...] Read more.
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks nepetalactones and is rich in terpene alcohols, such as nerol and geraniol, making it a promising substitute for lemon balm. Despite its diverse applications, little attention has been paid to the valorization of byproducts from essential oil distillation, such as hydrolates and their secondary recovery oils. This study aimed to thoroughly analyze the volatile compound profiles of the essential oil from Lemon catnip and the recovery oil derived from its hydrolate over three consecutive growing seasons, with particular emphasis on how temperature and precipitation influence the major volatile constituents. The essential oil was obtained via semi-industrial steam distillation, producing hydrolate as a byproduct, which was then further processed using a Likens–Nickerson apparatus to extract the recovery oil, also known as secondary oil. Both essential and recovery oils were predominantly composed of terpene alcohols, with nerol (47.5–52.3% in essential oils; 43.5–54.3% in recovery oils) and geraniol (25.2–27.9% in essential oils; 29.4–32.6% in recovery oils) as the primary components. While sesquiterpene hydrocarbons were mostly confined to the essential oil, the recovery oil was distinguished by a higher presence of monooxygenated and more hydrophilic terpenes. Over the three-year period, elevated temperatures led to increased levels of geraniol, geranial, neral, and citronellal in both oils, whereas cooler conditions favored the accumulation of nerol and linalool, especially in the recovery oils. Higher precipitation was associated with elevated concentrations of nerol and linalool but decreased levels of geraniol, geranial, and neral, possibly due to dilution or degradation processes. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

14 pages, 1175 KiB  
Article
Recovery of Natural Pyrazines and Alcohols from Fusel Oils Using an Innovative Extraction Installation
by Waldemar Studziński, Michał Podczarski, Justyna Piechota, Marzena Buziak, Myroslava Yakovenko and Yurii Khokha
Molecules 2025, 30(14), 3028; https://doi.org/10.3390/molecules30143028 - 18 Jul 2025
Viewed by 268
Abstract
The production of spirits generates significant amounts of waste in the form of fusel oils-previously treated mainly as an environmental problem. This paper presents an innovative installation designed to recover valuable components from this difficult waste. The key achievement is the effective separation [...] Read more.
The production of spirits generates significant amounts of waste in the form of fusel oils-previously treated mainly as an environmental problem. This paper presents an innovative installation designed to recover valuable components from this difficult waste. The key achievement is the effective separation and recovery of pyrazine derivatives-natural aromatic compounds with high utility value in the food, cosmetics and pharmaceutical industries. The designed system allows for the recovery of as much as 98% of pyrazines and isoamyl alcohol and isobutanol fractions with a purity above 96%, which is a significant advance compared to previous disposal methods. The installation was designed to be consistent with the idea of a circular economy, maximizing the use of by-products and minimizing losses. The results of the work indicate that fusel oils, previously perceived as waste, can become a source of valuable secondary raw materials, and the presented solution opens up new possibilities for the sustainable development of the alcohol industry. Full article
Show Figures

Figure 1

15 pages, 1339 KiB  
Article
Synthesis of Cannabigerol and Cannabigerol Derivatives
by Juan F. Ortuño, Alessio Ghisolfi, Raquel Almansa, Olga Soares do Rego Barros, Ana Sirvent, José M. Sansano and Francisco Foubelo
Organics 2025, 6(3), 31; https://doi.org/10.3390/org6030031 - 16 Jul 2025
Viewed by 232
Abstract
The synthesis of cannabigerol—a cannabinoid with significant pharmaceutical potential—is described. The synthesis involves four stages. In the first step, (E)-non-3-en-2-one reacts with dimethyl malonate to yield a cyclic enone, which is subsequently oxidized with bromine to produce the olivetol ester. This ester then [...] Read more.
The synthesis of cannabigerol—a cannabinoid with significant pharmaceutical potential—is described. The synthesis involves four stages. In the first step, (E)-non-3-en-2-one reacts with dimethyl malonate to yield a cyclic enone, which is subsequently oxidized with bromine to produce the olivetol ester. This ester then undergoes an alumina-catalyzed coupling reaction with geraniol, followed by ester hydrolysis to obtain cannabigerol. By modifying the chain length of the enone in the initial step and employing allylic alcohols other than geraniol, a range of cannabigerol derivatives can be synthesized, including the natural product cannabigerovarin. Full article
Show Figures

Figure 1

16 pages, 2511 KiB  
Article
Screening of High-Yield 2-Phenylethanol Producing Strain from Wild-Type Saccharomyces cerevisiae and Optimization of Fermentation Parameters
by Chenshuo Zhang, Tingwen Fan, Zhichun Wang, Jiamu Yu, Xiaoming Guo, Wei Jiang, Lili Miao and Huaiyi Yang
Foods 2025, 14(14), 2444; https://doi.org/10.3390/foods14142444 - 11 Jul 2025
Viewed by 339
Abstract
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium [...] Read more.
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium components (carbon and nitrogen sources) were optimized through single-factor experiments in shaking flasks, and fermentation medium with 40 g/L glucose, 5 g/L malt extract, 1.75 g/L corn steep liquor, 2.5 g/L yeast extract, 5 g/L malt extract, 1.75 g/L corn steep liquor was considered suitable for 2-PE production. RT-qPCR results indicated that corn steep liquor activates expression of genes related to the shikimate pathway and Ehrlich pathway (pha2, aro4, aro8, and aro9), thereby promoting the synthesis of 2-PE through these pathways. Excess yeast extract inhibited the expression of aro8 and aro9, while enhancing the expression of tdh3 and adh2, thus promoting the de novo synthesis of 2-PE. Furthermore, fermentation in a 5 L bioreactor was applied to investigate the effects of feeding strategies, inoculum proportion, and pH on 2-PE production. With a pH of 5.5 and10% inoculum proportion, the supplementation of the substrate L-Phe led to a 2-PE production of 4.81 g/L after 24 h of fermentation. Finally, in situ product recovery (ISPR) techniques was applied to alleviate 2-PE cytotoxicity, achieving a production of 6.41 g/L. This process offers a promising strategy for producing 2-PE efficiently and naturally, paving the way for further industrial applications in food, pharmaceutical, and cosmetic sectors. Full article
Show Figures

Figure 1

25 pages, 3228 KiB  
Article
Bio-Agronomic Assessment and Quality Evaluation of Sugarcane with Optimized Juice Fermentation in View of Producing Sicilian “Rum Agricole”
by Antonino Pirrone, Nicolò Iacuzzi, Antonio Alfonzo, Morgana Monte, Vincenzo Naselli, Federica Alaimo, Noemi Tortorici, Gabriele Busetta, Giuliana Garofalo, Raimondo Gaglio, Claudio De Pasquale, Nicola Francesca, Luca Settanni, Teresa Tuttolomondo and Giancarlo Moschetti
Appl. Sci. 2025, 15(14), 7696; https://doi.org/10.3390/app15147696 - 9 Jul 2025
Viewed by 354
Abstract
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process [...] Read more.
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process to produce rum agricole, a spirit derived from fresh cane juice. Agronomic evaluations revealed significant varietal differences, with juice yields of 5850−14,312 L ha−1 and sugar yields of 1.84–5.33 t ha−1. Microbial control was achieved through the addition of lactic acid, which effectively suppressed undesirable bacterial growth and improved fermentation quality. Furthermore, the application of two selected Saccharomyces cerevisiae strains (MN113 and SPF21), isolated from high-sugar matrices such as manna and honey byproducts, affected the production of volatile compounds, particularly esters and higher alcohols. Sensory analysis confirmed a more complex aromatic profile in cane wines fermented with these selected yeasts, with overall acceptance scores reaching 7.5. Up to 29 aroma-active compounds were identified, including ethyl esters and higher alcohols. This research represents the first integrated approach combining lactic acid treatment and novel yeast strains for the fermentation of sugarcane juice in a Mediterranean context. The findings highlight the potential for high-quality rum agricole production in Sicily. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

19 pages, 3857 KiB  
Article
Regulatory Mechanisms of Medium-Term Crop Rotation on Soil Organic Carbon Storage in Red Soils at the Aggregate Level
by Xiaomei Gou, Xiangning Wang, Xuemei Wang, Yan Cai, Bing Li, Yi Zhang and Lihong Han
Agriculture 2025, 15(14), 1460; https://doi.org/10.3390/agriculture15141460 - 8 Jul 2025
Viewed by 232
Abstract
Soil organic carbon (OC) storage in crop rotation systems benefits soil productivity and global climate change. However, the regulatory mechanisms and pathways by which soil OC storage is affected under medium-term crop rotation at the aggregate level are not fully understood. Herein, fifteen [...] Read more.
Soil organic carbon (OC) storage in crop rotation systems benefits soil productivity and global climate change. However, the regulatory mechanisms and pathways by which soil OC storage is affected under medium-term crop rotation at the aggregate level are not fully understood. Herein, fifteen soil samples from five cropping systems (abandoned farmland, continuous cropping of tobacco, tobacco–pea rotation, continuous cropping of dasheen, and dasheen–ryegrass rotation for over 10 years) were collected from soil at 0 to 20 cm depths in Miyi County, Sichuan Province, China. The soil aggregates and aggregate-associated OC, enzyme activities, and microbial biomass were evaluated. The effects of medium-term crop rotation on soil aggregate-associated OC content and biochemical properties varied between crop types. Specifically, tobacco–pea rotation significantly decreased the proportion of macro-aggregates (0.25–2 mm); the contents of OC, Ca-OC, aliphatic C, alcohols, and phenols; enzyme activities; and fungal biomass in the aggregate fractions, compared with those associated with the continuous cropping of tobacco. In contrast, dasheen–ryegrass rotation significantly increased the recalcitrant OC content, β-glucosidase and polyphenol oxidase activities, microbial biomass in mega-aggregates (>2 mm) and macro-aggregates, and the recalcitrant OC content and enzyme activity in microaggregates (0.053–0.25 mm) and slit clay (<0.053 mm), relative to those in the continuous cropping of dasheen. Moreover, for the continuous-cropping soils, the OC contents were positively correlated with POD activity but negatively correlated with other enzymes. For the rotational soils, the OC content was positively related to the Fe/Al-OC, aromatic-C, aliphatic-C, and microbial biomass contents but negatively related to the carbohydrate content. The increased OC content was driven by the microbial biomass in the aggregate fractions, and medium-term crop rotation changed the negative effect of microorganisms on the OC content into a positive effect at the aggregate level. Overall, medium-term crop rotation enhances OC storage by improving soil structural stability and microbial community dynamics. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 6422 KiB  
Article
Sugarcane Bagasse Fast Pyrolysis: Pilot Plant Challenges
by Sophya de Andrade Dias, Nahieh Toscano Miranda, Rubens Maciel Filho, Leandro Alcoforado Sphaier and York Castillo Santiago
Processes 2025, 13(7), 2116; https://doi.org/10.3390/pr13072116 - 3 Jul 2025
Viewed by 942
Abstract
The world’s energy demand increases daily, fostering the search for renewable fuels to reconcile production needs with environmental sustainability. To prevent the severe atmospheric impact of fossil fuels, reducing greenhouse gas emissions is both essential and urgent, reinforcing the necessity of developing and [...] Read more.
The world’s energy demand increases daily, fostering the search for renewable fuels to reconcile production needs with environmental sustainability. To prevent the severe atmospheric impact of fossil fuels, reducing greenhouse gas emissions is both essential and urgent, reinforcing the necessity of developing and adopting renewable fuel alternatives. Therefore, this work aimed to produce bio-oil through sugarcane bagasse fast pyrolysis. The methodology is based on fast pyrolysis operation in a fluidized bed reactor (pilot plant) as a thermochemical method for bio-oil production. This research required the conditioning of the raw material for system feeding, along with optimizing key variables, operating temperature, airflow, and sugarcane bagasse feed rate, to achieve improved yields compared to previous studies conducted in this pilot plant. The sugarcane bagasse was conditioned through drying and milling, followed by characterization using various analytical methods, including calorific value, thermogravimetric analysis (TGA), particle size analysis by laser diffraction (Mastersizer—MS), and ultimate analysis (determining carbon, hydrogen, nitrogen, sulfur, and oxygen by difference). The bio-oil produced showed promising yield results, with a maximum estimated value of 61.64%. Fourier Transform Infrared Spectroscopy (FT-IR) analysis confirmed the presence of aromatic compounds, as well as ester, ether, carboxylic acid, ketone, and alcohol functional groups. Full article
(This article belongs to the Special Issue Advances in Gasification and Pyrolysis of Wastes)
Show Figures

Figure 1

26 pages, 1506 KiB  
Article
Exploring the Functional Properties of Leaves of Moringa oleifera Lam. Cultivated in Sicily Using Precision Agriculture Technologies for Potential Use as a Food Ingredient
by Carlo Greco, Graziella Serio, Enrico Viola, Marcella Barbera, Michele Massimo Mammano, Santo Orlando, Elena Franciosi, Salvatore Ciulla, Antonio Alfonzo, Rosario Schicchi, Daniela Piazzese, Carla Gentile, Luca Settanni, Giuseppe Mannino and Raimondo Gaglio
Antioxidants 2025, 14(7), 799; https://doi.org/10.3390/antiox14070799 - 27 Jun 2025
Viewed by 415
Abstract
This study aimed to evaluate the microbiological quality and functional properties of Moringa oleifera Lam. leaves from plants cultivated in Sicily, with the objective of exploring their potential use in functional food production. Precision agriculture techniques, including unmanned aerial vehicle-based multispectral remote sensing, [...] Read more.
This study aimed to evaluate the microbiological quality and functional properties of Moringa oleifera Lam. leaves from plants cultivated in Sicily, with the objective of exploring their potential use in functional food production. Precision agriculture techniques, including unmanned aerial vehicle-based multispectral remote sensing, were used to determine the optimal harvesting time for M. oleifera. After harvesting, leaves were dried using a smart solar dryer system based on a wireless sensor network and milled with a laboratory centrifugal mill to produce powdered M. oleifera leaves (PMOLs). Plate counts showed no colonies of undesired microorganisms in PMOLs. The MiSeq Illumina analysis revealed that the class Alphaproteobacteria was dominant (83.20% of Relative Abundance) among bacterial groups found in PMOLs. The hydroalcoholic extract from PMOLs exhibited strong redox-active properties in solution assays and provided antioxidant protection in a cell-based lipid peroxidation model (CAA50: 5.42 μg/mL). Additionally, it showed antiproliferative activity against three human tumour epithelial cell lines (HepG2, Caco-2, and MCF-7), with GI50 values ranging from 121.03 to 237.75 μg/mL. The aromatic profile of PMOLs includes seven phytochemical groups: alcohols, aldehydes, ketones, esters, acids, terpenes, and hydrocarbons. The most representative compounds were terpenes (27.5%), ketones (25.3%), and alcohols (14.5%). Results suggest that PMOLs can serve as a natural additive for functional foods. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

15 pages, 4388 KiB  
Article
Metabolomic Insights into Volatile Profiles and Flavor Enhancement of Spice-Smoked Chicken Wings
by Yajiao Zhao, Ye Guo, Danni Zhang, Quanlong Zhou, Xiaoxiao Feng and Yuan Liu
Foods 2025, 14(13), 2270; https://doi.org/10.3390/foods14132270 - 26 Jun 2025
Viewed by 383
Abstract
Traditional smoking techniques, while historically valued for preservation and flavor enhancement, face limitations in aromatic diversity and safety, prompting exploration of spice-derived alternatives to meet modern culinary demands. This study explores the volatile compound profiles and aroma modulation of chicken wings smoked with [...] Read more.
Traditional smoking techniques, while historically valued for preservation and flavor enhancement, face limitations in aromatic diversity and safety, prompting exploration of spice-derived alternatives to meet modern culinary demands. This study explores the volatile compound profiles and aroma modulation of chicken wings smoked with four spices—cardamom, rosemary, mint, and rose—using a novel, household-friendly smoking protocol. The method combines air fryer pre-cooking (180 °C, 16 min) with electric griddle-based smoke infusion, followed by HS-SPME/GC-TOF/MS, relative odor activity value (ROAV) calculations, and metabolomic analysis. A total of 314 volatile compounds were identified across five samples. Among them, 45 compounds demonstrated odor activity values (ROAV) ≥ 1, contributing to green, woody, floral, and sweet aroma attributes. Eucalyptol displayed the highest ROAV (2543), underscoring its dominant sensory impact. Metabolomic profiling revealed a general upregulation of differential volatiles post-smoking: terpenes were enriched in wings smoked with cardamom, rosemary, and mint, while aldehydes and alcohols predominated in rose-smoked samples. An integrated screening based on ROAV and metabolomic data identified 24 key volatiles, including eucalyptol, β-myrcene, methanethiol, and α-pinene, which collectively defined the aroma signatures of spice-smoked wings. Spice-specific aroma enrichment and sensory properties were evident: rosemary intensified woody–spicy notes, mint enhanced herbal freshness, and rose amplified floral attributes. The proposed method demonstrated advantages in safety, ease of use, and flavor customization, aligning with clean-label trends and supporting innovation in home-based culinary practices. Moreover, it facilitates the tailored modulation of smoked meat flavor profiles, thereby enhancing product differentiation and broadening consumer acceptance. Full article
(This article belongs to the Special Issue Foodomics Fifteen Years On From. Where Are We Now, What’s Next)
Show Figures

Graphical abstract

13 pages, 1211 KiB  
Article
Collection, Evaluation, and New Cultivar Breeding of Actinidia chinensis var. chinensis in Wudang Mountains, China
by Tao Xiao, Tianjiao Jia, Wei Wu, Jiaqing Peng, Liang Pan, Xianbo Zhu, Tao Liu, Junhuan Cheng, Hualing Wang, Lili Xiao, Hailei Huang, Guangming Hu and Shuaiyu Zou
Horticulturae 2025, 11(7), 739; https://doi.org/10.3390/horticulturae11070739 - 26 Jun 2025
Viewed by 398
Abstract
To develop new kiwifruit cultivars (Actinidia chinensis var. chinensis) with desirable traits, we conducted wild resource surveys in the Wudang Mountains region of China. Seven promising accessions were identified through preliminary screening, exhibiting fruit weights ranging from 50.46 g to 75.06 [...] Read more.
To develop new kiwifruit cultivars (Actinidia chinensis var. chinensis) with desirable traits, we conducted wild resource surveys in the Wudang Mountains region of China. Seven promising accessions were identified through preliminary screening, exhibiting fruit weights ranging from 50.46 g to 75.06 g and a soluble solids content (SSC) between 14.33% and 16.32%. The accession ‘WD-03-1’ stood out by meeting the dual selection criteria of fruit weight exceeding 70 g and a SSC above 15%. After a decade-long evaluation, this elite genotype was officially certified as a superior cultivar by the Hubei Provincial Variety Committee for Forestry in 2016, receiving the registered name ‘Wudang 1’. Distinguished as a rare green-fleshed variety in the A. chinensis var. chinensis, ‘Wudang 1’ produces uniform elliptical fruits (shape index of 1.34) with an average weight of 83.22 g. Its flesh combines sweet and tart flavors with exceptional nutritional parameters: 16.33% SSC, 15.28% dry matter, 12.10% soluble sugars, 1.24% titratable acidity, 132.10 mg/100 g vitamin C, and 7.77 mg/g amino acids. Comparative analysis with established cultivars ‘Jinnong’ and ‘Cuiyu’ revealed that ‘Wudang 1’ matures earlier and demonstrates superior performance in three key quality metrics (SSC, dry matter, and vitamin C). Further analysis of aromatic profiles during the prime consumption stage identified 41 volatile compounds, predominantly comprising aldehydes, esters, alcohols, and ketones, which collectively contribute to its distinctive fragrance. Full article
(This article belongs to the Special Issue New Insights into Breeding and Genetic Improvement of Fruit Crops)
Show Figures

Figure 1

Back to TopTop