Metabolomic Insights into Volatile Profiles and Flavor Enhancement of Spice-Smoked Chicken Wings
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Chemicals
2.2. Processing of Four Spice-Smoked Chicken Wings
2.3. HS-SPME/GC-TOF/MS Analysis
2.4. Qualitative and Quantitative Analysis of Volatile Compounds
2.5. Calculation of Relative Odor Activity Value (ROAV)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Volatile Profiles of Chicken Wings Before and After Smoking with 4 Spices
3.2. Difference Analysis of Volatile Compounds in Four Spice-Smoked Chicken Wings
3.3. Metabolomic Analysis of Differential Volatiles
3.4. ROAV Analysis of Volatiles in Four Spice-Smoked Chicken Wings
3.5. Analysis of Key Aroma Profile of Smoked Chicken Wings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tongo, I.; Ogbeide, O.; Ezemonye, L. Human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in smoked fish species from markets in Southern Nigeria. Toxicol. Rep. 2017, 4, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Chen, Y.; Omedi, J.O.; Zeng, M.; Xiao, C.; Zhou, Y.; Chen, J. Effects of volatile organic compounds of smoke from different woods on the heterocyclic amine formation and quality changes in pork patty. Food Res. Int. 2023, 173, 113262. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.; Xi, L.; Li, Y.; Yang, H.; Chen, X.; Jin, W.; Yan, F. Characterizing the composition of volatile compounds in different types of Chinese bacon using GC–MS, E-nose, and GC–IMS. J. Chromatogr. A 2024, 1730, 465056. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, J.; Zhang, N.; Wang, S.; Sun, B. Effects of cooking methods on aroma formation in pork: A comprehensive review. Food Chem. X 2023, 20, 100884. [Google Scholar] [CrossRef]
- Sikorski, Z.E. Smoked Foods: Principles and Production. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 1–5. [Google Scholar]
- Fu, W.; Kerr, W.L. Characterization of pecan shells and their effect on the physical properties and acceptability of smoked chicken breast. J. Food Sci. 2020, 85, 3020–3025. [Google Scholar] [CrossRef]
- Ekelemu, J.K.; Nwabueze, A.A.; Irabor, A.E.; Otuye, N.J. Spicing: A means of improving organoleptic quality and shelf life of smoked catfish. Sci. Afr. 2021, 13, e00930. [Google Scholar] [CrossRef]
- Yin, X.; Chen, Q.; Liu, Q.; Wang, Y.; Kong, B. Influences of Smoking in Traditional and Industrial Conditions on Flavour Profile of Harbin Red Sausages by Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry. Foods 2021, 10, 1180. [Google Scholar] [CrossRef]
- Yao, W.; Cai, Y.; Liu, D.; Zhao, Z.; Zhang, Z.; Ma, S.; Zhang, M.; Zhang, H. Comparative analysis of characteristic volatile compounds in Chinese traditional smoked chicken (specialty poultry products) from different regions by headspace–gas chromatography−ion mobility spectrometry. Poult. Sci. 2020, 99, 7192–7201. [Google Scholar] [CrossRef]
- Gao, R.; Shi, H.; Nie, R.; Liu, H.; Wang, Z.; Zhang, D.; Zhang, C. Identification of potential markers, key aroma compounds, and hazardous compounds in different types of smoked meat products. Int. J. Food Sci. Technol. 2024, 59, 2895–2907. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Q.; Liu, Q.; Xia, X.; Wang, Y.; Kong, B. Effect of different types of smoking materials on the flavor, heterocyclic aromatic amines, and sensory property of smoked chicken drumsticks. Food Chem. 2022, 367, 130680. [Google Scholar] [CrossRef]
- Wang, X.; Liu, D.; Du, C.; Ma, S. Characteristics and formation mechanism of key volatile compounds in sugar-smoked chicken. J. Food Sci. Technol. 2022, 59, 768–783. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, S.A.; Prabha, R.; Singh, D.P.; Farag, M.A. Cardamom seed bioactives: A review of agronomic factors, preparation, extraction and formulation methods based on emerging technologies to maximize spice aroma economic value and applications. Food Chem. 2025, 462, 141009. [Google Scholar] [CrossRef]
- Pizani, R.S.; Vigano, J.; de Souza Mesquita, L.M.; Contieri, L.S.; Sanches, V.L.; Chaves, J.O.; Souza, M.C.; da Silva, L.C.; Rostagno, M.A. Beyond aroma: A review on advanced extraction processes from rosemary (Rosmarinus officinalis) and sage (Salvia officinalis) to produce phenolic acids and diterpenes. Trends Food Sci. Technol. 2022, 127, 245–262. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Zhang, H.; Pang, X. Comparative investigation on aroma profiles of five different mint (Mentha) species using a combined sensory, spectroscopic and chemometric study. Food Chem. 2022, 371, 131104. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Yu, G.; Zhu, G.; Yi, F. Characterization of perceptual interactions among aroma compounds found in Rose damascena and Angelica dahurica root essential oil with threshold, S-curve, σ-τ plot and molecular docking. Food Res. Int. 2025, 200, 115447. [Google Scholar] [CrossRef]
- Ma, Q.; Guo, C.; Zhang, F.; Yang, Y.; Xiong, W. Optimization of subcritical fluid extraction process and GC-MS analysis of Zanthoxylum bungeanum essential oil. China Brew. 2022, 41, 201–206. [Google Scholar] [CrossRef]
- van Gemert, L.J. Compilation of Odour Threshold Values in Air and Water. 2011. Available online: http://www.leffingwell.com/bacis2.htm (accessed on 1 January 2025).
- Yang, C.; Zhao, Z.; Zou, Y.; Ma, S.; Qi, J.; Liu, D. Comparative analysis of flavor differences of six Chinese commercial smoked chicken. CyTA-J. Food 2021, 19, 163–173. [Google Scholar] [CrossRef]
- Grosch, W. Determination of Potent Odourants in Foods by Aroma Extract Dilution Analysis (AEDA) and Calculation of Odour Activity Values (OAVs). Flavour Fragr. J. 1994, 9, 147–158. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, W.; Tang, L.; Wang, D.; Wang, Y.; Wu, Z.; Zhang, W. Characterization of aroma and bacteria profiles of Sichuan industrial paocai by HS-SPME-GC-O-MS and 16S rRNA amplicon sequencing. Food Res. Int. 2021, 149, 110667. [Google Scholar] [CrossRef]
- Du, H.; Chen, Q.; Liu, Q.; Wang, Y.; Kong, B. Evaluation of flavor characteristics of bacon smoked with different woodchips by HS-SPME-GC-MS combined with an electronic tongue and electronic nose. Meat Sci. 2021, 182, 108626. [Google Scholar] [CrossRef]
- Ferrão, L.F.V.; Sater, H.; Lyrene, P.; Amadeu, R.R.; Sims, C.A.; Tieman, D.M.; Munoz, P.R. Terpene volatiles mediates the chemical basis of blueberry aroma and consumer acceptability. Food Res. Int. 2022, 158, 111468. [Google Scholar] [CrossRef]
- Głuchowski, A.; Czarniecka-Skubina, E.; Kostyra, E.; Wasiak-Zys, G.; Bylinka, K. Sensory Features, Liking and Emotions of Consumers towards Classical, Molecular and Note by Note Foods. Foods 2021, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Mayol, A.R.; Acree, T.E. Advances in Gas Chromatography-Olfactometry. In Gas Chromatography-Olfactometry; American Chemical Society: Washington, DC, USA, 2001; pp. 1–10. [Google Scholar]
- Ren, L.; Ma, J.; Lv, Y.; Tong, Q.; Guo, H. Characterization of key off-odor compounds in thermal duck egg gels by GC-olfactometry-MS, odor activity values, and aroma recombination. LWT 2021, 143, 111182. [Google Scholar] [CrossRef]
- Ohashi, T.; Miyazawa, Y.; Ishizaki, S.; Kurobayashi, Y.; Saito, T. Identification of Odor-Active Trace Compounds in Blooming Flower of Damask Rose (Rosa damascena). J. Agric. Food Chem. 2019, 67, 7410–7415. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; Wang, Y.; Kong, B.; Chen, Q. Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC-MS. LWT 2021, 140, 110764. [Google Scholar] [CrossRef]
Compounds | Odor Threshold (mg/kg) a,b | Aroma Description c | ROAV d | ||||
---|---|---|---|---|---|---|---|
Control e | CMW e | RMW e | MW e | RW e | |||
Benzene series | |||||||
p-Cymene | 0.00501 | mild, pleasant | n.d | 88 | n.d | n.d | n.d |
β-Cymene | 0.8 | / | n.d | n.d | 2 | n.d | n.d |
p-Cymenene | 0.085 | spicy | n.d | n.d | 1 | <1 | n.d |
Pyrazines | |||||||
2-Ethyl-3,6-dimethylpyrazine | 0.0086 | potato, cocoa, roasted | 3 | 5 | 5 | 6 | 4 |
Alcohols | |||||||
1-Octen-3-ol | 0.0015 | mushroom, earthy, oily | 8 | 23 | 52 | 8 | 13 |
1-Hexanol | 0.0056 | pungent, fruity, alcoholic | 1 | 3 | <1 | <1 | <1 |
Isopentyl alcohol | 0.004 | fusel, alcoholic, pungent | <1 | n.d | n.d | n.d | 2 |
Methanethiol | 0.0002 | vegetable, alliaceous | n.d | n.d | 53 | 53 | 31 |
3-Octanol | 0.078 | mushroom, dairy | n.d | n.d | <1 | 4 | n.d |
Furan | |||||||
2-Pentylfuran | 0.0058 | fruity, green, earthy beany | 2 | 12 | 15 | 8 | 10 |
Aldehyde | |||||||
Isovaleraldehyde | 0.0011 | chocolate, fatty | 169 | 194 | 141 | 111 | 259 |
Hexanal | 0.005 | green, vegetative, fruity | 24 | 62 | 14 | 18 | 25 |
2-Methylbutanal | 0.001 | musty, chocolate, nutty | 104 | 172 | 133 | 101 | 389 |
Isobutyraldehyde | 0.0015 | fresh, floral, green | 57 | 108 | 51 | 54 | 117 |
Benzeneacetaldehyde | 0.0063 | honey, floral, sweet | 4 | 12 | 9 | 9 | 12 |
Pentanal | 0.012 | fermented, bready, nutty | 2 | 3 | 1 | 1 | 1 |
Nonanal | 0.0011 | waxy, aldehydic | 14 | 46 | 27 | 29 | 31 |
Heptanal | 0.0028 | fresh, aldehydic, fatty | 3 | 6 | 3 | 3 | 5 |
Octanal | 0.000587 | fatty | 10 | 57 | 19 | 17 | 22 |
(E,E)-2,4-Decadienal | 0.000027 | fatty, chicken, fried | 39 | 184 | n.d | n.d | n.d |
(E)-2-Nonenal | 0.00019 | green, cucumber, citrus | n.d | n.d | 15 | n.d | 7 |
Acetaldehyde | 0.0251 | pungent, aldehydic, fruity | n.d | n.d | n.d | 2 | n.d |
2,4-Decadienal | 0.0003 | fatty, oily, chicken skin-like | n.d | n.d | n.d | 18 | 12 |
Terpene | |||||||
Linalool | 0.00022 | citrus, floral, rose | 11 | 250 | 928 | 158 | 14 |
Eucalyptol | 0.0011 | minty, camphorwood, eucalyptus | 35 | 2543 | 2115 | 11 | 4 |
Limonene | 0.2 | citrus, herbal, camphor | <1 | 10 | 4 | 4 | <1 |
β-Myrcene | 0.0012 | pepper, spicy | <1 | 329 | 175 | 146 | 3 |
α-Pinene | 0.014 | fresh, camphor, earthy, woody | <1 | n.d | 41 | 3 | <1 |
α-Terpinene | 0.08 | woody, lemon, medicinal | <1 | 1 | <1 | n.d | n.d |
trans-β-Ocimene | 0.034 | herbal, sweet | n.d | <1 | <1 | 7 | n.d |
Camphore | 0.52 | camphorwood | n.d | <1 | 2 | n.d | n.d |
Caryophyllene | 0.064 | spicy, woody | n.d | <1 | 3 | <1 | n.d |
Camphol | 0.18 | wood, camphor | n.d | n.d | 8 | n.d | n.d |
Levomenthol | 2.28 | minty | n.d | n.d | <1 | 1 | n.d |
Myrtenol | 0.007 | woody, pine, minty | n.d | n.d | 2 | n.d | n.d |
Eugenol | 0.00071 | spicy, clove, woody | n.d | n.d | 2 | <1 | n.d |
Piperitone | 0.68 | herbal, minty, camphorwood | n.d | n.d | n.d | 1 | n.d |
Ketone | |||||||
Acetoin | 0.014 | sweet, buttery, creamy | <1 | n.d | <1 | <1 | 1 |
2,3-Butanedione | 0.000059 | sweet, creamy, caramellike | n.d | n.d | n.d | 127 | n.d |
Esters | |||||||
Ethyl acetate | 0.005 | fruity, sweet, grape | <1 | 1 | <1 | <1 | 1 |
Ethyl α-methylbutyrate | 0.000007 | fruity, estery, berry, fresh | n.d | n.d | n.d | 52 | n.d |
Others | |||||||
Dimethyl disulfide | 0.0011 | sulfurous, cabbage, onion | 4 | 5 | 2 | 2 | n.d |
Dimethyl trisulfide | 0.0001 | sulfurous, onion, meaty | 10 | 23 | n.d | n.d | n.d |
Estragole | 0.006 | phenolic, anise, spicy, minty | n.d | 2 | n.d | n.d | <1 |
Dimethyl sulfide | 0.00012 | sulfurous, onion, corn, cabbage | n.d | n.d | n.d | 26 | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Guo, Y.; Zhang, D.; Zhou, Q.; Feng, X.; Liu, Y. Metabolomic Insights into Volatile Profiles and Flavor Enhancement of Spice-Smoked Chicken Wings. Foods 2025, 14, 2270. https://doi.org/10.3390/foods14132270
Zhao Y, Guo Y, Zhang D, Zhou Q, Feng X, Liu Y. Metabolomic Insights into Volatile Profiles and Flavor Enhancement of Spice-Smoked Chicken Wings. Foods. 2025; 14(13):2270. https://doi.org/10.3390/foods14132270
Chicago/Turabian StyleZhao, Yajiao, Ye Guo, Danni Zhang, Quanlong Zhou, Xiaoxiao Feng, and Yuan Liu. 2025. "Metabolomic Insights into Volatile Profiles and Flavor Enhancement of Spice-Smoked Chicken Wings" Foods 14, no. 13: 2270. https://doi.org/10.3390/foods14132270
APA StyleZhao, Y., Guo, Y., Zhang, D., Zhou, Q., Feng, X., & Liu, Y. (2025). Metabolomic Insights into Volatile Profiles and Flavor Enhancement of Spice-Smoked Chicken Wings. Foods, 14(13), 2270. https://doi.org/10.3390/foods14132270